Enter Set

For set S = {a,i,l,r,s,t,u}, show:

Elements, cardinality, and power set

List the elements of S

Elements = set objects
Use the ∈ symbol.

  1. a ∈ S
  2. i ∈ S
  3. l ∈ S
  4. r ∈ S
  5. s ∈ S
  6. t ∈ S
  7. u ∈ S

Cardinality of set S → |S|:

Cardinality = Number of set elements.

Since the set S contains 7 elements

|S| = 7

Determine the power set P:

Power set = Set of all subsets of S
including S and ∅.

Calculate power set subsets

S contains 7 terms
Power Set contains 27 = 128 items

Build subsets of P

The subset A of a set B is
A set where all elements of A are in B.

#BinaryUse if 1Subset
00000000a,i,l,r,s,t,u{}
10000001a,i,l,r,s,t,u{u}
20000010a,i,l,r,s,t,u{t}
30000011a,i,l,r,s,t,u{t,u}
40000100a,i,l,r,s,t,u{s}
50000101a,i,l,r,s,t,u{s,u}
60000110a,i,l,r,s,t,u{s,t}
70000111a,i,l,r,s,t,u{s,t,u}
80001000a,i,l,r,s,t,u{r}
90001001a,i,l,r,s,t,u{r,u}
100001010a,i,l,r,s,t,u{r,t}
110001011a,i,l,r,s,t,u{r,t,u}
120001100a,i,l,r,s,t,u{r,s}
130001101a,i,l,r,s,t,u{r,s,u}
140001110a,i,l,r,s,t,u{r,s,t}
150001111a,i,l,r,s,t,u{r,s,t,u}
160010000a,i,l,r,s,t,u{l}
170010001a,i,l,r,s,t,u{l,u}
180010010a,i,l,r,s,t,u{l,t}
190010011a,i,l,r,s,t,u{l,t,u}
200010100a,i,l,r,s,t,u{l,s}
210010101a,i,l,r,s,t,u{l,s,u}
220010110a,i,l,r,s,t,u{l,s,t}
230010111a,i,l,r,s,t,u{l,s,t,u}
240011000a,i,l,r,s,t,u{l,r}
250011001a,i,l,r,s,t,u{l,r,u}
260011010a,i,l,r,s,t,u{l,r,t}
270011011a,i,l,r,s,t,u{l,r,t,u}
280011100a,i,l,r,s,t,u{l,r,s}
290011101a,i,l,r,s,t,u{l,r,s,u}
300011110a,i,l,r,s,t,u{l,r,s,t}
310011111a,i,l,r,s,t,u{l,r,s,t,u}
320100000a,i,l,r,s,t,u{i}
330100001a,i,l,r,s,t,u{i,u}
340100010a,i,l,r,s,t,u{i,t}
350100011a,i,l,r,s,t,u{i,t,u}
360100100a,i,l,r,s,t,u{i,s}
370100101a,i,l,r,s,t,u{i,s,u}
380100110a,i,l,r,s,t,u{i,s,t}
390100111a,i,l,r,s,t,u{i,s,t,u}
400101000a,i,l,r,s,t,u{i,r}
410101001a,i,l,r,s,t,u{i,r,u}
420101010a,i,l,r,s,t,u{i,r,t}
430101011a,i,l,r,s,t,u{i,r,t,u}
440101100a,i,l,r,s,t,u{i,r,s}
450101101a,i,l,r,s,t,u{i,r,s,u}
460101110a,i,l,r,s,t,u{i,r,s,t}
470101111a,i,l,r,s,t,u{i,r,s,t,u}
480110000a,i,l,r,s,t,u{i,l}
490110001a,i,l,r,s,t,u{i,l,u}
500110010a,i,l,r,s,t,u{i,l,t}
510110011a,i,l,r,s,t,u{i,l,t,u}
520110100a,i,l,r,s,t,u{i,l,s}
530110101a,i,l,r,s,t,u{i,l,s,u}
540110110a,i,l,r,s,t,u{i,l,s,t}
550110111a,i,l,r,s,t,u{i,l,s,t,u}
560111000a,i,l,r,s,t,u{i,l,r}
