Enter angle in degrees

    

Prove that sin(x)/cos(x) = tan(x)

using an angle of °

Inscribe a triangle inside a circle

The Pythagorean Theorem states
x2 + y2 = r2

The picture shows a right triangle

From the diagram, we know:

sin(x) =
  
x
r

cos(x) =
  
y
r

Divide sin(x) by cos(x)

sin(x)
cos(x)
=
  
x/r
y/r

Simplify the right side

sin(x)
cos(x)
=
  
xr
yr

Cancel r on the right side

sin(x)
cos(x)
=
  
x
y

tan(x) = (x/y)

sin(x)
cos(x)
=
  
tan(x)
  

Confirm using the angle of °

sin()
cos()
?
  
tan()
  

0
1
?
  
0
  

0 = 0

Final Answer


sin()/cos() = tan()