segment - part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints.
A line segment has the endpoints S(10, 7) and T(2, 7). Find the coordinates of its midpoint M.A line segment has the endpoints S(10, 7) and T(2, 7). Find the coordinates of its midpoint M.
[URL='https://www.mathcelebrity.com/slope.php?xone=2&yone=7&slope=+&xtwo=10&ytwo=7&bvalue=+&pl=You+entered+2+points']Using our midpoint calculator[/URL], we get:
M = [B](6, 7)[/B]
A line segment is 26 centimeters long. If a segment, x centimeters, is taken, how much of the line sA line segment is 26 centimeters long. If a segment, x centimeters, is taken, how much of the line segment remains?
This means the leftover segment has a length of:
[B]26 - x[/B]
A segment has an endpoint at (2, 1). The midpoint is at (5, 1). What are the coordinates of the otheA segment has an endpoint at (2, 1). The midpoint is at (5, 1). What are the coordinates of the other endpoint?
The other endpoint is (8,1) using our [URL='http://www.mathcelebrity.com/mptnline.php?ept1=2&empt=5&ept2=&pl=Calculate+missing+Number+Line+item']midpoint calculator.[/URL]
B is the midpoint of AC and BC=5B is the midpoint of AC and BC=5
Since the midpoint divides a segment into two equal segments, we know that:
AB = BC
So AB =[B] 5[/B]
And AC = 5 + 5 = [B]10[/B]
Cevian Triangle RelationsFree Cevian Triangle Relations Calculator - Given a triangle with a cevian, this will solve for the cevian or segments or sides based on inputs
Geometric Mean of a TriangleFree Geometric Mean of a Triangle Calculator - Given certain segments of a special right triangle, this will calculate other segments using the geometric mean
Given: BC = EF AC = EG AB = 10 BC = 3 Prove FG = 10Given: BC = EF
AC = EG
AB = 10
BC = 3
Prove FG = 10
[LIST]
[*]AC = AB + BC (Segment Addition Postulate)
[*]AB = 10, BC = 3 (Given)
[*]AC = 10 + 3 (Substitution Property of Equality)
[*]AC = 13 (Simplify)
[*]AC = EG, BC = EF (Given)
[*]EG = 13, EF = 3 (Segment Equivalence)
[*]EG = EF + FG (Segment Addition Postulate)
[*]13 = 3 + FG (Substitution Property of Equality)
[*]FG = 10 (Subtraction Property)
[/LIST]
Golden RatioFree Golden Ratio Calculator - Solves for 2 out of the 3 variables for a segment broken in 2 pieces that satisfies the Golden Ratio (Golden Mean).
(a) Large Segment
(b) Small Segment
(a + b) Total Segment
If Ef = 3x,Fg = 2x,and EG = 5If Ef = 3x,Fg = 2x,and EG = 5
By segment addition, we have:
EF + FG = EG
3x + 2x = 5
To solve for x, we t[URL='https://www.mathcelebrity.com/1unk.php?num=3x%2B2x%3D5&pl=Solve']ype this equation into our math engine [/URL]and we get:
x = 1
So EF = 3(1) = [B]3[/B]
FG = 2(1) = [B]2[/B]
If EF = 7x , FG = 3x , and EG = 10 , what is EF?If EF = 7x , FG = 3x , and EG = 10 , what is EF?
By segment addition:
EF + FG = EG
7x + 3x = 10
To solve this equation for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=7x%2B3x%3D10&pl=Solve']type it in our search engine[/URL] and we get:
x = 1
Evaluating EF = 7x with x = 1, we get:
EF = 7 * 1
EF = [B]7[/B]
If EF = 9x - 17, FG = 17x - 14, and EG = 20x + 17, what is FG?If EF = 9x - 17, FG = 17x - 14, and EG = 20x + 17, what is FG?
