Prove that sin(x)/cos(x) = tan(x)
using an angle of °
The Pythagorean Theorem states
x2 + y2 = r2
The picture shows a right triangle
sin(x) = |
x |
r |
cos(x) = |
y |
r |
sin(x) |
cos(x) |
= |
x/r |
y/r |
sin(x) |
cos(x) |
= |
xr |
yr |
sin(x) |
cos(x) |
= |
x |
y |
sin(x) |
cos(x) |
= |
tan(x) |
sin() |
cos() |
? |
tan() |
0 |
1 |
? |
0 |
0 = 0