With the function that you entered of tan(x), plot points, determine the intercepts, domain, range
Since you did not specify a qualifying variable or function notation in your expression, we will assume y
y = tan(x)
Determine function type:
Since we have one of the standard trigonometric functions:
this is a
trigonometric function
Now Plot points from pi/6 to 2pi
x | Plug in x | ƒ(x) = tan(x) | Ordered Pair | 2π | tan([2π]) | -2.4492935982947E-16 | (2π, -2.4492935982947E-16) |
11π/6 | tan([11π/6]) | -0.57735026918963 | (11π/6, -0.57735026918963) |
7i/4 | tan([7i/4]) | -1 | (7i/4, -1) |
5π/3 | tan([5π/3]) | -1.7320508075689 | (5π/3, -1.7320508075689) |
3π/2 | tan([3π/2]) | 5.4437464510651E+15 | (3π/2, 5.4437464510651E+15) |
4π/3 | tan([4π/3]) | 1.7320508075689 | (4π/3, 1.7320508075689) |
5π/4 | tan([5π/4]) | 1 | (5π/4, 1) |
7π/6 | tan([7π/6]) | 0.57735026918963 | (7π/6, 0.57735026918963) |
π | tan([π]) | -1.2246467991474E-16 | (π, -1.2246467991474E-16) |
5π/6 | tan([5π/6]) | -0.57735026918963 | (5π/6, -0.57735026918963) |
3π/4 | tan([3π/4]) | -1 | (3π/4, -1) |
2π/3 | tan([2π/3]) | -1.7320508075689 | (2π/3, -1.7320508075689) |
π/2 | tan([π/2]) | 1.6331239353195E+16 | (π/2, 1.6331239353195E+16) |
π/3 | tan([π/3]) | 1.7320508075689 | (π/3, 1.7320508075689) |
π/4 | tan([π/4]) | 1 | (π/4, 1) |
π/6 | tan([π/6]) | 0.57735026918963 | (π/6, 0.57735026918963) |
Determine the y-intercept:
The y-intercept is found when x is set to 0. From the grid above, our y-intercept is 0.57735026918963
Determine the x-intercept
The x-intercept is found when y is set to 0
The y-intercept is found when y is set to 0. From the grid above, our x-intercept is 0
Determine the domain of the function:
The domain represents all values of x that you can enter
The domain is (-∞, ∞) or All Real Number
Determine the range of the function:
The range is all the possible values of y or ƒ(x) that can exist
The range is (-∞, ∞) or All Real Number
(2π, -2.4492935982947E-16)
(11π/6, -0.57735026918963)
(7i/4, -1)
(5π/3, -1.7320508075689)
(3π/2, 5.4437464510651E+15)
(4π/3, 1.7320508075689)
(5π/4, 1)
(7π/6, 0.57735026918963)
(π, -1.2246467991474E-16)
(5π/6, -0.57735026918963)
(3π/4, -1)
(2π/3, -1.7320508075689)
(π/2, 1.6331239353195E+16)
(π/3, 1.7320508075689)
(π/4, 1)
(π/6, 0.57735026918963)