Right Angle Formulas

sin θ  =  Opposite
  Hypotenuse

cos θ  =  Adjacent
  Hypotenuse

tan θ  =  Opposite
  Adjacent

csc θ  =  Hypotenuse
  Opposite

sec θ  =  Hypotenuse
  Adjacent

cot θ  =  Adjacent
  Opposite

Important Angle Summary

θradianssinθcosθtanθ
0010
30°π/61/23/23/3
45°π/42/22/21
60°π/33/21/23
90°π/210N/A

Fundamental Identities

tan θ  =  sin θ
  cos θ

csc θ  =  1
  sin θ

sec θ  =  1
  cos θ

cot θ  =  cos θ
  sin θ

cot θ  =  1
  tan θ

sin2θ + cos2θ = 1
1 + tan2θ = sec2θ
1 + cot2θ = csc2θ
sin( - θ) = -sin θ
cos( - θ) = cos θ
tan( - θ) = -tan θ

Addition and Subtraction Formulas

sin(x + y) = sin x cos y + cos x sin y
sin(x - y) = sin x cos y - cos x sin y
cos(x + y) = cos x cos y - sin x sin y
cos(x - y) = cos x cos y + sin x sin y
tan(x + y)  =  tan x + tan y
  1 - tan x tan y

tan(x - y)  =  tan x - tan y
  1 + tan x tan y

Double-Angle Formulas

sin 2x = 2 sin x cos x
cos 2x = cos2x - sin2x
cos 2x = 2 cos2x - 1
cos 2x = 1 - 2 sin2x
tan 2x  =  2 tan x
  1 - tan2x

Half-Angle Formulas

sin2x  =  1 - cos 2x
  2

cos2x  =  1 + cos 2x
  2

Law of Sines

Given a Triangle with Angles A,B,C and corresponding sides a,b,c
sin A
a
=
sin B
b
=
sin C
c

Law of Cosines

a2 = b2 + c2 - 2bc cos A
b2 = a2 + c2 - 2ac cos B
c2 = a2 + b2 - 2ab cos C