570111001a,i,l,r,s,t,u{i,l,r,u}
580111010a,i,l,r,s,t,u{i,l,r,t}
590111011a,i,l,r,s,t,u{i,l,r,t,u}
600111100a,i,l,r,s,t,u{i,l,r,s}
610111101a,i,l,r,s,t,u{i,l,r,s,u}
620111110a,i,l,r,s,t,u{i,l,r,s,t}
630111111a,i,l,r,s,t,u{i,l,r,s,t,u}
641000000a,i,l,r,s,t,u{a}
651000001a,i,l,r,s,t,u{a,u}
661000010a,i,l,r,s,t,u{a,t}
671000011a,i,l,r,s,t,u{a,t,u}
681000100a,i,l,r,s,t,u{a,s}
691000101a,i,l,r,s,t,u{a,s,u}
701000110a,i,l,r,s,t,u{a,s,t}
711000111a,i,l,r,s,t,u{a,s,t,u}
721001000a,i,l,r,s,t,u{a,r}
731001001a,i,l,r,s,t,u{a,r,u}
741001010a,i,l,r,s,t,u{a,r,t}
751001011a,i,l,r,s,t,u{a,r,t,u}
761001100a,i,l,r,s,t,u{a,r,s}
771001101a,i,l,r,s,t,u{a,r,s,u}
781001110a,i,l,r,s,t,u{a,r,s,t}
791001111a,i,l,r,s,t,u{a,r,s,t,u}
801010000a,i,l,r,s,t,u{a,l}
811010001a,i,l,r,s,t,u{a,l,u}
821010010a,i,l,r,s,t,u{a,l,t}
831010011a,i,l,r,s,t,u{a,l,t,u}
841010100a,i,l,r,s,t,u{a,l,s}
851010101a,i,l,r,s,t,u{a,l,s,u}
861010110a,i,l,r,s,t,u{a,l,s,t}
871010111a,i,l,r,s,t,u{a,l,s,t,u}
881011000a,i,l,r,s,t,u{a,l,r}
891011001a,i,l,r,s,t,u{a,l,r,u}
901011010a,i,l,r,s,t,u{a,l,r,t}
911011011a,i,l,r,s,t,u{a,l,r,t,u}
921011100a,i,l,r,s,t,u{a,l,r,s}
931011101a,i,l,r,s,t,u{a,l,r,s,u}
941011110a,i,l,r,s,t,u{a,l,r,s,t}
951011111a,i,l,r,s,t,u{a,l,r,s,t,u}
961100000a,i,l,r,s,t,u{a,i}
971100001a,i,l,r,s,t,u{a,i,u}
981100010a,i,l,r,s,t,u{a,i,t}
991100011a,i,l,r,s,t,u{a,i,t,u}
1001100100a,i,l,r,s,t,u{a,i,s}
1011100101a,i,l,r,s,t,u{a,i,s,u}
1021100110a,i,l,r,s,t,u{a,i,s,t}
1031100111a,i,l,r,s,t,u{a,i,s,t,u}
1041101000a,i,l,r,s,t,u{a,i,r}
1051101001a,i,l,r,s,t,u{a,i,r,u}
1061101010a,i,l,r,s,t,u{a,i,r,t}
1071101011a,i,l,r,s,t,u{a,i,r,t,u}
1081101100a,i,l,r,s,t,u{a,i,r,s}
1091101101a,i,l,r,s,t,u{a,i,r,s,u}
1101101110a,i,l,r,s,t,u{a,i,r,s,t}
1111101111a,i,l,r,s,t,u{a,i,r,s,t,u}
1121110000a,i,l,r,s,t,u{a,i,l}
1131110001a,i,l,r,s,t,u{a,i,l,u}
1141110010a,i,l,r,s,t,u{a,i,l,t}
1151110011a,i,l,r,s,t,u{a,i,l,t,u}
1161110100a,i,l,r,s,t,u{a,i,l,s}
1171110101a,i,l,r,s,t,u{a,i,l,s,u}
1181110110a,i,l,r,s,t,u{a,i,l,s,t}
1191110111a,i,l,r,s,t,u{a,i,l,s,t,u}
1201111000a,i,l,r,s,t,u{a,i,l,r}
1211111001a,i,l,r,s,t,u{a,i,l,r,u}
1221111010a,i,l,r,s,t,u{a,i,l,r,t}
1231111011a,i,l,r,s,t,u{a,i,l,r,t,u}
1241111100a,i,l,r,s,t,u{a,i,l,r,s}
1251111101a,i,l,r,s,t,u{a,i,l,r,s,u}
1261111110a,i,l,r,s,t,u{a,i,l,r,s,t}
1271111111a,i,l,r,s,t,u{a,i,l,r,s,t,u}

