Right Angle Formulas
sin θ = | Opposite |
| Hypotenuse |
cos θ = | Adjacent |
| Hypotenuse |
tan θ = | Opposite |
| Adjacent |
csc θ = | Hypotenuse |
| Opposite |
sec θ = | Hypotenuse |
| Adjacent |
cot θ = | Adjacent |
| Opposite |
Important Angle Summary
θ | radians | sinθ | cosθ | tanθ | 0° | 0 | 0 | 1 | 0 |
30° | π/6 | 1/2 | √3/2 | √3/3 |
45° | π/4 | √2/2 | √2/2 | 1 |
60° | π/3 | √3/2 | 1/2 | √3 |
90° | π/2 | 1 | 0 | N/A |
Fundamental Identities
sin
2θ + cos
2θ = 1
1 + tan
2θ = sec
2θ
1 + cot
2θ = csc
2θ
sin( - θ) = -sin θ
cos( - θ) = cos θ
tan( - θ) = -tan θ
Addition and Subtraction Formulas
sin(x + y) = sin x cos y + cos x sin y
sin(x - y) = sin x cos y - cos x sin y
cos(x + y) = cos x cos y - sin x sin y
cos(x - y) = cos x cos y + sin x sin y
tan(x + y) = | tan x + tan y |
| 1 - tan x tan y |
tan(x - y) = | tan x - tan y |
| 1 + tan x tan y |
Double-Angle Formulas
sin 2x = 2 sin x cos x
cos 2x = cos
2x - sin
2x
cos 2x = 2 cos
2x - 1
cos 2x = 1 - 2 sin
2x
tan 2x = | 2 tan x |
| 1 - tan2x |
Half-Angle Formulas
Law of Sines
Given a Triangle with Angles A,B,C and corresponding sides a,b,c
Law of Cosines
a
2 = b
2 + c
2 - 2bc cos A
b
2 = a
2 + c
2 - 2ac cos B
c
2 = a
2 + b
2 - 2ab cos C