Show the Lagrange Four Square Theorem for
2023
For any natural number (p), we write as
p = a2 + b2 + c2 + d2
Floor(√2023) = Floor(44.977772288098)
Floor(44.977772288098) = 44
This is called max_a
Find the first value of a such that
a2 ≥ n/4
Start with min_a = 0 and increase by 1
Continue until we reach or breach n/4 → 2023/4 = 505.75
When min_a = 23, then it is a2 = 529 ≥ 505.75, so min_a = 23
(0, 44)
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 02)
max_b = Floor(√2023 - 0)
max_b = Floor(√2023)
max_b = Floor(44.977772288098)
max_b = 44
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 02)/3 = 674.33333333333
When min_b = 26, then it is b2 = 676 ≥ 674.33333333333, so min_b = 26
(26, 44)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 262)
max_c = Floor(√2023 - 0 - 676)
max_c = Floor(√1347)
max_c = Floor(36.701498607005)
max_c = 36
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 262)/2 = 673.5
When min_c = 26, then it is c2 = 676 ≥ 673.5, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 262 - 262
max_d = √2023 - 0 - 676 - 676
max_d = √671
max_d = 25.903667693977
Since max_d = 25.903667693977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 262 - 272
max_d = √2023 - 0 - 676 - 729
max_d = √618
max_d = 24.859605789312
Since max_d = 24.859605789312 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 262 - 282
max_d = √2023 - 0 - 676 - 784
max_d = √563
max_d = 23.727621035409
Since max_d = 23.727621035409 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 262 - 292
max_d = √2023 - 0 - 676 - 841
max_d = √506
max_d = 22.494443758404
Since max_d = 22.494443758404 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 262 - 302
max_d = √2023 - 0 - 676 - 900
max_d = √447
max_d = 21.142374511866
Since max_d = 21.142374511866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 262 - 312
max_d = √2023 - 0 - 676 - 961
max_d = √386
max_d = 19.646882704388
Since max_d = 19.646882704388 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 262 - 322
max_d = √2023 - 0 - 676 - 1024
max_d = √323
max_d = 17.972200755611
Since max_d = 17.972200755611 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 262 - 332
max_d = √2023 - 0 - 676 - 1089
max_d = √258
max_d = 16.062378404209
Since max_d = 16.062378404209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 262 - 342
max_d = √2023 - 0 - 676 - 1156
max_d = √191
max_d = 13.820274961085
Since max_d = 13.820274961085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 262 - 352
max_d = √2023 - 0 - 676 - 1225
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 262 - 362
max_d = √2023 - 0 - 676 - 1296
max_d = √51
max_d = 7.1414284285429
Since max_d = 7.1414284285429 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 272)
max_c = Floor(√2023 - 0 - 729)
max_c = Floor(√1294)
max_c = Floor(35.97221149721)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 272)/2 = 647
When min_c = 26, then it is c2 = 676 ≥ 647, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 272 - 262
max_d = √2023 - 0 - 729 - 676
max_d = √618
max_d = 24.859605789312
Since max_d = 24.859605789312 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 272 - 272
max_d = √2023 - 0 - 729 - 729
max_d = √565
max_d = 23.769728648009
Since max_d = 23.769728648009 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 272 - 282
max_d = √2023 - 0 - 729 - 784
max_d = √510
max_d = 22.583179581272
Since max_d = 22.583179581272 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 272 - 292
max_d = √2023 - 0 - 729 - 841
max_d = √453
max_d = 21.283796653793
Since max_d = 21.283796653793 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 272 - 302
max_d = √2023 - 0 - 729 - 900
max_d = √394
max_d = 19.849433241279
Since max_d = 19.849433241279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 272 - 312
max_d = √2023 - 0 - 729 - 961
max_d = √333
max_d = 18.248287590895
Since max_d = 18.248287590895 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 272 - 322
max_d = √2023 - 0 - 729 - 1024
max_d = √270
max_d = 16.431676725155
Since max_d = 16.431676725155 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 272 - 332
max_d = √2023 - 0 - 729 - 1089
max_d = √205
max_d = 14.317821063276
Since max_d = 14.317821063276 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 272 - 342
max_d = √2023 - 0 - 729 - 1156
max_d = √138
max_d = 11.747340124471
Since max_d = 11.747340124471 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 272 - 352
max_d = √2023 - 0 - 729 - 1225
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 282)
max_c = Floor(√2023 - 0 - 784)
max_c = Floor(√1239)
max_c = Floor(35.199431813596)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 282)/2 = 619.5
When min_c = 25, then it is c2 = 625 ≥ 619.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 282 - 252
max_d = √2023 - 0 - 784 - 625
max_d = √614
max_d = 24.779023386728
Since max_d = 24.779023386728 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 282 - 262
max_d = √2023 - 0 - 784 - 676
max_d = √563
max_d = 23.727621035409
Since max_d = 23.727621035409 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 282 - 272
max_d = √2023 - 0 - 784 - 729
max_d = √510
max_d = 22.583179581272
Since max_d = 22.583179581272 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 282 - 282
max_d = √2023 - 0 - 784 - 784
max_d = √455
max_d = 21.330729007702
Since max_d = 21.330729007702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 282 - 292
max_d = √2023 - 0 - 784 - 841
max_d = √398
max_d = 19.94993734326
Since max_d = 19.94993734326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 282 - 302
max_d = √2023 - 0 - 784 - 900
max_d = √339
max_d = 18.411952639522
Since max_d = 18.411952639522 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 282 - 312
max_d = √2023 - 0 - 784 - 961
max_d = √278
max_d = 16.673332000533
Since max_d = 16.673332000533 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 282 - 322
max_d = √2023 - 0 - 784 - 1024
max_d = √215
max_d = 14.662878298615
Since max_d = 14.662878298615 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 282 - 332
max_d = √2023 - 0 - 784 - 1089
max_d = √150
max_d = 12.247448713916
Since max_d = 12.247448713916 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 282 - 342
max_d = √2023 - 0 - 784 - 1156
max_d = √83
max_d = 9.1104335791443
Since max_d = 9.1104335791443 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 282 - 352
max_d = √2023 - 0 - 784 - 1225
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 292)
max_c = Floor(√2023 - 0 - 841)
max_c = Floor(√1182)
max_c = Floor(34.380226875342)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 292)/2 = 591
When min_c = 25, then it is c2 = 625 ≥ 591, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 292 - 252
max_d = √2023 - 0 - 841 - 625
max_d = √557
max_d = 23.600847442412
Since max_d = 23.600847442412 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 292 - 262
max_d = √2023 - 0 - 841 - 676
max_d = √506
max_d = 22.494443758404
Since max_d = 22.494443758404 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 292 - 272
max_d = √2023 - 0 - 841 - 729
max_d = √453
max_d = 21.283796653793
Since max_d = 21.283796653793 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 292 - 282
max_d = √2023 - 0 - 841 - 784
max_d = √398
max_d = 19.94993734326
Since max_d = 19.94993734326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 292 - 292
max_d = √2023 - 0 - 841 - 841
max_d = √341
max_d = 18.466185312619
Since max_d = 18.466185312619 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 292 - 302
max_d = √2023 - 0 - 841 - 900
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 292 - 312
max_d = √2023 - 0 - 841 - 961
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 292 - 322
max_d = √2023 - 0 - 841 - 1024
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 292 - 332
max_d = √2023 - 0 - 841 - 1089
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 292 - 342
max_d = √2023 - 0 - 841 - 1156
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 302)
max_c = Floor(√2023 - 0 - 900)
max_c = Floor(√1123)
max_c = Floor(33.511192160232)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 302)/2 = 561.5
When min_c = 24, then it is c2 = 576 ≥ 561.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 302 - 242
max_d = √2023 - 0 - 900 - 576
max_d = √547
max_d = 23.388031127053
Since max_d = 23.388031127053 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 302 - 252
max_d = √2023 - 0 - 900 - 625
max_d = √498
max_d = 22.315913604421
Since max_d = 22.315913604421 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 302 - 262
max_d = √2023 - 0 - 900 - 676
max_d = √447
max_d = 21.142374511866
Since max_d = 21.142374511866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 302 - 272
max_d = √2023 - 0 - 900 - 729
max_d = √394
max_d = 19.849433241279
Since max_d = 19.849433241279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 302 - 282
max_d = √2023 - 0 - 900 - 784
max_d = √339
max_d = 18.411952639522
Since max_d = 18.411952639522 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 302 - 292
max_d = √2023 - 0 - 900 - 841
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 302 - 302
max_d = √2023 - 0 - 900 - 900
max_d = √223
max_d = 14.933184523068
Since max_d = 14.933184523068 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 302 - 312
max_d = √2023 - 0 - 900 - 961
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 302 - 322
max_d = √2023 - 0 - 900 - 1024
max_d = √99
max_d = 9.9498743710662
Since max_d = 9.9498743710662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 302 - 332
max_d = √2023 - 0 - 900 - 1089
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 312)
max_c = Floor(√2023 - 0 - 961)
max_c = Floor(√1062)
max_c = Floor(32.588341473601)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 312)/2 = 531
When min_c = 24, then it is c2 = 576 ≥ 531, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 312 - 242