List our Power Set P in notation form:


P = {{}, {a}, {i}, {l}, {r}, {s}, {t}, {u}, {a,i}, {a,l}, {a,r}, {a,s}, {a,t}, {a,u}, {i,l}, {i,r}, {i,s}, {i,t}, {i,u}, {l,r}, {l,s}, {l,t}, {l,u}, {r,s}, {r,t}, {r,u}, {s,t}, {s,u}, {t,u}, {a,i,l}, {a,i,r}, {a,i,s}, {a,i,t}, {a,i,u}, {a,l,r}, {a,l,s}, {a,l,t}, {a,l,u}, {a,r,s}, {a,r,t}, {a,r,u}, {a,s,t}, {a,s,u}, {a,t,u}, {i,l,r}, {i,l,s}, {i,l,t}, {i,l,u}, {i,r,s}, {i,r,t}, {i,r,u}, {i,s,t}, {i,s,u}, {i,t,u}, {l,r,s}, {l,r,t}, {l,r,u}, {l,s,t}, {l,s,u}, {l,t,u}, {r,s,t}, {r,s,u}, {r,t,u}, {s,t,u}, {a,i,l,r}, {a,i,l,s}, {a,i,l,t}, {a,i,l,u}, {a,i,r,s}, {a,i,r,t}, {a,i,r,u}, {a,i,s,t}, {a,i,s,u}, {a,i,t,u}, {a,l,r,s}, {a,l,r,t}, {a,l,r,u}, {a,l,s,t}, {a,l,s,u}, {a,l,t,u}, {a,r,s,t}, {a,r,s,u}, {a,r,t,u}, {a,s,t,u}, {i,l,r,s}, {i,l,r,t}, {i,l,r,u}, {i,l,s,t}, {i,l,s,u}, {i,l,t,u}, {i,r,s,t}, {i,r,s,u}, {i,r,t,u}, {i,s,t,u}, {l,r,s,t}, {l,r,s,u}, {l,r,t,u}, {l,s,t,u}, {r,s,t,u}, {a,i,l,r,s}, {a,i,l,r,t}, {a,i,l,r,u}, {a,i,l,s,t}, {a,i,l,s,u}, {a,i,l,t,u}, {a,i,r,s,t}, {a,i,r,s,u}, {a,i,r,t,u}, {a,i,s,t,u}, {a,l,r,s,t}, {a,l,r,s,u}, {a,l,r,t,u}, {a,l,s,t,u}, {a,r,s,t,u}, {i,l,r,s,t}, {i,l,r,s,u}, {i,l,r,t,u}, {i,l,s,t,u}, {i,r,s,t,u}, {l,r,s,t,u}, {a,i,l,r,s,t}, {a,i,l,r,s,u}, {a,i,l,r,t,u}, {a,i,l,s,t,u}, {a,i,r,s,t,u}, {a,l,r,s,t,u}, {i,l,r,s,t,u}, {a,i,l,r,s,t,u}}


