Enter Point 1: (x1,y1)

Enter Point 2: (x2,y2)

Enter Point 3: (x3,y3)

Enter Point 4: (x4,y4)


A quadrilateral is formed by the points:

(0,0) and (5,10)

(10,15) and (5,5)

Calculate the perimeter and area of ABCD

See if it's a parallelogram

Calculate the distance AB

AB = √(x2 - x1)2 + (y2 - y1)2

AB = √(5 - 0)2 + (10 - 0)2

AB = √(52 + 102)

AB = √(25 + 100)

AB = √125

AB = 11.180339887499

Calculate the distance BC

BC = √(x2 - x1)2 + (y2 - y1)2

BC = √(10 - 5)2 + (15 - 10)2

BC = √(52 + 52)

BC = √(25 + 25)

BC = √50

BC = 7.0710678118655

Calculate the distance CD

CD = √(x2 - x1)2 + (y2 - y1)2

CD = √(5 - 10)2 + (5 - 15)2

CD = √(-52 + -102)

CD = √(25 + 100)

CD = √125

CD = 11.180339887499

Calculate the distance AD

AD = √(x2 - x1)2 + (y2 - y1)2

AD = √(5 - 0)2 + (5 - 0)2

AD = √(52 + 52)

AD = √(25 + 25)

AD = √50

AD = 7.0710678118655

Calculate the perimeter of ABCD

Perimeter of ABCD = AB + BC + CD + AD

Perimeter of ABCD = 11.180339887499 + 7.0710678118655 + 11.180339887499 + 7.0710678118655

Perimeter of ABCD = 36.502815398729

Calculate the semi-perimeter (s) of ABCD

s  =  Perimeter
  2

s  =  36.502815398729
  2

s = 18.251407699364

Calculate the Area (A) using Brahmagupta's Formula

A = √(s - a)(s - b)(s - c)(s - d)

A = √(18.251407699364 - 11.180339887499)(18.251407699364 - 7.0710678118655)(18.251407699364 - 11.180339887499)(18.251407699364 - 7.0710678118655)

A = √(7.0710678118655)(11.180339887499)(7.0710678118655)(11.180339887499)

A = √(6250.0000000001


A = 79.05694150421