max_d = √2023 - 0 - 961 - 576
max_d = √486
max_d = 22.045407685049
Since max_d = 22.045407685049 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 312 - 252
max_d = √2023 - 0 - 961 - 625
max_d = √437
max_d = 20.904544960367
Since max_d = 20.904544960367 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 312 - 262
max_d = √2023 - 0 - 961 - 676
max_d = √386
max_d = 19.646882704388
Since max_d = 19.646882704388 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 312 - 272
max_d = √2023 - 0 - 961 - 729
max_d = √333
max_d = 18.248287590895
Since max_d = 18.248287590895 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 312 - 282
max_d = √2023 - 0 - 961 - 784
max_d = √278
max_d = 16.673332000533
Since max_d = 16.673332000533 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 312 - 292
max_d = √2023 - 0 - 961 - 841
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 312 - 302
max_d = √2023 - 0 - 961 - 900
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 312 - 312
max_d = √2023 - 0 - 961 - 961
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 312 - 322
max_d = √2023 - 0 - 961 - 1024
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 322)
max_c = Floor(√2023 - 0 - 1024)
max_c = Floor(√999)
max_c = Floor(31.606961258558)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 322)/2 = 499.5
When min_c = 23, then it is c2 = 529 ≥ 499.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 322 - 232
max_d = √2023 - 0 - 1024 - 529
max_d = √470
max_d = 21.679483388679
Since max_d = 21.679483388679 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 322 - 242
max_d = √2023 - 0 - 1024 - 576
max_d = √423
max_d = 20.566963801203
Since max_d = 20.566963801203 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 322 - 252
max_d = √2023 - 0 - 1024 - 625
max_d = √374
max_d = 19.339079605814
Since max_d = 19.339079605814 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 322 - 262
max_d = √2023 - 0 - 1024 - 676
max_d = √323
max_d = 17.972200755611
Since max_d = 17.972200755611 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 322 - 272
max_d = √2023 - 0 - 1024 - 729
max_d = √270
max_d = 16.431676725155
Since max_d = 16.431676725155 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 322 - 282
max_d = √2023 - 0 - 1024 - 784
max_d = √215
max_d = 14.662878298615
Since max_d = 14.662878298615 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 322 - 292
max_d = √2023 - 0 - 1024 - 841
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 322 - 302
max_d = √2023 - 0 - 1024 - 900
max_d = √99
max_d = 9.9498743710662
Since max_d = 9.9498743710662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 322 - 312
max_d = √2023 - 0 - 1024 - 961
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 332)
max_c = Floor(√2023 - 0 - 1089)
max_c = Floor(√934)
max_c = Floor(30.561413579872)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 332)/2 = 467
When min_c = 22, then it is c2 = 484 ≥ 467, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 332 - 222
max_d = √2023 - 0 - 1089 - 484
max_d = √450
max_d = 21.213203435596
Since max_d = 21.213203435596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 332 - 232
max_d = √2023 - 0 - 1089 - 529
max_d = √405
max_d = 20.124611797498
Since max_d = 20.124611797498 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 332 - 242
max_d = √2023 - 0 - 1089 - 576
max_d = √358
max_d = 18.920887928425
Since max_d = 18.920887928425 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 332 - 252
max_d = √2023 - 0 - 1089 - 625
max_d = √309
max_d = 17.578395831247
Since max_d = 17.578395831247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 332 - 262
max_d = √2023 - 0 - 1089 - 676
max_d = √258
max_d = 16.062378404209
Since max_d = 16.062378404209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 332 - 272
max_d = √2023 - 0 - 1089 - 729
max_d = √205
max_d = 14.317821063276
Since max_d = 14.317821063276 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 332 - 282
max_d = √2023 - 0 - 1089 - 784
max_d = √150
max_d = 12.247448713916
Since max_d = 12.247448713916 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 332 - 292
max_d = √2023 - 0 - 1089 - 841
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 332 - 302
max_d = √2023 - 0 - 1089 - 900
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 342)
max_c = Floor(√2023 - 0 - 1156)
max_c = Floor(√867)
max_c = Floor(29.444863728671)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 342)/2 = 433.5
When min_c = 21, then it is c2 = 441 ≥ 433.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 342 - 212
max_d = √2023 - 0 - 1156 - 441
max_d = √426
max_d = 20.63976744055
Since max_d = 20.63976744055 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 342 - 222
max_d = √2023 - 0 - 1156 - 484
max_d = √383
max_d = 19.570385790781
Since max_d = 19.570385790781 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 342 - 232
max_d = √2023 - 0 - 1156 - 529
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 342 - 242
max_d = √2023 - 0 - 1156 - 576
max_d = √291
max_d = 17.058722109232
Since max_d = 17.058722109232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 342 - 252
max_d = √2023 - 0 - 1156 - 625
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 342 - 262
max_d = √2023 - 0 - 1156 - 676
max_d = √191
max_d = 13.820274961085
Since max_d = 13.820274961085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 342 - 272
max_d = √2023 - 0 - 1156 - 729
max_d = √138
max_d = 11.747340124471
Since max_d = 11.747340124471 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 342 - 282
max_d = √2023 - 0 - 1156 - 784
max_d = √83
max_d = 9.1104335791443
Since max_d = 9.1104335791443 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 342 - 292
max_d = √2023 - 0 - 1156 - 841
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 352)
max_c = Floor(√2023 - 0 - 1225)
max_c = Floor(√798)
max_c = Floor(28.248893783651)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 352)/2 = 399
When min_c = 20, then it is c2 = 400 ≥ 399, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 352 - 202
max_d = √2023 - 0 - 1225 - 400
max_d = √398
max_d = 19.94993734326
Since max_d = 19.94993734326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 352 - 212
max_d = √2023 - 0 - 1225 - 441
max_d = √357
max_d = 18.894443627691
Since max_d = 18.894443627691 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 352 - 222
max_d = √2023 - 0 - 1225 - 484
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 352 - 232
max_d = √2023 - 0 - 1225 - 529
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 352 - 242
max_d = √2023 - 0 - 1225 - 576
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 352 - 252
max_d = √2023 - 0 - 1225 - 625
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 352 - 262
max_d = √2023 - 0 - 1225 - 676
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 352 - 272
max_d = √2023 - 0 - 1225 - 729
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 352 - 282
max_d = √2023 - 0 - 1225 - 784
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 362)
max_c = Floor(√2023 - 0 - 1296)
max_c = Floor(√727)
max_c = Floor(26.962937525426)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 362)/2 = 363.5
When min_c = 20, then it is c2 = 400 ≥ 363.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 362 - 202
max_d = √2023 - 0 - 1296 - 400
max_d = √327
max_d = 18.083141320025
Since max_d = 18.083141320025 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 362 - 212
max_d = √2023 - 0 - 1296 - 441
max_d = √286
max_d = 16.911534525288
Since max_d = 16.911534525288 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 362 - 222
max_d = √2023 - 0 - 1296 - 484
max_d = √243
max_d = 15.58845726812
Since max_d = 15.58845726812 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 362 - 232
max_d = √2023 - 0 - 1296 - 529
max_d = √198
max_d = 14.07124727947
Since max_d = 14.07124727947 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 362 - 242
max_d = √2023 - 0 - 1296 - 576
max_d = √151
max_d = 12.288205727445
Since max_d = 12.288205727445 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 362 - 252
max_d = √2023 - 0 - 1296 - 625
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 362 - 262
max_d = √2023 - 0 - 1296 - 676
max_d = √51
max_d = 7.1414284285429
Since max_d = 7.1414284285429 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 372)
max_c = Floor(√2023 - 0 - 1369)
max_c = Floor(√654)
max_c = Floor(25.573423705089)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 372)/2 = 327
When min_c = 19, then it is c2 = 361 ≥ 327, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 372 - 192
max_d = √2023 - 0 - 1369 - 361
max_d = √293
max_d = 17.117242768624
Since max_d = 17.117242768624 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 372 - 202
max_d = √2023 - 0 - 1369 - 400
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 372 - 212
max_d = √2023 - 0 - 1369 - 441
max_d = √213
max_d = 14.594519519326
Since max_d = 14.594519519326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 372 - 222
max_d = √2023 - 0 - 1369 - 484
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 372 - 232
max_d = √2023 - 0 - 1369 - 529
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 372 - 242
max_d = √2023 - 0 - 1369 - 576
max_d = √78
max_d = 8.8317608663278
Since max_d = 8.8317608663278 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 372 - 252
max_d = √2023 - 0 - 1369 - 625
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 382)
max_c = Floor(√2023 - 0 - 1444)
max_c = Floor(√579)
max_c = Floor(24.062418831032)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 382)/2 = 289.5
When min_c = 18, then it is c2 = 324 ≥ 289.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 382 - 182
max_d = √2023 - 0 - 1444 - 324
max_d = √255
max_d = 15.968719422671
Since max_d = 15.968719422671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 382 - 192