Download the mobile appGenerate a practice problemGenerate a quiz

Partition 1

{t,u},{a,i,l,r,s}

Partition 2

{t,u},{a,i,l,r,s}

Partition 3

{t,u},{a,i,l,r,s}

Partition 4

{t,u},{a,i,l,r,s}

Partition 5

{t,u},{a,i,l,r,s}

Partition 6

{s,u},

Partition 7

{s,u},

Partition 8

{s,u},

Partition 9

{s,u},

Partition 10

{s,u},

Partition 11

{s,t},

Partition 12

{s,t},

Partition 13

{s,t},

Partition 14

{s,t},

Partition 15

{s,t},

Partition 16

{s,t,u},{a,i,l,r}

Partition 17

{s,t,u},{a,i,l,r}

Partition 18

{s,t,u},{a,i,l,r}

Partition 19

{s,t,u},{a,i,l,r}

Partition 20

{r,u},{a,i,l,r,s}

Partition 21

{r,u},{a,i,l,r,s}

Partition 22

{r,u},{a,i,l,r,s}

Partition 23

{r,u},{a,i,l,r,s}

Partition 24

{r,u},{a,i,l,r,s}

Partition 25

{r,t},{a,i,l,r,s}

Partition 26

{r,t},{a,i,l,r,s}

Partition 27

{r,t},{a,i,l,r,s}

Partition 28

{r,t},{a,i,l,r,s}

Partition 29

{r,t},{a,i,l,r,s}

Partition 30

{r,t,u},

Partition 31

{r,t,u},

Partition 32

{r,t,u},

Partition 33

{r,t,u},

Partition 34

{r,s},

Partition 35

{r,s},

Partition 36

{r,s},

Partition 37

{r,s},

Partition 38

{r,s},

Partition 39

{r,s,u},

Partition 40

{r,s,u},

Partition 41

{r,s,u},

Partition 42

{r,s,u},

Partition 43

{r,s,t},

Partition 44

{r,s,t},

Partition 45

{r,s,t},

Partition 46

{r,s,t},

Partition 47

{r,s,t,u},{a,i,l}

Partition 48

{r,s,t,u},{a,i,l}

Partition 49

{r,s,t,u},{a,i,l}

Partition 50

{l,u},{a,i,l,r,s}

Partition 51

{l,u},{a,i,l,r,s}

Partition 52

{l,u},{a,i,l,r,s}

Partition 53

{l,u},{a,i,l,r,s}

Partition 54

{l,u},{a,i,l,r,s}

Partition 55

{l,t},{a,i,l,r,s}

Partition 56

{l,t},{a,i,l,r,s}

Partition 57

{l,t},{a,i,l,r,s}

Partition 58

{l,t},{a,i,l,r,s}

Partition 59

{l,t},{a,i,l,r,s}

Partition 60

{l,t,u},{a,i,l,r}

Partition 61

{l,t,u},{a,i,l,r}

Partition 62

{l,t,u},{a,i,l,r}

Partition 63

{l,t,u},{a,i,l,r}

Partition 64

{l,s},

Partition 65

{l,s},

Partition 66

{l,s},

Partition 67

{l,s},

Partition 68

{l,s},

Partition 69

{l,s,u},{a,i,l,r}

Partition 70

{l,s,u},{a,i,l,r}

Partition 71

{l,s,u},{a,i,l,r}

Partition 72

{l,s,u},{a,i,l,r}

Partition 73

{l,s,t},{a,i,l,r}

Partition 74

{l,s,t},{a,i,l,r}

Partition 75

{l,s,t},{a,i,l,r}

Partition 76

{l,s,t},{a,i,l,r}

Partition 77

{l,s,t,u},

Partition 78

{l,s,t,u},

Partition 79

{l,s,t,u},

Partition 80

{l,r},{a,i,l,r,s}

Partition 81

{l,r},{a,i,l,r,s}

Partition 82

{l,r},{a,i,l,r,s}

Partition 83

{l,r},{a,i,l,r,s}

Partition 84

{l,r},{a,i,l,r,s}

Partition 85

{l,r,u},

Partition 86

{l,r,u},

Partition 87

{l,r,u},

Partition 88

{l,r,u},

Partition 89

{l,r,t},

Partition 90

{l,r,t},

Partition 91

{l,r,t},

Partition 92

{l,r,t},

Partition 93

{l,r,t,u},

Partition 94

{l,r,t,u},

Partition 95

{l,r,t,u},

Partition 96

{l,r,s},

Partition 97

{l,r,s},

Partition 98

{l,r,s},

Partition 99

{l,r,s},

Partition 100

{l,r,s,u},

Partition 101

{l,r,s,u},

Partition 102

{l,r,s,u},

Partition 103

{l,r,s,t},

Partition 104

{l,r,s,t},

Partition 105

{l,r,s,t},

Partition 106

