Integral Definition:

A numerical value:
Area under the graph of a
function for some interval.

Limit of a Function Notation:

The limit of a function ƒ(x) is L as L approaches a

limx → a ƒ(x) = L

Integral Notation:

∫ƒ(x) dx.
integral of f of x dx.

Integral of a constant rule:

Integral of a constant n is
nx + C.
ƒ(x) = 6, then ∫ƒ(x) = 6x + C

Integral power rule:

ƒ(x) = xn, then ∫ƒ(x)dx is:
xn + 1
n + 1

Integral power rule example:

ƒ(x) = x2
Using the power rule with n = 2
∫ƒ(x) = x2 + 1/(2 + 1) = x3/3

Trigonometric Integrals

ƒ(x)ƒ'(x)Domain
sin(x)-cos(x)-∞ < x < ∞
cos(x)sin(x)-∞ < x < ∞
tan(x)-Ln cos(x)x ≠ π/2 + πn, n ∈ Ζ
csc(x)Ln(csc(x) - cot(x))x ≠ πn, n ∈ Ζ
sec(x)Ln(sec(x) - tan(x))x ≠ π/2 + πn, n ∈ Ζ
cot(x)Ln sin(x)x ≠ πn, n ∈ Ζ

Logarithmic Integrals

ƒ(x)ƒ'(x)
exex
axax/Ln(a) where a > 0, a ≠ 1
Ln(x)1/x
logaxx * Ln(x) - x

Integral Calculator:

For more help on integrals