By segment addition, we know that:
EF + FG = EG
Substituting in our values for the 3 segments, we get:
9x - 17 + 17x - 14 = 20x + 17
Group like terms and simplify:
(9 + 17)x + (-17 - 14) = 20x - 17
26x - 31 = 20x - 17
Solve for [I]x[/I] in the equation 26x - 31 = 20x - 17
[SIZE=5][B]Step 1: Group variables:[/B][/SIZE]
We need to group our variables 26x and 20x. To do that, we subtract 20x from both sides
26x - 31 - 20x = 20x - 17 - 20x
[SIZE=5][B]Step 2: Cancel 20x on the right side:[/B][/SIZE]
6x - 31 = -17
[SIZE=5][B]Step 3: Group constants:[/B][/SIZE]
We need to group our constants -31 and -17. To do that, we add 31 to both sides
6x - 31 + 31 = -17 + 31
[SIZE=5][B]Step 4: Cancel 31 on the left side:[/B][/SIZE]
6x = 14
[SIZE=5][B]Step 5: Divide each side of the equation by 6[/B][/SIZE]
6x/6 = 14/6
x = [B]2.3333333333333[/B]
If FG = 9, GH = 4x, and FH = 7x, what is GH?If FG = 9, GH = 4x, and FH = 7x, what is GH?
By segment addition, we have:
FG + GH = FH
Substituting in the values given, we have:
9 + 4x = 7x
To solve this equation for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=9%2B4x%3D7x&pl=Solve']type it in our math engine[/URL] and we get:
x = 3
The question asks for GH, so with x = 3, we have:
GH = 4(3)
GH = [B]12[/B]
If FG=11, GH=x-2, and FH=3x-11, what is FHIf FG=11, GH=x-2, and FH=3x-11, what is FH
By segment addition, we have:
FG + GH = FH
11 + x - 2 = 3x - 11
To solve this equation for x, we [URL='https://www.mathcelebrity.com/1unk.php?num=11%2Bx-2%3D3x-11&pl=Solve']type it in or math engine[/URL] and we get:
x = 10
FH = 3x - 11. So we substitute x = 10 into this:
FH = 3(10) - 11
FH = 30 - 11
FH = [B]19[/B]
If QR = 16, RS = 4x − 17, and QS = x + 20, what is RS?If QR = 16, RS = 4x − 17, and QS = x + 20, what is RS?
From the segment addition rule, we have:
QR + RS = QS
Plugging our values in for each of these segments, we get:
16 + 4x - 17 = x + 20
To solve this equation for x, [URL='https://www.mathcelebrity.com/1unk.php?num=16%2B4x-17%3Dx%2B20&pl=Solve']we type it in our search engine[/URL] and we get:
x = 7
Take x = 7 and substitute it into RS:
RS = 4x - 17
RS = 4(7) - 17
RS = 28 - 17
RS = [B]11[/B]
KL=4, and JK=9 Find JLKL=4, and JK=9 Find JL
Using segment addition, we know that:
JL = JK + KL
JL = 9 + 4
JL = [B]13[/B]
M is the midpoint of AB. Prove AB = 2AMM is the midpoint of AB. Prove AB = 2AM
M is the midpoint of AB (Given)
AM = MB (Definition of Congruent Segments)
AM + MB = AB (Segment Addition Postulate)
AM + AM = AB (Substitution Property of Equality)
2AM = AB (Distributive property)
[MEDIA=youtube]8BNo_4kvBzw[/MEDIA]
Points A, B, and C are collinear. Point B is between A and C. Find AB if AC=15 and BC=7.Points A, B, and C are collinear. Point B is between A and C. Find AB if AC=15 and BC=7.
Collinear means on the same line.
By segment subtraction, we have:
AB = AC - BC
AB = 15 - 7
AB = [B]8[/B]
PQ=3.7 and PR=14.1 what is QRPQ=3.7 and PR=14.1 what is QR
QR = PR - PQ by segment addition
QR = 14.1 - 3.7
QR = [B]10.4[/B]
Q is a point on segment PR. If PQ = 2.7 and PR = 6.1, what is QR?Q is a point on segment PR. If PQ = 2.7 and PR = 6.1, what is QR?
From segment addition, we know that:
PQ + QR = PR
Plugging our given numbers in, we get:
2.7 + QR = 6.1
Subtract 2.7 from each side, and we get:
2.7 - 2.7 + QR = 6.1 - 2.7
Cancelling the 2.7 on the left side, we get:
QR = [B]3.4[/B]
What is a Perpendicular BisectorFree What is a Perpendicular Bisector Calculator - This lesson walks you through what a perpendicular bisector is and the various properties of the segment it bisects and the angles formed by the bisection
What is a SegmentFree What is a Segment Calculator - This lesson walks you through what a segment is and the various implications of a segment in geometry including the midpoint of a segment.