Expand the following
(2a2b3c4 - 6x3y4z5)5
Since (2a2b3c4 - 6x3y4z5)5 is a binomial
Use the binomial theorem to expand this.
a(x + y)n = aΣ[k = 0 to n]C(n,k) xn-kyk
where
C(n,k) = | n! |
k!(n - k)! |
n = 5, x = 2a2b3c4, a = 1, and y = -6x3y4z5.
Expanding terms, we get:
C(5,0)x5-0y0 = C(5,0)x5y0
C(5,0) = | 5! |
0!(5 - 0)! |
C(5,0) = 1
Click to see C(5,0)
C(5,0)x5y0 = C(5,0)(2a2b3c4)5 - 0(-6x3y4z5)0
C(5,0)x5y0 = (1)(2a2b3c4)5(-6x3y4z5)0
C(5,0)x5y0 = (1)(1)(32a10b15c20)(1)
C(5,0)x5y0 = (1 * 1 * 32 * 1)(1)
Anything raised to a 0 power = 1
C(5,0)x5y0 = 32a10b15c20
C(5,1)x5-1y1 = C(5,1)x4y1
C(5,1) = | 5! |
1!(5 - 1)! |
C(5,1) = 5
Click to see C(5,1)
C(5,1)x4y1 = C(5,1)(2a2b3c4)5 - 1(-6x3y4z5)1
C(5,1)x4y1 = (5)(2a2b3c4)4(-6x3y4z5)1
C(5,1)x4y1 = (1)(5)(16a8b12c16)(-6x3y4z5)
C(5,1)x4y1 = (1 * 5 * 16 * -6)(a8b12c16x3y4z5)
C(5,1)x4y1 = -480a8b12c16x3y4z5
C(5,2)x5-2y2 = C(5,2)x3y2
C(5,2) = | 5! |
2!(5 - 2)! |
C(5,2) = 10
Click to see C(5,2)
C(5,2)x3y2 = C(5,2)(2a2b3c4)5 - 2(-6x3y4z5)2
C(5,2)x3y2 = (10)(2a2b3c4)3(-6x3y4z5)2
C(5,2)x3y2 = (1)(10)(8a6b9c12)(36x6y8z10)
C(5,2)x3y2 = (1 * 10 * 8 * 36)(a6b9c12x6y8z10)
C(5,2)x3y2 = 2880a6b9c12x6y8z10
C(5,3)x5-3y3 = C(5,3)x2y3
C(5,3) = | 5! |
3!(5 - 3)! |
C(5,3) = 10
Click to see C(5,3)
C(5,3)x2y3 = C(5,3)(2a2b3c4)5 - 3(-6x3y4z5)3
C(5,3)x2y3 = (10)(2a2b3c4)2(-6x3y4z5)3
C(5,3)x2y3 = (1)(10)(4a4b6c8)(-216x9y12z15)
C(5,3)x2y3 = (1 * 10 * 4 * -216)(a4b6c8x9y12z15)
C(5,3)x2y3 = -8640a4b6c8x9y12z15
C(5,4)x5-4y4 = C(5,4)x1y4
C(5,4) = | 5! |
4!(5 - 4)! |
C(5,4) = 5
Click to see C(5,4)
C(5,4)x1y4 = C(5,4)(2a2b3c4)5 - 4(-6x3y4z5)4
C(5,4)x1y4 = (5)(2a2b3c4)1(-6x3y4z5)4
C(5,4)x1y4 = (1)(5)(2a2b3c4)(1296x12y16z20)
C(5,4)x1y4 = (1 * 5 * 2 * 1296)(a2b3c4x12y16z20)
C(5,4)x1y4 = 12960a2b3c4x12y16z20
C(5,5)x5-5y5 = C(5,5)x0y5
C(5,5) = | 5! |
5!(5 - 5)! |
C(5,5) = 1
Click to see C(5,5)
C(5,5)x0y5 = C(5,5)(2a2b3c4)5 - 5(-6x3y4z5)5
C(5,5)x0y5 = (1)(2a2b3c4)0(-6x3y4z5)5
C(5,5)x0y5 = (1)(1)(1)(-7776x15y20z25)
C(5,5)x0y5 = (1 * 1 * 1 * -7776)(x15y20z25)
C(5,5)x0y5 = -7776x15y20z25
(2a2b3c4 - 6x3y4z5)5 = 32a10b15c20 - 480a8b12c16x3y4z5 + 2880a6b9c12x6y8z10 - 8640a4b6c8x9y12z15 + 12960a2b3c4x12y16z20 - 7776x15y20z25
************ End Binomial Expansion ********************