For set S = {1,5,2,3}, show:
Elements, cardinality, and power set
Elements = set objects
Use the ∈ symbol.
Cardinality = Number of set elements.
Since the set S contains 4 elements
|S| = 4
Power set = Set of all subsets of S
including S and ∅.
S contains 4 terms
Power Set contains 24 = 16 items
The subset A of a set B is
A set where all elements of A are in B.
# | Binary | Use if 1 | Subset |
---|---|---|---|
0 | 0000 | {} | |
1 | 0001 | {3} | |
2 | 0010 | {2} | |
3 | 0011 | {2,3} | |
4 | 0100 | {5} | |
5 | 0101 | {5,3} | |
6 | 0110 | {5,2} | |
7 | 0111 | {5,2,3} | |
8 | 1000 | 1, | {1} |
9 | 1001 | 1, | {1,3} |
10 | 1010 | 1, | {1,2} |
11 | 1011 | 1, | {1,2,3} |
12 | 1100 | 1,5, | {1,5} |
13 | 1101 | 1,5, | {1,5,3} |
14 | 1110 | 1,5,2, | {1,5,2} |
15 | 1111 | 1,5,2,3 | {1,5,2,3} |
{2,3},{1,5}
{2,3},{1,5}
{5,3},
{5,3},
{5,2},
{5,2},
{5,2,3},{1}
{1,3},{1,5}
{1,3},{1,5}
{1,2},{1,5}
{1,2},{1,5}
{1,2,3},
{1,5},
{1,5},
{1,5,3},
{1,5,2},
{{1},{5},{2},{3})