max_d = √2023 - 0 - 1444 - 361
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 382 - 202
max_d = √2023 - 0 - 1444 - 400
max_d = √179
max_d = 13.37908816026
Since max_d = 13.37908816026 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 382 - 212
max_d = √2023 - 0 - 1444 - 441
max_d = √138
max_d = 11.747340124471
Since max_d = 11.747340124471 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 382 - 222
max_d = √2023 - 0 - 1444 - 484
max_d = √95
max_d = 9.746794344809
Since max_d = 9.746794344809 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 382 - 232
max_d = √2023 - 0 - 1444 - 529
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 382 - 242
max_d = √2023 - 0 - 1444 - 576
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 392)
max_c = Floor(√2023 - 0 - 1521)
max_c = Floor(√502)
max_c = Floor(22.405356502408)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 392)/2 = 251
When min_c = 16, then it is c2 = 256 ≥ 251, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 392 - 162
max_d = √2023 - 0 - 1521 - 256
max_d = √246
max_d = 15.684387141358
Since max_d = 15.684387141358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 392 - 172
max_d = √2023 - 0 - 1521 - 289
max_d = √213
max_d = 14.594519519326
Since max_d = 14.594519519326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 392 - 182
max_d = √2023 - 0 - 1521 - 324
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 392 - 192
max_d = √2023 - 0 - 1521 - 361
max_d = √141
max_d = 11.874342087038
Since max_d = 11.874342087038 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 392 - 202
max_d = √2023 - 0 - 1521 - 400
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 392 - 212
max_d = √2023 - 0 - 1521 - 441
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 392 - 222
max_d = √2023 - 0 - 1521 - 484
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 402)
max_c = Floor(√2023 - 0 - 1600)
max_c = Floor(√423)
max_c = Floor(20.566963801203)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 402)/2 = 211.5
When min_c = 15, then it is c2 = 225 ≥ 211.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 402 - 152
max_d = √2023 - 0 - 1600 - 225
max_d = √198
max_d = 14.07124727947
Since max_d = 14.07124727947 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 402 - 162
max_d = √2023 - 0 - 1600 - 256
max_d = √167
max_d = 12.92284798332
Since max_d = 12.92284798332 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 402 - 172
max_d = √2023 - 0 - 1600 - 289
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 402 - 182
max_d = √2023 - 0 - 1600 - 324
max_d = √99
max_d = 9.9498743710662
Since max_d = 9.9498743710662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 402 - 192
max_d = √2023 - 0 - 1600 - 361
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 402 - 202
max_d = √2023 - 0 - 1600 - 400
max_d = √23
max_d = 4.7958315233127
Since max_d = 4.7958315233127 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 412)
max_c = Floor(√2023 - 0 - 1681)
max_c = Floor(√342)
max_c = Floor(18.493242008907)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 412)/2 = 171
When min_c = 14, then it is c2 = 196 ≥ 171, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 412 - 142
max_d = √2023 - 0 - 1681 - 196
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 412 - 152
max_d = √2023 - 0 - 1681 - 225
max_d = √117
max_d = 10.816653826392
Since max_d = 10.816653826392 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 412 - 162
max_d = √2023 - 0 - 1681 - 256
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 412 - 172
max_d = √2023 - 0 - 1681 - 289
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 412 - 182
max_d = √2023 - 0 - 1681 - 324
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 422)
max_c = Floor(√2023 - 0 - 1764)
max_c = Floor(√259)
max_c = Floor(16.093476939431)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 422)/2 = 129.5
When min_c = 12, then it is c2 = 144 ≥ 129.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 422 - 122
max_d = √2023 - 0 - 1764 - 144
max_d = √115
max_d = 10.723805294764
Since max_d = 10.723805294764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 422 - 132
max_d = √2023 - 0 - 1764 - 169
max_d = √90
max_d = 9.4868329805051
Since max_d = 9.4868329805051 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 422 - 142
max_d = √2023 - 0 - 1764 - 196
max_d = √63
max_d = 7.9372539331938
Since max_d = 7.9372539331938 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 422 - 152
max_d = √2023 - 0 - 1764 - 225
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 422 - 162
max_d = √2023 - 0 - 1764 - 256
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 432)
max_c = Floor(√2023 - 0 - 1849)
max_c = Floor(√174)
max_c = Floor(13.190905958273)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 432)/2 = 87
When min_c = 10, then it is c2 = 100 ≥ 87, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 432 - 102
max_d = √2023 - 0 - 1849 - 100
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 432 - 112
max_d = √2023 - 0 - 1849 - 121
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 432 - 122
max_d = √2023 - 0 - 1849 - 144
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 432 - 132
max_d = √2023 - 0 - 1849 - 169
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 02 - 442)
max_c = Floor(√2023 - 0 - 1936)
max_c = Floor(√87)
max_c = Floor(9.3273790530888)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 02 - 442)/2 = 43.5
When min_c = 7, then it is c2 = 49 ≥ 43.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 442 - 72
max_d = √2023 - 0 - 1936 - 49
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 442 - 82
max_d = √2023 - 0 - 1936 - 64
max_d = √23
max_d = 4.7958315233127
Since max_d = 4.7958315233127 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 02 - 442 - 92
max_d = √2023 - 0 - 1936 - 81
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 12)
max_b = Floor(√2023 - 1)
max_b = Floor(√2022)
max_b = Floor(44.966654311834)
max_b = 44
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 12)/3 = 674
When min_b = 26, then it is b2 = 676 ≥ 674, so min_b = 26
(26, 44)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 262)
max_c = Floor(√2023 - 1 - 676)
max_c = Floor(√1346)
max_c = Floor(36.687872655688)
max_c = 36
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 262)/2 = 673
When min_c = 26, then it is c2 = 676 ≥ 673, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 262 - 262
max_d = √2023 - 1 - 676 - 676
max_d = √670
max_d = 25.88435821109
Since max_d = 25.88435821109 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 262 - 272
max_d = √2023 - 1 - 676 - 729
max_d = √617
max_d = 24.839484696748
Since max_d = 24.839484696748 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 262 - 282
max_d = √2023 - 1 - 676 - 784
max_d = √562
max_d = 23.706539182259
Since max_d = 23.706539182259 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 262 - 292
max_d = √2023 - 1 - 676 - 841
max_d = √505
max_d = 22.472205054244
Since max_d = 22.472205054244 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 262 - 302
max_d = √2023 - 1 - 676 - 900
max_d = √446
max_d = 21.118712081943
Since max_d = 21.118712081943 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 262 - 312
max_d = √2023 - 1 - 676 - 961
max_d = √385
max_d = 19.621416870349
Since max_d = 19.621416870349 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 262 - 322
max_d = √2023 - 1 - 676 - 1024
max_d = √322
max_d = 17.944358444926
Since max_d = 17.944358444926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 262 - 332
max_d = √2023 - 1 - 676 - 1089
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 262 - 342
max_d = √2023 - 1 - 676 - 1156
max_d = √190
max_d = 13.78404875209
Since max_d = 13.78404875209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 262 - 352
max_d = √2023 - 1 - 676 - 1225
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (1, 26, 35, 11) is an integer solution proven below
12 + 262 + 352 + 112 → 1 + 676 + 1225 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 262 - 362
max_d = √2023 - 1 - 676 - 1296
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 272)
max_c = Floor(√2023 - 1 - 729)
max_c = Floor(√1293)
max_c = Floor(35.95830919273)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 272)/2 = 646.5
When min_c = 26, then it is c2 = 676 ≥ 646.5, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 272 - 262
max_d = √2023 - 1 - 729 - 676
max_d = √617
max_d = 24.839484696748
Since max_d = 24.839484696748 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 272 - 272
max_d = √2023 - 1 - 729 - 729
max_d = √564
max_d = 23.748684174076
Since max_d = 23.748684174076 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 272 - 282
max_d = √2023 - 1 - 729 - 784
max_d = √509
max_d = 22.561028345357
Since max_d = 22.561028345357 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 272 - 292
max_d = √2023 - 1 - 729 - 841
max_d = √452
max_d = 21.260291625469
Since max_d = 21.260291625469 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 272 - 302
max_d = √2023 - 1 - 729 - 900
max_d = √393
max_d = 19.824227601599
Since max_d = 19.824227601599 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 272 - 312
max_d = √2023 - 1 - 729 - 961
max_d = √332
max_d = 18.220867158289
Since max_d = 18.220867158289 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 272 - 322
max_d = √2023 - 1 - 729 - 1024
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 272 - 332
max_d = √2023 - 1 - 729 - 1089
max_d = √204
max_d = 14.282856857086
Since max_d = 14.282856857086 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 272 - 342
max_d = √2023 - 1 - 729 - 1156
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 272 - 352
max_d = √2023 - 1 - 729 - 1225
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 282)
max_c = Floor(√2023 - 1 - 784)
