Enter Line 1

Enter Line 2

  

Are 4x + 3y = 14 and 5x + 7y = 13:

parallel, intersect, or perpendicular

Get Eq. 1 into y = mx + b format:

4x + 3y = 14

3y = -4x + 14

Divide each side by 3

3y
3
=
  
-4x + 14
3

Simplifying, we have:

y = -1.3333333333333x + 4.6666666666667

Final Answer


Slope = -1.3333333333333

Get Eq. 2 into y = mx + b format:

5x + 7y = 13

7y = -5x + 13

Divide each side by 7

7y
7
=
  
-5x + 13
7

Simplifying, we have:

y = -0.71428571428571x + 1.8571428571429

Final Answer


Slope = -0.71428571428571

Set EQ1 = EQ2:

-1.3333333333333x + 4.6666666666667 = -0.71428571428571x + 1.8571428571429

-1.3333333333333x - -0.71428571428571x = 1.8571428571429 - 4.6666666666667

- 0.61904761904762x = -2.8095238095238

x = -2.8095238095238/ - 0.61904761904762

x = 4.5384615384615

Plug x into equation 1

y = -1.3333333333333 * (4.5384615384615) + 4.6666666666667

y = -6.0512820512821 + 4.6666666666667

y = -1.3846

Our intersection point = (4.5384615384615, -1.3846)

Calculate the product of the 2 slopes:

Slope 1 * Slope 2 = -1.3333333333333 * -0.71428571428571 = 0.95238095238095

Perpendicular Check

Since the product of the 2 slopes ≠ -1
The lines are not perpendicular

Line Relation Check

The 2 lines intersect at (4.5384615384615, -1.3846)

Check if equations are Independent:

Since the slopes are different
The systems are independent

Check if equations are Dependent:

To be dependent
the slopes and y-intercept must be the same.
This is not the case

Check if equations are Inconsistent:

To be inconsistent
The slopes must be the same
Ty-intercepts must different.
This is not the case

Calculate the angle θ

θ is formed by the two lines

tan(θ)  =  m2 - m1
  1 + m2m1

tan(θ)  =  -0.71428571428571 --1.3333333333333
  1 + -0.71428571428571 *-1.3333333333333

tan(θ)  =  0.61904761904762
  1 + 0.95238095238095

tan(θ)  =  0.61904761904762
  1.952380952381

tan(θ) = 0.31707317073171

θ = 17.5924