A quadrilateral is formed by the points:
(0,0) and (5,10)
(10,15) and (5,5)
Calculate the perimeter and area of ABCD
See if it's a parallelogram
AB = √(x2 - x1)2 + (y2 - y1)2
AB = √(5 - 0)2 + (10 - 0)2
AB = √(52 + 102)
AB = √(25 + 100)
AB = √125
AB = 11.180339887499
BC = √(x2 - x1)2 + (y2 - y1)2
BC = √(10 - 5)2 + (15 - 10)2
BC = √(52 + 52)
BC = √(25 + 25)
BC = √50
BC = 7.0710678118655
CD = √(x2 - x1)2 + (y2 - y1)2
CD = √(5 - 10)2 + (5 - 15)2
CD = √(-52 + -102)
CD = √(25 + 100)
CD = √125
CD = 11.180339887499
AD = √(x2 - x1)2 + (y2 - y1)2
AD = √(5 - 0)2 + (5 - 0)2
AD = √(52 + 52)
AD = √(25 + 25)
AD = √50
AD = 7.0710678118655
Perimeter of ABCD = AB + BC + CD + AD
Perimeter of ABCD = 11.180339887499 + 7.0710678118655 + 11.180339887499 + 7.0710678118655
Perimeter of ABCD = 36.502815398729
s = | Perimeter |
2 |
s = | 36.502815398729 |
2 |
s = 18.251407699364
A = √(s - a)(s - b)(s - c)(s - d)
A = √(18.251407699364 - 11.180339887499)(18.251407699364 - 7.0710678118655)(18.251407699364 - 11.180339887499)(18.251407699364 - 7.0710678118655)
A = √(7.0710678118655)(11.180339887499)(7.0710678118655)(11.180339887499)
A = √(6250.0000000001