Calculate sin(72)
sin is found using Opposite/Hypotenuse
Since 0 ≤ 72 ≤ 90 degrees
it is in Quadrant I
sin, cos and tan are positive.
72 < 90°, so it is acute
sin(72) = 0.95105651585143
Since 72° is less than 90...
We can express this as a cofunction
sin(θ) = cos(90 - θ)
sin(72) = cos(90 - 72)
sin(72) = cos(18)
θ° | θrad | sin(θ) | cos(θ) | tan(θ) | csc(θ) | sec(θ) | cot(θ) |
---|---|---|---|---|---|---|---|
0° | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
30° | π/6 | 1/2 | √3/2 | √3/3 | 2 | 2√3/3 | √3 |
45° | π/4 | √2/2 | √2/2 | 1 | √2 | √2 | 1 |
60° | π/3 | √3/2 | 1/2 | √3 | 2√3/3 | 2 | √3/3 |
90° | π/2 | 1 | 0 | N/A | 1 | 0 | N/A |
120° | 2π/3 | √3/2 | -1/2 | -√3 | 2√3/3 | -2 | -√3/3 |
135° | 3π/4 | √2/2 | -√2/2 | -1 | √2 | -√2 | -1 |
150° | 5π/6 | 1/2 | -√3/2 | -√3/3 | 2 | -2√3/3 | -√3 |
180° | π | 0 | -1 | 0 | 0 | -1 | N/A |
210° | 7π/6 | -1/2 | -√3/2 | √3/3 | -2 | -2√3/3 | √3 |
225° | 5π/4 | -√2/2 | -√2/2 | 1 | -√2 | -√2 | 1 |
240° | 4π/3 | -√3/2 | -1/2 | √3 | -2√3/3 | -2 | √3/3 |
270° | 3π/2 | -1 | 0 | N/A | -1 | 0 | N/A |
300° | 5π/3 | -√3/2 | 1/2 | -√3 | -2√3/3 | 2 | -√3/3 |
315° | 7π/4 | -√2/2 | √2/2 | -1 | -√2 | √2 | -1 |
330° | 11π/6 | -1/2 | √3/2 | -√3/3 | -2 | 2√3/3 | -√3 |