max_c = Floor(√1238)
max_c = Floor(35.185224171518)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 282)/2 = 619
When min_c = 25, then it is c2 = 625 ≥ 619, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 282 - 252
max_d = √2023 - 1 - 784 - 625
max_d = √613
max_d = 24.75883680628
Since max_d = 24.75883680628 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 282 - 262
max_d = √2023 - 1 - 784 - 676
max_d = √562
max_d = 23.706539182259
Since max_d = 23.706539182259 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 282 - 272
max_d = √2023 - 1 - 784 - 729
max_d = √509
max_d = 22.561028345357
Since max_d = 22.561028345357 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 282 - 282
max_d = √2023 - 1 - 784 - 784
max_d = √454
max_d = 21.307275752663
Since max_d = 21.307275752663 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 282 - 292
max_d = √2023 - 1 - 784 - 841
max_d = √397
max_d = 19.924858845171
Since max_d = 19.924858845171 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 282 - 302
max_d = √2023 - 1 - 784 - 900
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 282 - 312
max_d = √2023 - 1 - 784 - 961
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 282 - 322
max_d = √2023 - 1 - 784 - 1024
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 282 - 332
max_d = √2023 - 1 - 784 - 1089
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 282 - 342
max_d = √2023 - 1 - 784 - 1156
max_d = √82
max_d = 9.0553851381374
Since max_d = 9.0553851381374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 282 - 352
max_d = √2023 - 1 - 784 - 1225
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 292)
max_c = Floor(√2023 - 1 - 841)
max_c = Floor(√1181)
max_c = Floor(34.365680554879)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 292)/2 = 590.5
When min_c = 25, then it is c2 = 625 ≥ 590.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 292 - 252
max_d = √2023 - 1 - 841 - 625
max_d = √556
max_d = 23.579652245103
Since max_d = 23.579652245103 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 292 - 262
max_d = √2023 - 1 - 841 - 676
max_d = √505
max_d = 22.472205054244
Since max_d = 22.472205054244 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 292 - 272
max_d = √2023 - 1 - 841 - 729
max_d = √452
max_d = 21.260291625469
Since max_d = 21.260291625469 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 292 - 282
max_d = √2023 - 1 - 841 - 784
max_d = √397
max_d = 19.924858845171
Since max_d = 19.924858845171 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 292 - 292
max_d = √2023 - 1 - 841 - 841
max_d = √340
max_d = 18.439088914586
Since max_d = 18.439088914586 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 292 - 302
max_d = √2023 - 1 - 841 - 900
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 292 - 312
max_d = √2023 - 1 - 841 - 961
max_d = √220
max_d = 14.832396974191
Since max_d = 14.832396974191 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 292 - 322
max_d = √2023 - 1 - 841 - 1024
max_d = √157
max_d = 12.529964086142
Since max_d = 12.529964086142 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 292 - 332
max_d = √2023 - 1 - 841 - 1089
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 292 - 342
max_d = √2023 - 1 - 841 - 1156
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (1, 29, 34, 5) is an integer solution proven below
12 + 292 + 342 + 52 → 1 + 841 + 1156 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 302)
max_c = Floor(√2023 - 1 - 900)
max_c = Floor(√1122)
max_c = Floor(33.496268448888)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 302)/2 = 561
When min_c = 24, then it is c2 = 576 ≥ 561, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 302 - 242
max_d = √2023 - 1 - 900 - 576
max_d = √546
max_d = 23.366642891096
Since max_d = 23.366642891096 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 302 - 252
max_d = √2023 - 1 - 900 - 625
max_d = √497
max_d = 22.293496809608
Since max_d = 22.293496809608 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 302 - 262
max_d = √2023 - 1 - 900 - 676
max_d = √446
max_d = 21.118712081943
Since max_d = 21.118712081943 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 302 - 272
max_d = √2023 - 1 - 900 - 729
max_d = √393
max_d = 19.824227601599
Since max_d = 19.824227601599 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 302 - 282
max_d = √2023 - 1 - 900 - 784
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 302 - 292
max_d = √2023 - 1 - 900 - 841
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 302 - 302
max_d = √2023 - 1 - 900 - 900
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 302 - 312
max_d = √2023 - 1 - 900 - 961
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 302 - 322
max_d = √2023 - 1 - 900 - 1024
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 302 - 332
max_d = √2023 - 1 - 900 - 1089
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 312)
max_c = Floor(√2023 - 1 - 961)
max_c = Floor(√1061)
max_c = Floor(32.572994949805)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 312)/2 = 530.5
When min_c = 24, then it is c2 = 576 ≥ 530.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 312 - 242
max_d = √2023 - 1 - 961 - 576
max_d = √485
max_d = 22.022715545545
Since max_d = 22.022715545545 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 312 - 252
max_d = √2023 - 1 - 961 - 625
max_d = √436
max_d = 20.880613017821
Since max_d = 20.880613017821 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 312 - 262
max_d = √2023 - 1 - 961 - 676
max_d = √385
max_d = 19.621416870349
Since max_d = 19.621416870349 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 312 - 272
max_d = √2023 - 1 - 961 - 729
max_d = √332
max_d = 18.220867158289
Since max_d = 18.220867158289 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 312 - 282
max_d = √2023 - 1 - 961 - 784
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 312 - 292
max_d = √2023 - 1 - 961 - 841
max_d = √220
max_d = 14.832396974191
Since max_d = 14.832396974191 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 312 - 302
max_d = √2023 - 1 - 961 - 900
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 312 - 312
max_d = √2023 - 1 - 961 - 961
max_d = √100
max_d = 10
Since max_d = 10, then (a, b, c, d) = (1, 31, 31, 10) is an integer solution proven below
12 + 312 + 312 + 102 → 1 + 961 + 961 + 100 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 312 - 322
max_d = √2023 - 1 - 961 - 1024
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 322)
max_c = Floor(√2023 - 1 - 1024)
max_c = Floor(√998)
max_c = Floor(31.591137997863)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 322)/2 = 499
When min_c = 23, then it is c2 = 529 ≥ 499, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 322 - 232
max_d = √2023 - 1 - 1024 - 529
max_d = √469
max_d = 21.656407827708
Since max_d = 21.656407827708 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 322 - 242
max_d = √2023 - 1 - 1024 - 576
max_d = √422
max_d = 20.542638584174
Since max_d = 20.542638584174 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 322 - 252
max_d = √2023 - 1 - 1024 - 625
max_d = √373
max_d = 19.313207915828
Since max_d = 19.313207915828 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 322 - 262
max_d = √2023 - 1 - 1024 - 676
max_d = √322
max_d = 17.944358444926
Since max_d = 17.944358444926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 322 - 272
max_d = √2023 - 1 - 1024 - 729
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 322 - 282
max_d = √2023 - 1 - 1024 - 784
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 322 - 292
max_d = √2023 - 1 - 1024 - 841
max_d = √157
max_d = 12.529964086142
Since max_d = 12.529964086142 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 322 - 302
max_d = √2023 - 1 - 1024 - 900
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 322 - 312
max_d = √2023 - 1 - 1024 - 961
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 332)
max_c = Floor(√2023 - 1 - 1089)
max_c = Floor(√933)
max_c = Floor(30.545048698603)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 332)/2 = 466.5
When min_c = 22, then it is c2 = 484 ≥ 466.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 332 - 222
max_d = √2023 - 1 - 1089 - 484
max_d = √449
max_d = 21.189620100417
Since max_d = 21.189620100417 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 332 - 232
max_d = √2023 - 1 - 1089 - 529
max_d = √404
max_d = 20.099751242242
Since max_d = 20.099751242242 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 332 - 242
max_d = √2023 - 1 - 1089 - 576
max_d = √357
max_d = 18.894443627691
Since max_d = 18.894443627691 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 332 - 252
max_d = √2023 - 1 - 1089 - 625
max_d = √308
max_d = 17.549928774784
Since max_d = 17.549928774784 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 332 - 262
max_d = √2023 - 1 - 1089 - 676
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 332 - 272
max_d = √2023 - 1 - 1089 - 729
max_d = √204
max_d = 14.282856857086
Since max_d = 14.282856857086 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 332 - 282
max_d = √2023 - 1 - 1089 - 784
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 332 - 292
max_d = √2023 - 1 - 1089 - 841
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 332 - 302
max_d = √2023 - 1 - 1089 - 900
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 342)
max_c = Floor(√2023 - 1 - 1156)
max_c = Floor(√866)
max_c = Floor(29.427877939124)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 342)/2 = 433
When min_c = 21, then it is c2 = 441 ≥ 433, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 342 - 212
max_d = √2023 - 1 - 1156 - 441
max_d = √425
max_d = 20.615528128088
Since max_d = 20.615528128088 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 342 - 222
max_d = √2023 - 1 - 1156 - 484
max_d = √382
max_d = 19.544820285692
