With the function that you entered of f(x)=3
x, plot points, determine the intercepts, domain, range
Determine function type:
Since we have a number raised to a variable:
this is an
exponential function
Now Plot points from 10 to -10
x | Plug in x | f(x) = 3x | Ordered Pair | -10 | 3-10 | 1.693508780843E-5 | (-10, 1.693508780843E-5) |
-9 | 3-9 | 5.0805263425291E-5 | (-9, 5.0805263425291E-5) |
-8 | 3-8 | 0.00015241579027587 | (-8, 0.00015241579027587) |
-7 | 3-7 | 0.00045724737082762 | (-7, 0.00045724737082762) |
-6 | 3-6 | 0.0013717421124829 | (-6, 0.0013717421124829) |
-5 | 3-5 | 0.0041152263374486 | (-5, 0.0041152263374486) |
-4 | 3-4 | 0.012345679012346 | (-4, 0.012345679012346) |
-3 | 3-3 | 0.037037037037037 | (-3, 0.037037037037037) |
-2 | 3-2 | 0.11111111111111 | (-2, 0.11111111111111) |
-1 | 3-1 | 0.33333333333333 | (-1, 0.33333333333333) |
0 | 30 | 1 | (0, 1) |
1 | 31 | 3 | (1, 3) |
2 | 32 | 9 | (2, 9) |
3 | 33 | 27 | (3, 27) |
4 | 34 | 81 | (4, 81) |
5 | 35 | 243 | (5, 243) |
6 | 36 | 729 | (6, 729) |
7 | 37 | 2187 | (7, 2187) |
8 | 38 | 6561 | (8, 6561) |
9 | 39 | 19683 | (9, 19683) |
10 | 310 | 59049 | (10, 59049) |
Determine the y-intercept:
The y-intercept is found when x is set to 0. From the grid above, our y-intercept is 1
Determine the x-intercept
The x-intercept is found when y is set to 0
The y-intercept is found when y is set to 0. From the grid above, our x-intercept is 0
Determine the domain of the function:
The domain represents all values of x that you can enter
The domain is (-∞, ∞) or All Real Number
Determine the range of the function:
The range is all the possible values of y or
f(x) that can exist
The range is (0, ∞) or All Positive Real Numbers
(-10, 1.693508780843E-5)
(-9, 5.0805263425291E-5)
(-8, 0.00015241579027587)
(-7, 0.00045724737082762)
(-6, 0.0013717421124829)
(-5, 0.0041152263374486)
(-4, 0.012345679012346)
(-3, 0.037037037037037)
(-2, 0.11111111111111)
(-1, 0.33333333333333)
(0, 1)
(1, 3)
(2, 9)
(3, 27)
(4, 81)
(5, 243)
(6, 729)
(7, 2187)
(8, 6561)
(9, 19683)
(10, 59049)