{l,r,s,t,u},{a,i}

Partition 107

{l,r,s,t,u},{a,i}

Partition 108

{i,u},{a,i,l,r,s}

Partition 109

{i,u},{a,i,l,r,s}

Partition 110

{i,u},{a,i,l,r,s}

Partition 111

{i,u},{a,i,l,r,s}

Partition 112

{i,u},{a,i,l,r,s}

Partition 113

{i,t},{a,i,l,r,s}

Partition 114

{i,t},{a,i,l,r,s}

Partition 115

{i,t},{a,i,l,r,s}

Partition 116

{i,t},{a,i,l,r,s}

Partition 117

{i,t},{a,i,l,r,s}

Partition 118

{i,t,u},{a,i,l,r}

Partition 119

{i,t,u},{a,i,l,r}

Partition 120

{i,t,u},{a,i,l,r}

Partition 121

{i,t,u},{a,i,l,r}

Partition 122

{i,s},

Partition 123

{i,s},

Partition 124

{i,s},

Partition 125

{i,s},

Partition 126

{i,s},

Partition 127

{i,s,u},{a,i,l,r}

Partition 128

{i,s,u},{a,i,l,r}

Partition 129

{i,s,u},{a,i,l,r}

Partition 130

{i,s,u},{a,i,l,r}

Partition 131

{i,s,t},{a,i,l,r}

Partition 132

{i,s,t},{a,i,l,r}

Partition 133

{i,s,t},{a,i,l,r}

Partition 134

{i,s,t},{a,i,l,r}

Partition 135

{i,s,t,u},{a,i,l}

Partition 136

{i,s,t,u},{a,i,l}

Partition 137

{i,s,t,u},{a,i,l}

Partition 138

{i,r},{a,i,l,r,s}

Partition 139

{i,r},{a,i,l,r,s}

Partition 140

{i,r},{a,i,l,r,s}

Partition 141

{i,r},{a,i,l,r,s}

Partition 142

{i,r},{a,i,l,r,s}

Partition 143

{i,r,u},

Partition 144

{i,r,u},

Partition 145

{i,r,u},

Partition 146

{i,r,u},

Partition 147

{i,r,t},

Partition 148

{i,r,t},

Partition 149

{i,r,t},

Partition 150

{i,r,t},

Partition 151

{i,r,t,u},{a,i,l}

Partition 152

{i,r,t,u},{a,i,l}

Partition 153

{i,r,t,u},{a,i,l}

Partition 154

{i,r,s},

Partition 155

{i,r,s},

Partition 156

{i,r,s},

Partition 157

{i,r,s},

Partition 158

{i,r,s,u},{a,i,l}

Partition 159

{i,r,s,u},{a,i,l}

Partition 160

{i,r,s,u},{a,i,l}

Partition 161

{i,r,s,t},{a,i,l}

Partition 162

{i,r,s,t},{a,i,l}

Partition 163

{i,r,s,t},{a,i,l}

Partition 164

{i,r,s,t,u},

Partition 165

{i,r,s,t,u},

Partition 166

{i,l},{a,i,l,r,s}

Partition 167

{i,l},{a,i,l,r,s}

Partition 168

{i,l},{a,i,l,r,s}

Partition 169

{i,l},{a,i,l,r,s}

Partition 170

{i,l},{a,i,l,r,s}

Partition 171

{i,l,u},{a,i,l,r}

Partition 172

{i,l,u},{a,i,l,r}

Partition 173

{i,l,u},{a,i,l,r}

Partition 174

{i,l,u},{a,i,l,r}

Partition 175

{i,l,t},{a,i,l,r}

Partition 176

{i,l,t},{a,i,l,r}

Partition 177

{i,l,t},{a,i,l,r}

Partition 178

{i,l,t},{a,i,l,r}

Partition 179

{i,l,t,u},

Partition 180

{i,l,t,u},

Partition 181

{i,l,t,u},

Partition 182

{i,l,s},{a,i,l,r}

Partition 183

{i,l,s},{a,i,l,r}

Partition 184

{i,l,s},{a,i,l,r}

Partition 185

{i,l,s},{a,i,l,r}

Partition 186

{i,l,s,u},

Partition 187

{i,l,s,u},

Partition 188

{i,l,s,u},

Partition 189

{i,l,s,t},

Partition 190

{i,l,s,t},

Partition 191

{i,l,s,t},

Partition 192

{i,l,s,t,u},

Partition 193

{i,l,s,t,u},

Partition 194

{i,l,r},

Partition 195

{i,l,r},

Partition 196

{i,l,r},

Partition 197

{i,l,r},

Partition 198

{i,l,r,u},

Partition 199

{i,l,r,u},

Partition 200

{i,l,r,u},

Partition 201

{i,l,r,t},

Partition 202

{i,l,r,t},

Partition 203

{i,l,r,t},

Partition 204

{i,l,r,t,u},

Partition 205