Since max_d = 19.544820285692 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 342 - 232
max_d = √2023 - 1 - 1156 - 529
max_d = √337
max_d = 18.357559750686
Since max_d = 18.357559750686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 342 - 242
max_d = √2023 - 1 - 1156 - 576
max_d = √290
max_d = 17.029386365926
Since max_d = 17.029386365926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 342 - 252
max_d = √2023 - 1 - 1156 - 625
max_d = √241
max_d = 15.52417469626
Since max_d = 15.52417469626 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 342 - 262
max_d = √2023 - 1 - 1156 - 676
max_d = √190
max_d = 13.78404875209
Since max_d = 13.78404875209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 342 - 272
max_d = √2023 - 1 - 1156 - 729
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 342 - 282
max_d = √2023 - 1 - 1156 - 784
max_d = √82
max_d = 9.0553851381374
Since max_d = 9.0553851381374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 342 - 292
max_d = √2023 - 1 - 1156 - 841
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (1, 34, 29, 5) is an integer solution proven below
12 + 342 + 292 + 52 → 1 + 1156 + 841 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 352)
max_c = Floor(√2023 - 1 - 1225)
max_c = Floor(√797)
max_c = Floor(28.231188426986)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 352)/2 = 398.5
When min_c = 20, then it is c2 = 400 ≥ 398.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 352 - 202
max_d = √2023 - 1 - 1225 - 400
max_d = √397
max_d = 19.924858845171
Since max_d = 19.924858845171 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 352 - 212
max_d = √2023 - 1 - 1225 - 441
max_d = √356
max_d = 18.867962264113
Since max_d = 18.867962264113 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 352 - 222
max_d = √2023 - 1 - 1225 - 484
max_d = √313
max_d = 17.691806012954
Since max_d = 17.691806012954 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 352 - 232
max_d = √2023 - 1 - 1225 - 529
max_d = √268
max_d = 16.370705543745
Since max_d = 16.370705543745 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 352 - 242
max_d = √2023 - 1 - 1225 - 576
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 352 - 252
max_d = √2023 - 1 - 1225 - 625
max_d = √172
max_d = 13.114877048604
Since max_d = 13.114877048604 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 352 - 262
max_d = √2023 - 1 - 1225 - 676
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (1, 35, 26, 11) is an integer solution proven below
12 + 352 + 262 + 112 → 1 + 1225 + 676 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 352 - 272
max_d = √2023 - 1 - 1225 - 729
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 352 - 282
max_d = √2023 - 1 - 1225 - 784
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 362)
max_c = Floor(√2023 - 1 - 1296)
max_c = Floor(√726)
max_c = Floor(26.944387170615)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 362)/2 = 363
When min_c = 20, then it is c2 = 400 ≥ 363, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 362 - 202
max_d = √2023 - 1 - 1296 - 400
max_d = √326
max_d = 18.055470085268
Since max_d = 18.055470085268 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 362 - 212
max_d = √2023 - 1 - 1296 - 441
max_d = √285
max_d = 16.881943016134
Since max_d = 16.881943016134 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 362 - 222
max_d = √2023 - 1 - 1296 - 484
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 362 - 232
max_d = √2023 - 1 - 1296 - 529
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 362 - 242
max_d = √2023 - 1 - 1296 - 576
max_d = √150
max_d = 12.247448713916
Since max_d = 12.247448713916 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 362 - 252
max_d = √2023 - 1 - 1296 - 625
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 362 - 262
max_d = √2023 - 1 - 1296 - 676
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 372)
max_c = Floor(√2023 - 1 - 1369)
max_c = Floor(√653)
max_c = Floor(25.553864678361)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 372)/2 = 326.5
When min_c = 19, then it is c2 = 361 ≥ 326.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 372 - 192
max_d = √2023 - 1 - 1369 - 361
max_d = √292
max_d = 17.088007490635
Since max_d = 17.088007490635 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 372 - 202
max_d = √2023 - 1 - 1369 - 400
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 372 - 212
max_d = √2023 - 1 - 1369 - 441
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 372 - 222
max_d = √2023 - 1 - 1369 - 484
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (1, 37, 22, 13) is an integer solution proven below
12 + 372 + 222 + 132 → 1 + 1369 + 484 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 372 - 232
max_d = √2023 - 1 - 1369 - 529
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 372 - 242
max_d = √2023 - 1 - 1369 - 576
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 372 - 252
max_d = √2023 - 1 - 1369 - 625
max_d = √28
max_d = 5.2915026221292
Since max_d = 5.2915026221292 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 382)
max_c = Floor(√2023 - 1 - 1444)
max_c = Floor(√578)
max_c = Floor(24.041630560343)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 382)/2 = 289
When min_c = 17, then it is c2 = 289 ≥ 289, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 382 - 172
max_d = √2023 - 1 - 1444 - 289
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (1, 38, 17, 17) is an integer solution proven below
12 + 382 + 172 + 172 → 1 + 1444 + 289 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 382 - 182
max_d = √2023 - 1 - 1444 - 324
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 382 - 192
max_d = √2023 - 1 - 1444 - 361
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 382 - 202
max_d = √2023 - 1 - 1444 - 400
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 382 - 212
max_d = √2023 - 1 - 1444 - 441
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 382 - 222
max_d = √2023 - 1 - 1444 - 484
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 382 - 232
max_d = √2023 - 1 - 1444 - 529
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (1, 38, 23, 7) is an integer solution proven below
12 + 382 + 232 + 72 → 1 + 1444 + 529 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 382 - 242
max_d = √2023 - 1 - 1444 - 576
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 392)
max_c = Floor(√2023 - 1 - 1521)
max_c = Floor(√501)
max_c = Floor(22.383029285599)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 392)/2 = 250.5
When min_c = 16, then it is c2 = 256 ≥ 250.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 392 - 162
max_d = √2023 - 1 - 1521 - 256
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 392 - 172
max_d = √2023 - 1 - 1521 - 289
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 392 - 182
max_d = √2023 - 1 - 1521 - 324
max_d = √177
max_d = 13.30413469565
Since max_d = 13.30413469565 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 392 - 192
max_d = √2023 - 1 - 1521 - 361
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 392 - 202
max_d = √2023 - 1 - 1521 - 400
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 392 - 212
max_d = √2023 - 1 - 1521 - 441
max_d = √60
max_d = 7.7459666924148
Since max_d = 7.7459666924148 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 392 - 222
max_d = √2023 - 1 - 1521 - 484
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 402)
max_c = Floor(√2023 - 1 - 1600)
max_c = Floor(√422)
max_c = Floor(20.542638584174)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 402)/2 = 211
When min_c = 15, then it is c2 = 225 ≥ 211, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 402 - 152
max_d = √2023 - 1 - 1600 - 225
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 402 - 162
max_d = √2023 - 1 - 1600 - 256
max_d = √166
max_d = 12.884098726725
Since max_d = 12.884098726725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 402 - 172
max_d = √2023 - 1 - 1600 - 289
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 402 - 182
max_d = √2023 - 1 - 1600 - 324
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 402 - 192
max_d = √2023 - 1 - 1600 - 361
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 402 - 202
max_d = √2023 - 1 - 1600 - 400
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 412)
max_c = Floor(√2023 - 1 - 1681)
max_c = Floor(√341)
max_c = Floor(18.466185312619)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 412)/2 = 170.5
When min_c = 14, then it is c2 = 196 ≥ 170.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 412 - 142
max_d = √2023 - 1 - 1681 - 196
max_d = √145
max_d = 12.041594578792
Since max_d = 12.041594578792 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 412 - 152
max_d = √2023 - 1 - 1681 - 225
max_d = √116
max_d = 10.770329614269
Since max_d = 10.770329614269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 412 - 162
max_d = √2023 - 1 - 1681 - 256
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 412 - 172
max_d = √2023 - 1 - 1681 - 289
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 412 - 182
max_d = √2023 - 1 - 1681 - 324
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 422)
max_c = Floor(√2023 - 1 - 1764)
max_c = Floor(√258)
max_c = Floor(16.062378404209)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 422)/2 = 129
When min_c = 12, then it is c2 = 144 ≥ 129, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 422 - 122
max_d = √2023 - 1 - 1764 - 144
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 422 - 132
max_d = √2023 - 1 - 1764 - 169
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 422 - 142
max_d = √2023 - 1 - 1764 - 196
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 422 - 152
max_d = √2023 - 1 - 1764 - 225
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 422 - 162
max_d = √2023 - 1 - 1764 - 256
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 432)