{i,l,r,t,u},

Partition 206

{i,l,r,s},

Partition 207

{i,l,r,s},

Partition 208

{i,l,r,s},

Partition 209

{i,l,r,s,u},

Partition 210

{i,l,r,s,u},

Partition 211

{i,l,r,s,t},

Partition 212

{i,l,r,s,t},

Partition 213

{i,l,r,s,t,u},{a}

Partition 214

{a,u},{a,i,l,r,s}

Partition 215

{a,u},{a,i,l,r,s}

Partition 216

{a,u},{a,i,l,r,s}

Partition 217

{a,u},{a,i,l,r,s}

Partition 218

{a,u},{a,i,l,r,s}

Partition 219

{a,t},{a,i,l,r,s}

Partition 220

{a,t},{a,i,l,r,s}

Partition 221

{a,t},{a,i,l,r,s}

Partition 222

{a,t},{a,i,l,r,s}

Partition 223

{a,t},{a,i,l,r,s}

Partition 224

{a,t,u},{a,i,l,r}

Partition 225

{a,t,u},{a,i,l,r}

Partition 226

{a,t,u},{a,i,l,r}

Partition 227

{a,t,u},{a,i,l,r}

Partition 228

{a,s},

Partition 229

{a,s},

Partition 230

{a,s},

Partition 231

{a,s},

Partition 232

{a,s},

Partition 233

{a,s,u},{a,i,l,r}

Partition 234

{a,s,u},{a,i,l,r}

Partition 235

{a,s,u},{a,i,l,r}

Partition 236

{a,s,u},{a,i,l,r}

Partition 237

{a,s,t},{a,i,l,r}

Partition 238

{a,s,t},{a,i,l,r}

Partition 239

{a,s,t},{a,i,l,r}

Partition 240

{a,s,t},{a,i,l,r}

Partition 241

{a,s,t,u},{a,i,l}

Partition 242

{a,s,t,u},{a,i,l}

Partition 243

{a,s,t,u},{a,i,l}

Partition 244

{a,r},{a,i,l,r,s}

Partition 245

{a,r},{a,i,l,r,s}

Partition 246

{a,r},{a,i,l,r,s}

Partition 247

{a,r},{a,i,l,r,s}

Partition 248

{a,r},{a,i,l,r,s}

Partition 249

{a,r,u},

Partition 250

{a,r,u},

Partition 251

{a,r,u},

Partition 252

{a,r,u},

Partition 253

{a,r,t},

Partition 254

{a,r,t},

Partition 255

{a,r,t},

Partition 256

{a,r,t},

Partition 257

{a,r,t,u},{a,i,l}

Partition 258

{a,r,t,u},{a,i,l}

Partition 259

{a,r,t,u},{a,i,l}

Partition 260

{a,r,s},

Partition 261

{a,r,s},

Partition 262

{a,r,s},

Partition 263

{a,r,s},

Partition 264

{a,r,s,u},{a,i,l}

Partition 265

{a,r,s,u},{a,i,l}

Partition 266

{a,r,s,u},{a,i,l}

Partition 267

{a,r,s,t},{a,i,l}

Partition 268

{a,r,s,t},{a,i,l}

Partition 269

{a,r,s,t},{a,i,l}

Partition 270

{a,r,s,t,u},{a,i}

Partition 271

{a,r,s,t,u},{a,i}

Partition 272

{a,l},{a,i,l,r,s}

Partition 273

{a,l},{a,i,l,r,s}

Partition 274

{a,l},{a,i,l,r,s}

Partition 275

{a,l},{a,i,l,r,s}

Partition 276

{a,l},{a,i,l,r,s}

Partition 277

{a,l,u},{a,i,l,r}

Partition 278

{a,l,u},{a,i,l,r}

Partition 279

{a,l,u},{a,i,l,r}

Partition 280

{a,l,u},{a,i,l,r}

Partition 281

{a,l,t},{a,i,l,r}

Partition 282

{a,l,t},{a,i,l,r}

Partition 283

{a,l,t},{a,i,l,r}

Partition 284

{a,l,t},{a,i,l,r}

Partition 285

{a,l,t,u},

Partition 286

{a,l,t,u},

Partition 287

{a,l,t,u},

Partition 288

{a,l,s},{a,i,l,r}

Partition 289

{a,l,s},{a,i,l,r}

Partition 290

{a,l,s},{a,i,l,r}

Partition 291

{a,l,s},{a,i,l,r}

Partition 292

{a,l,s,u},

Partition 293

{a,l,s,u},

Partition 294

{a,l,s,u},

Partition 295

{a,l,s,t},

Partition 296

{a,l,s,t},

Partition 297

{a,l,s,t},

Partition 298

{a,l,s,t,u},{a,i}

Partition 299

{a,l,s,t,u},{a,i}

Partition 300

{a,l,r},

Partition 301

{a,l,r},

Partition 302

{a,l,r},

Partition 303

{a,l,r},

Partition 304

{a,l,r,u},

Partition 305

{a,l,r,u},

Partition 306

{a,l,r,u},

Partition 307

{a,l,r,t},

Partition 308

{a,l,r,t},

Partition 309

{a,l,r,t},

Partition 310

{a,l,r,t,u},{a,i}

Partition 311

{a,l,r,t,u},{a,i}

Partition 312

{a,l,r,s},

Partition 313

{a,l,r,s},

Partition 314

{a,l,r,s},

Partition 315

{a,l,r,s,u},{a,i}

Partition 316

{a,l,r,s,u},{a,i}

Partition 317

{a,l,r,s,t},{a,i}

Partition 318

{a,l,r,s,t},{a,i}

Partition 319

{a,l,r,s,t,u},

Partition 320

{a,i},{a,i,l,r,s}

Partition 321

{a,i},{a,i,l,r,s}

Partition 322

{a,i},{a,i,l,r,s}

Partition 323

{a,i},{a,i,l,r,s}

Partition 324

{a,i},{a,i,l,r,s}

Partition 325

{a,i,u},{a,i,l,r}

Partition 326

{a,i,u},{a,i,l,r}

Partition 327

{a,i,u},{a,i,l,r}

Partition 328

{a,i,u},{a,i,l,r}

Partition 329

{a,i,t},{a,i,l,r}

Partition 330

{a,i,t},{a,i,l,r}

Partition 331

{a,i,t},{a,i,l,r}

Partition 332

{a,i,t},{a,i,l,r}

Partition 333

{a,i,t,u},{a,i,l}

Partition 334

{a,i,t,u},{a,i,l}

Partition 335

{a,i,t,u},{a,i,l}

Partition 336

{a,i,s},{a,i,l,r}

Partition 337

{a,i,s},{a,i,l,r}

Partition 338

{a,i,s},{a,i,l,r}

Partition 339

{a,i,s},{a,i,l,r}

Partition 340

{a,i,s,u},{a,i,l}

Partition 341

{a,i,s,u},{a,i,l}

Partition 342

{a,i,s,u},{a,i,l}

Partition 343

{a,i,s,t},{a,i,l}

Partition 344

{a,i,s,t},{a,i,l}

Partition 345

{a,i,s,t},{a,i,l}

Partition 346

{a,i,s,t,u},

Partition 347

{a,i,s,t,u},

Partition 348

{a,i,r},

Partition 349

{a,i,r},

Partition 350

{a,i,r},

Partition 351

{a,i,r},

Partition 352

{a,i,r,u},{a,i,l}

Partition 353

{a,i,r,u},{a,i,l}

Partition 354

{a,i,r,u},{a,i,l}

Partition 355

{a,i,r,t},{a,i,l}

Partition 356

{a,i,r,t},{a,i,l}

Partition 357

{a,i,r,t},{a,i,l}

Partition 358

{a,i,r,t,u},

Partition 359

{a,i,r,t,u},

Partition 360

{a,i,r,s},{a,i,l}

Partition 361

{a,i,r,s},{a,i,l}

Partition 362

{a,i,r,s},{a,i,l}

Partition 363

{a,i,r,s,u},

Partition 364

{a,i,r,s,u},

Partition 365

{a,i,r,s,t},

Partition 366

{a,i,r,s,t},

Partition 367

{a,i,r,s,t,u},

Partition 368

{a,i,l},{a,i,l,r}

Partition 369

{a,i,l},{a,i,l,r}

Partition 370

{a,i,l},{a,i,l,r}

Partition 371

{a,i,l},{a,i,l,r}

Partition 372

{a,i,l,u},

Partition 373

{a,i,l,u},

Partition 374

{a,i,l,u},

Partition 375

{a,i,l,t},

Partition 376

{a,i,l,t},

Partition 377

{a,i,l,t},

Partition 378

{a,i,l,t,u},

Partition 379

{a,i,l,t,u},

Partition 380

{a,i,l,s},

Partition 381

{a,i,l,s},

Partition 382

{a,i,l,s},

Partition 383

{a,i,l,s,u},

Partition 384

{a,i,l,s,u},

Partition 385

{a,i,l,s,t},

Partition 386

{a,i,l,s,t},

Partition 387

{a,i,l,s,t,u},

Partition 388

{a,i,l,r},

Partition 389

{a,i,l,r},

Partition 390

{a,i,l,r},

Partition 391

{a,i,l,r,u},

Partition 392

{a,i,l,r,u},

Partition 393

{a,i,l,r,t},

Partition 394

{a,i,l,r,t},

Partition 395

{a,i,l,r,t,u},

Partition 396

{a,i,l,r,s},

Partition 397

{a,i,l,r,s},

Partition 398

{a,i,l,r,s,u},

Partition 399

{a,i,l,r,s,t},

Partition 400

{{a},{i},{l},{r},{s},{t},{u})