max_c = Floor(√2023 - 1 - 1849)
max_c = Floor(√173)
max_c = Floor(13.152946437966)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 432)/2 = 86.5
When min_c = 10, then it is c2 = 100 ≥ 86.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 432 - 102
max_d = √2023 - 1 - 1849 - 100
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 432 - 112
max_d = √2023 - 1 - 1849 - 121
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 432 - 122
max_d = √2023 - 1 - 1849 - 144
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 432 - 132
max_d = √2023 - 1 - 1849 - 169
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (1, 43, 13, 2) is an integer solution proven below
12 + 432 + 132 + 22 → 1 + 1849 + 169 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 12 - 442)
max_c = Floor(√2023 - 1 - 1936)
max_c = Floor(√86)
max_c = Floor(9.2736184954957)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 12 - 442)/2 = 43
When min_c = 7, then it is c2 = 49 ≥ 43, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 442 - 72
max_d = √2023 - 1 - 1936 - 49
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 442 - 82
max_d = √2023 - 1 - 1936 - 64
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 12 - 442 - 92
max_d = √2023 - 1 - 1936 - 81
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 22)
max_b = Floor(√2023 - 4)
max_b = Floor(√2019)
max_b = Floor(44.933283877322)
max_b = 44
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 22)/3 = 673
When min_b = 26, then it is b2 = 676 ≥ 673, so min_b = 26
(26, 44)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 262)
max_c = Floor(√2023 - 4 - 676)
max_c = Floor(√1343)
max_c = Floor(36.646964403617)
max_c = 36
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 262)/2 = 671.5
When min_c = 26, then it is c2 = 676 ≥ 671.5, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 262 - 262
max_d = √2023 - 4 - 676 - 676
max_d = √667
max_d = 25.82634314029
Since max_d = 25.82634314029 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 262 - 272
max_d = √2023 - 4 - 676 - 729
max_d = √614
max_d = 24.779023386728
Since max_d = 24.779023386728 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 262 - 282
max_d = √2023 - 4 - 676 - 784
max_d = √559
max_d = 23.643180835074
Since max_d = 23.643180835074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 262 - 292
max_d = √2023 - 4 - 676 - 841
max_d = √502
max_d = 22.405356502408
Since max_d = 22.405356502408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 262 - 302
max_d = √2023 - 4 - 676 - 900
max_d = √443
max_d = 21.047565179849
Since max_d = 21.047565179849 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 262 - 312
max_d = √2023 - 4 - 676 - 961
max_d = √382
max_d = 19.544820285692
Since max_d = 19.544820285692 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 262 - 322
max_d = √2023 - 4 - 676 - 1024
max_d = √319
max_d = 17.860571099492
Since max_d = 17.860571099492 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 262 - 332
max_d = √2023 - 4 - 676 - 1089
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 262 - 342
max_d = √2023 - 4 - 676 - 1156
max_d = √187
max_d = 13.674794331177
Since max_d = 13.674794331177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 262 - 352
max_d = √2023 - 4 - 676 - 1225
max_d = √118
max_d = 10.8627804912
Since max_d = 10.8627804912 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 262 - 362
max_d = √2023 - 4 - 676 - 1296
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 272)
max_c = Floor(√2023 - 4 - 729)
max_c = Floor(√1290)
max_c = Floor(35.916569992136)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 272)/2 = 645
When min_c = 26, then it is c2 = 676 ≥ 645, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 272 - 262
max_d = √2023 - 4 - 729 - 676
max_d = √614
max_d = 24.779023386728
Since max_d = 24.779023386728 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 272 - 272
max_d = √2023 - 4 - 729 - 729
max_d = √561
max_d = 23.685438564654
Since max_d = 23.685438564654 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 272 - 282
max_d = √2023 - 4 - 729 - 784
max_d = √506
max_d = 22.494443758404
Since max_d = 22.494443758404 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 272 - 292
max_d = √2023 - 4 - 729 - 841
max_d = √449
max_d = 21.189620100417
Since max_d = 21.189620100417 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 272 - 302
max_d = √2023 - 4 - 729 - 900
max_d = √390
max_d = 19.748417658131
Since max_d = 19.748417658131 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 272 - 312
max_d = √2023 - 4 - 729 - 961
max_d = √329
max_d = 18.138357147217
Since max_d = 18.138357147217 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 272 - 322
max_d = √2023 - 4 - 729 - 1024
max_d = √266
max_d = 16.3095064303
Since max_d = 16.3095064303 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 272 - 332
max_d = √2023 - 4 - 729 - 1089
max_d = √201
max_d = 14.177446878758
Since max_d = 14.177446878758 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 272 - 342
max_d = √2023 - 4 - 729 - 1156
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 272 - 352
max_d = √2023 - 4 - 729 - 1225
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 282)
max_c = Floor(√2023 - 4 - 784)
max_c = Floor(√1235)
max_c = Floor(35.142566781611)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 282)/2 = 617.5
When min_c = 25, then it is c2 = 625 ≥ 617.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 282 - 252
max_d = √2023 - 4 - 784 - 625
max_d = √610
max_d = 24.698178070457
Since max_d = 24.698178070457 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 282 - 262
max_d = √2023 - 4 - 784 - 676
max_d = √559
max_d = 23.643180835074
Since max_d = 23.643180835074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 282 - 272
max_d = √2023 - 4 - 784 - 729
max_d = √506
max_d = 22.494443758404
Since max_d = 22.494443758404 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 282 - 282
max_d = √2023 - 4 - 784 - 784
max_d = √451
max_d = 21.236760581595
Since max_d = 21.236760581595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 282 - 292
max_d = √2023 - 4 - 784 - 841
max_d = √394
max_d = 19.849433241279
Since max_d = 19.849433241279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 282 - 302
max_d = √2023 - 4 - 784 - 900
max_d = √335
max_d = 18.303005217723
Since max_d = 18.303005217723 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 282 - 312
max_d = √2023 - 4 - 784 - 961
max_d = √274
max_d = 16.552945357247
Since max_d = 16.552945357247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 282 - 322
max_d = √2023 - 4 - 784 - 1024
max_d = √211
max_d = 14.525839046334
Since max_d = 14.525839046334 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 282 - 332
max_d = √2023 - 4 - 784 - 1089
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 282 - 342
max_d = √2023 - 4 - 784 - 1156
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 282 - 352
max_d = √2023 - 4 - 784 - 1225
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 292)
max_c = Floor(√2023 - 4 - 841)
max_c = Floor(√1178)
max_c = Floor(34.322004603461)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 292)/2 = 589
When min_c = 25, then it is c2 = 625 ≥ 589, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 292 - 252
max_d = √2023 - 4 - 841 - 625
max_d = √553
max_d = 23.51595203261
Since max_d = 23.51595203261 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 292 - 262
max_d = √2023 - 4 - 841 - 676
max_d = √502
max_d = 22.405356502408
Since max_d = 22.405356502408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 292 - 272
max_d = √2023 - 4 - 841 - 729
max_d = √449
max_d = 21.189620100417
Since max_d = 21.189620100417 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 292 - 282
max_d = √2023 - 4 - 841 - 784
max_d = √394
max_d = 19.849433241279
Since max_d = 19.849433241279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 292 - 292
max_d = √2023 - 4 - 841 - 841
max_d = √337
max_d = 18.357559750686
Since max_d = 18.357559750686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 292 - 302
max_d = √2023 - 4 - 841 - 900
max_d = √278
max_d = 16.673332000533
Since max_d = 16.673332000533 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 292 - 312
max_d = √2023 - 4 - 841 - 961
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 292 - 322
max_d = √2023 - 4 - 841 - 1024
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 292 - 332
max_d = √2023 - 4 - 841 - 1089
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 292 - 342
max_d = √2023 - 4 - 841 - 1156
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 302)
max_c = Floor(√2023 - 4 - 900)
max_c = Floor(√1119)
max_c = Floor(33.451457367355)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 302)/2 = 559.5
When min_c = 24, then it is c2 = 576 ≥ 559.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 302 - 242
max_d = √2023 - 4 - 900 - 576
max_d = √543
max_d = 23.302360395462
Since max_d = 23.302360395462 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 302 - 252
max_d = √2023 - 4 - 900 - 625
max_d = √494
max_d = 22.226110770893
Since max_d = 22.226110770893 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 302 - 262
max_d = √2023 - 4 - 900 - 676
max_d = √443
max_d = 21.047565179849
Since max_d = 21.047565179849 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 302 - 272
max_d = √2023 - 4 - 900 - 729
max_d = √390
max_d = 19.748417658131
Since max_d = 19.748417658131 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 302 - 282
max_d = √2023 - 4 - 900 - 784
max_d = √335
max_d = 18.303005217723
Since max_d = 18.303005217723 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 302 - 292
max_d = √2023 - 4 - 900 - 841
max_d = √278
max_d = 16.673332000533
Since max_d = 16.673332000533 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 302 - 302
max_d = √2023 - 4 - 900 - 900
max_d = √219
max_d = 14.798648586949