What is the Answer?
P = {{}, {a}, {i}, {l}, {r}, {s}, {t}, {u}, {a,i}, {a,l}, {a,r}, {a,s}, {a,t}, {a,u}, {i,l}, {i,r}, {i,s}, {i,t}, {i,u}, {l,r}, {l,s}, {l,t}, {l,u}, {r,s}, {r,t}, {r,u}, {s,t}, {s,u}, {t,u}, {a,i,l}, {a,i,r}, {a,i,s}, {a,i,t}, {a,i,u}, {a,l,r}, {a,l,s}, {a,l,t}, {a,l,u}, {a,r,s}, {a,r,t}, {a,r,u}, {a,s,t}, {a,s,u}, {a,t,u}, {i,l,r}, {i,l,s}, {i,l,t}, {i,l,u}, {i,r,s}, {i,r,t}, {i,r,u}, {i,s,t}, {i,s,u}, {i,t,u}, {l,r,s}, {l,r,t}, {l,r,u}, {l,s,t}, {l,s,u}, {l,t,u}, {r,s,t}, {r,s,u}, {r,t,u}, {s,t,u}, {a,i,l,r}, {a,i,l,s}, {a,i,l,t}, {a,i,l,u}, {a,i,r,s}, {a,i,r,t}, {a,i,r,u}, {a,i,s,t}, {a,i,s,u}, {a,i,t,u}, {a,l,r,s}, {a,l,r,t}, {a,l,r,u}, {a,l,s,t}, {a,l,s,u}, {a,l,t,u}, {a,r,s,t}, {a,r,s,u}, {a,r,t,u}, {a,s,t,u}, {i,l,r,s}, {i,l,r,t}, {i,l,r,u}, {i,l,s,t}, {i,l,s,u}, {i,l,t,u}, {i,r,s,t}, {i,r,s,u}, {i,r,t,u}, {i,s,t,u}, {l,r,s,t}, {l,r,s,u}, {l,r,t,u}, {l,s,t,u}, {r,s,t,u}, {a,i,l,r,s}, {a,i,l,r,t}, {a,i,l,r,u}, {a,i,l,s,t}, {a,i,l,s,u}, {a,i,l,t,u}, {a,i,r,s,t}, {a,i,r,s,u}, {a,i,r,t,u}, {a,i,s,t,u}, {a,l,r,s,t}, {a,l,r,s,u}, {a,l,r,t,u}, {a,l,s,t,u}, {a,r,s,t,u}, {i,l,r,s,t}, {i,l,r,s,u}, {i,l,r,t,u}, {i,l,s,t,u}, {i,r,s,t,u}, {l,r,s,t,u}, {a,i,l,r,s,t}, {a,i,l,r,s,u}, {a,i,l,r,t,u}, {a,i,l,s,t,u}, {a,i,r,s,t,u}, {a,l,r,s,t,u}, {i,l,r,s,t,u}, {a,i,l,r,s,t,u}}
How does the Power Sets and Set Partitions Calculator work?
Free Power Sets and Set Partitions Calculator - Given a set S, this calculator will determine the power set for S and all the partitions of a set.
This calculator has 1 input.
What 1 formula is used for the Power Sets and Set Partitions Calculator?
The power set P is the set of all subsets of S including S and the empty set ∅.
What 7 concepts are covered in the Power Sets and Set Partitions Calculator?
element
an element (or member) of a set is any one of the distinct objects that belong to that set. In chemistry, any substance that cannot be decomposed into simpler substances by ordinary chemical processes.
empty set
The set with no elements
notation
An expression made up of symbols for representing operations, unspecified numbers, relations and any other mathematical objects
partition
a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset.
power sets and set partitions
set
a collection of different things; a set contains elements or members, which can be mathematical objects of any kind
subset
A is a subset of B if all elements of the set A are elements of the set B
Example calculations for the Power Sets and Set Partitions Calculator
Power Sets and Set Partitions Calculator Video

Tags:



Add This Calculator To Your Website