Since max_d = 14.798648586949 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 302 - 312
max_d = √2023 - 4 - 900 - 961
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 302 - 322
max_d = √2023 - 4 - 900 - 1024
max_d = √95
max_d = 9.746794344809
Since max_d = 9.746794344809 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 302 - 332
max_d = √2023 - 4 - 900 - 1089
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 312)
max_c = Floor(√2023 - 4 - 961)
max_c = Floor(√1058)
max_c = Floor(32.526911934581)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 312)/2 = 529
When min_c = 23, then it is c2 = 529 ≥ 529, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 312 - 232
max_d = √2023 - 4 - 961 - 529
max_d = √529
max_d = 23
Since max_d = 23, then (a, b, c, d) = (2, 31, 23, 23) is an integer solution proven below
22 + 312 + 232 + 232 → 4 + 961 + 529 + 529 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 312 - 242
max_d = √2023 - 4 - 961 - 576
max_d = √482
max_d = 21.9544984001
Since max_d = 21.9544984001 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 312 - 252
max_d = √2023 - 4 - 961 - 625
max_d = √433
max_d = 20.808652046685
Since max_d = 20.808652046685 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 312 - 262
max_d = √2023 - 4 - 961 - 676
max_d = √382
max_d = 19.544820285692
Since max_d = 19.544820285692 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 312 - 272
max_d = √2023 - 4 - 961 - 729
max_d = √329
max_d = 18.138357147217
Since max_d = 18.138357147217 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 312 - 282
max_d = √2023 - 4 - 961 - 784
max_d = √274
max_d = 16.552945357247
Since max_d = 16.552945357247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 312 - 292
max_d = √2023 - 4 - 961 - 841
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 312 - 302
max_d = √2023 - 4 - 961 - 900
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 312 - 312
max_d = √2023 - 4 - 961 - 961
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 312 - 322
max_d = √2023 - 4 - 961 - 1024
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 322)
max_c = Floor(√2023 - 4 - 1024)
max_c = Floor(√995)
max_c = Floor(31.543620591175)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 322)/2 = 497.5
When min_c = 23, then it is c2 = 529 ≥ 497.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 322 - 232
max_d = √2023 - 4 - 1024 - 529
max_d = √466
max_d = 21.587033144923
Since max_d = 21.587033144923 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 322 - 242
max_d = √2023 - 4 - 1024 - 576
max_d = √419
max_d = 20.469489490459
Since max_d = 20.469489490459 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 322 - 252
max_d = √2023 - 4 - 1024 - 625
max_d = √370
max_d = 19.235384061671
Since max_d = 19.235384061671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 322 - 262
max_d = √2023 - 4 - 1024 - 676
max_d = √319
max_d = 17.860571099492
Since max_d = 17.860571099492 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 322 - 272
max_d = √2023 - 4 - 1024 - 729
max_d = √266
max_d = 16.3095064303
Since max_d = 16.3095064303 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 322 - 282
max_d = √2023 - 4 - 1024 - 784
max_d = √211
max_d = 14.525839046334
Since max_d = 14.525839046334 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 322 - 292
max_d = √2023 - 4 - 1024 - 841
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 322 - 302
max_d = √2023 - 4 - 1024 - 900
max_d = √95
max_d = 9.746794344809
Since max_d = 9.746794344809 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 322 - 312
max_d = √2023 - 4 - 1024 - 961
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 332)
max_c = Floor(√2023 - 4 - 1089)
max_c = Floor(√930)
max_c = Floor(30.495901363954)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 332)/2 = 465
When min_c = 22, then it is c2 = 484 ≥ 465, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 332 - 222
max_d = √2023 - 4 - 1089 - 484
max_d = √446
max_d = 21.118712081943
Since max_d = 21.118712081943 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 332 - 232
max_d = √2023 - 4 - 1089 - 529
max_d = √401
max_d = 20.024984394501
Since max_d = 20.024984394501 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 332 - 242
max_d = √2023 - 4 - 1089 - 576
max_d = √354
max_d = 18.814887722227
Since max_d = 18.814887722227 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 332 - 252
max_d = √2023 - 4 - 1089 - 625
max_d = √305
max_d = 17.464249196573
Since max_d = 17.464249196573 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 332 - 262
max_d = √2023 - 4 - 1089 - 676
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 332 - 272
max_d = √2023 - 4 - 1089 - 729
max_d = √201
max_d = 14.177446878758
Since max_d = 14.177446878758 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 332 - 282
max_d = √2023 - 4 - 1089 - 784
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 332 - 292
max_d = √2023 - 4 - 1089 - 841
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 332 - 302
max_d = √2023 - 4 - 1089 - 900
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 342)
max_c = Floor(√2023 - 4 - 1156)
max_c = Floor(√863)
max_c = Floor(29.376861643137)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 342)/2 = 431.5
When min_c = 21, then it is c2 = 441 ≥ 431.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 342 - 212
max_d = √2023 - 4 - 1156 - 441
max_d = √422
max_d = 20.542638584174
Since max_d = 20.542638584174 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 342 - 222
max_d = √2023 - 4 - 1156 - 484
max_d = √379
max_d = 19.467922333932
Since max_d = 19.467922333932 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 342 - 232
max_d = √2023 - 4 - 1156 - 529
max_d = √334
max_d = 18.275666882497
Since max_d = 18.275666882497 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 342 - 242
max_d = √2023 - 4 - 1156 - 576
max_d = √287
max_d = 16.941074346097
Since max_d = 16.941074346097 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 342 - 252
max_d = √2023 - 4 - 1156 - 625
max_d = √238
max_d = 15.427248620542
Since max_d = 15.427248620542 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 342 - 262
max_d = √2023 - 4 - 1156 - 676
max_d = √187
max_d = 13.674794331177
Since max_d = 13.674794331177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 342 - 272
max_d = √2023 - 4 - 1156 - 729
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 342 - 282
max_d = √2023 - 4 - 1156 - 784
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 342 - 292
max_d = √2023 - 4 - 1156 - 841
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 352)
max_c = Floor(√2023 - 4 - 1225)
max_c = Floor(√794)
max_c = Floor(28.178005607211)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 352)/2 = 397
When min_c = 20, then it is c2 = 400 ≥ 397, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 352 - 202
max_d = √2023 - 4 - 1225 - 400
max_d = √394
max_d = 19.849433241279
Since max_d = 19.849433241279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 352 - 212
max_d = √2023 - 4 - 1225 - 441
max_d = √353
max_d = 18.788294228056
Since max_d = 18.788294228056 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 352 - 222
max_d = √2023 - 4 - 1225 - 484
max_d = √310
max_d = 17.606816861659
Since max_d = 17.606816861659 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 352 - 232
max_d = √2023 - 4 - 1225 - 529
max_d = √265
max_d = 16.2788205961
Since max_d = 16.2788205961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 352 - 242
max_d = √2023 - 4 - 1225 - 576
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 352 - 252
max_d = √2023 - 4 - 1225 - 625
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (2, 35, 25, 13) is an integer solution proven below
22 + 352 + 252 + 132 → 4 + 1225 + 625 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 352 - 262
max_d = √2023 - 4 - 1225 - 676
max_d = √118
max_d = 10.8627804912
Since max_d = 10.8627804912 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 352 - 272
max_d = √2023 - 4 - 1225 - 729
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 352 - 282
max_d = √2023 - 4 - 1225 - 784
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 362)
max_c = Floor(√2023 - 4 - 1296)
max_c = Floor(√723)
max_c = Floor(26.888659319498)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 362)/2 = 361.5
When min_c = 20, then it is c2 = 400 ≥ 361.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 362 - 202
max_d = √2023 - 4 - 1296 - 400
max_d = √323
max_d = 17.972200755611
Since max_d = 17.972200755611 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 362 - 212
max_d = √2023 - 4 - 1296 - 441
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 362 - 222
max_d = √2023 - 4 - 1296 - 484
max_d = √239
max_d = 15.45962483374
Since max_d = 15.45962483374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 362 - 232
max_d = √2023 - 4 - 1296 - 529
max_d = √194
max_d = 13.928388277184
Since max_d = 13.928388277184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 362 - 242
max_d = √2023 - 4 - 1296 - 576
max_d = √147
max_d = 12.124355652982
Since max_d = 12.124355652982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 362 - 252
max_d = √2023 - 4 - 1296 - 625
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 362 - 262
max_d = √2023 - 4 - 1296 - 676
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 372)
max_c = Floor(√2023 - 4 - 1369)
max_c = Floor(√650)
max_c = Floor(25.495097567964)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 372)/2 = 325
When min_c = 19, then it is c2 = 361 ≥ 325, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 372 - 192
max_d = √2023 - 4 - 1369 - 361
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (2, 37, 19, 17) is an integer solution proven below
22 + 372 + 192 + 172 → 4 + 1369 + 361 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 372 - 202
max_d = √2023 - 4 - 1369 - 400
max_d = √250
max_d = 15.811388300842
Since max_d = 15.811388300842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 372 - 212
max_d = √2023 - 4 - 1369 - 441
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 372 - 222
max_d = √2023 - 4 - 1369 - 484
max_d = √166
max_d = 12.884098726725
Since max_d = 12.884098726725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 372 - 232
max_d = √2023 - 4 - 1369 - 529
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (2, 37, 23, 11) is an integer solution proven below
22 + 372 + 232 + 112 → 4 + 1369 + 529 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 372 - 242
max_d = √2023 - 4 - 1369 - 576
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 372 - 252
max_d = √2023 - 4 - 1369 - 625
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (2, 37, 25, 5) is an integer solution proven below
22 + 372 + 252 + 52 → 4 + 1369 + 625 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 382)
max_c = Floor(√2023 - 4 - 1444)
max_c = Floor(√575)
max_c = Floor(23.979157616564)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 382)/2 = 287.5
When min_c = 17, then it is c2 = 289 ≥ 287.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 382 - 172
max_d = √2023 - 4 - 1444 - 289
max_d = √286
max_d = 16.911534525288
Since max_d = 16.911534525288 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 382 - 182
max_d = √2023 - 4 - 1444 - 324
max_d = √251
max_d = 15.842979517755
Since max_d = 15.842979517755 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 382 - 192
max_d = √2023 - 4 - 1444 - 361
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 382 - 202
max_d = √2023 - 4 - 1444 - 400
max_d = √175
max_d = 13.228756555323
Since max_d = 13.228756555323 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 382 - 212
max_d = √2023 - 4 - 1444 - 441
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 382 - 222
max_d = √2023 - 4 - 1444 - 484
max_d = √91
max_d = 9.5393920141695
Since max_d = 9.5393920141695 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 382 - 232
max_d = √2023 - 4 - 1444 - 529
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 392)
max_c = Floor(√2023 - 4 - 1521)
max_c = Floor(√498)
max_c = Floor(22.315913604421)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 392)/2 = 249
When min_c = 16, then it is c2 = 256 ≥ 249, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 392 - 162
max_d = √2023 - 4 - 1521 - 256
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 392 - 172
max_d = √2023 - 4 - 1521 - 289
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 392 - 182
max_d = √2023 - 4 - 1521 - 324
max_d = √174
max_d = 13.190905958273
Since max_d = 13.190905958273 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 392 - 192
max_d = √2023 - 4 - 1521 - 361
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 392 - 202
max_d = √2023 - 4 - 1521 - 400
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 392 - 212
max_d = √2023 - 4 - 1521 - 441
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 392 - 222
max_d = √2023 - 4 - 1521 - 484
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 402)
max_c = Floor(√2023 - 4 - 1600)
max_c = Floor(√419)
max_c = Floor(20.469489490459)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 402)/2 = 209.5
When min_c = 15, then it is c2 = 225 ≥ 209.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 402 - 152
max_d = √2023 - 4 - 1600 - 225
max_d = √194
max_d = 13.928388277184
Since max_d = 13.928388277184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 402 - 162
max_d = √2023 - 4 - 1600 - 256
max_d = √163
max_d = 12.767145334804
Since max_d = 12.767145334804 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 402 - 172
max_d = √2023 - 4 - 1600 - 289
max_d = √130
max_d = 11.401754250991
Since max_d = 11.401754250991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 402 - 182
max_d = √2023 - 4 - 1600 - 324
max_d = √95
max_d = 9.746794344809
Since max_d = 9.746794344809 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 402 - 192
max_d = √2023 - 4 - 1600 - 361
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 402 - 202
max_d = √2023 - 4 - 1600 - 400
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 412)
max_c = Floor(√2023 - 4 - 1681)
max_c = Floor(√338)
max_c = Floor(18.38477631085)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 412)/2 = 169
When min_c = 13, then it is c2 = 169 ≥ 169, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 412 - 132
max_d = √2023 - 4 - 1681 - 169
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (2, 41, 13, 13) is an integer solution proven below
22 + 412 + 132 + 132 → 4 + 1681 + 169 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 412 - 142
max_d = √2023 - 4 - 1681 - 196
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 412 - 152
max_d = √2023 - 4 - 1681 - 225
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 412 - 162
max_d = √2023 - 4 - 1681 - 256
max_d = √82
max_d = 9.0553851381374
Since max_d = 9.0553851381374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 412 - 172
max_d = √2023 - 4 - 1681 - 289
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (2, 41, 17, 7) is an integer solution proven below
22 + 412 + 172 + 72 → 4 + 1681 + 289 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 412 - 182
max_d = √2023 - 4 - 1681 - 324
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 422)
max_c = Floor(√2023 - 4 - 1764)
max_c = Floor(√255)
max_c = Floor(15.968719422671)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 422)/2 = 127.5
When min_c = 12, then it is c2 = 144 ≥ 127.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 422 - 122
max_d = √2023 - 4 - 1764 - 144
max_d = √111
max_d = 10.535653752853
Since max_d = 10.535653752853 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 422 - 132
max_d = √2023 - 4 - 1764 - 169
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 422 - 142
max_d = √2023 - 4 - 1764 - 196
max_d = √59
max_d = 7.6811457478686
Since max_d = 7.6811457478686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 422 - 152
max_d = √2023 - 4 - 1764 - 225
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 432)
max_c = Floor(√2023 - 4 - 1849)
max_c = Floor(√170)
max_c = Floor(13.038404810405)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 432)/2 = 85
When min_c = 10, then it is c2 = 100 ≥ 85, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 432 - 102
max_d = √2023 - 4 - 1849 - 100
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 432 - 112
max_d = √2023 - 4 - 1849 - 121
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (2, 43, 11, 7) is an integer solution proven below
22 + 432 + 112 + 72 → 4 + 1849 + 121 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 432 - 122
max_d = √2023 - 4 - 1849 - 144
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 432 - 132
max_d = √2023 - 4 - 1849 - 169
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (2, 43, 13, 1) is an integer solution proven below
22 + 432 + 132 + 12 → 4 + 1849 + 169 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 22 - 442)
max_c = Floor(√2023 - 4 - 1936)
max_c = Floor(√83)
max_c = Floor(9.1104335791443)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 22 - 442)/2 = 41.5
When min_c = 7, then it is c2 = 49 ≥ 41.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 442 - 72
max_d = √2023 - 4 - 1936 - 49
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 442 - 82
max_d = √2023 - 4 - 1936 - 64
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 22 - 442 - 92
max_d = √2023 - 4 - 1936 - 81
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 32)
max_b = Floor(√2023 - 9)
max_b = Floor(√2014)
max_b = Floor(44.877611344634)
max_b = 44
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 32)/3 = 671.33333333333
When min_b = 26, then it is b2 = 676 ≥ 671.33333333333, so min_b = 26
(26, 44)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 262)
max_c = Floor(√2023 - 9 - 676)
max_c = Floor(√1338)
max_c = Floor(36.578682316344)
max_c = 36
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 262)/2 = 669
When min_c = 26, then it is c2 = 676 ≥ 669, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 262 - 262
max_d = √2023 - 9 - 676 - 676
max_d = √662
max_d = 25.729360660537
Since max_d = 25.729360660537 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 262 - 272
max_d = √2023 - 9 - 676 - 729
max_d = √609
max_d = 24.677925358506
Since max_d = 24.677925358506 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 262 - 282
max_d = √2023 - 9 - 676 - 784
max_d = √554
max_d = 23.53720459188
Since max_d = 23.53720459188 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 262 - 292
max_d = √2023 - 9 - 676 - 841
max_d = √497
max_d = 22.293496809608
Since max_d = 22.293496809608 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 262 - 302
max_d = √2023 - 9 - 676 - 900
max_d = √438
max_d = 20.928449536456
Since max_d = 20.928449536456 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 262 - 312
max_d = √2023 - 9 - 676 - 961
max_d = √377
max_d = 19.416487838948
Since max_d = 19.416487838948 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 262 - 322
max_d = √2023 - 9 - 676 - 1024
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 262 - 332
max_d = √2023 - 9 - 676 - 1089
max_d = √249
max_d = 15.779733838059
Since max_d = 15.779733838059 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 262 - 342
max_d = √2023 - 9 - 676 - 1156
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 262 - 352
max_d = √2023 - 9 - 676 - 1225
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 262 - 362
max_d = √2023 - 9 - 676 - 1296
max_d = √42
max_d = 6.4807406984079
Since max_d = 6.4807406984079 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 272)
max_c = Floor(√2023 - 9 - 729)
max_c = Floor(√1285)
max_c = Floor(35.84689665787)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 272)/2 = 642.5
When min_c = 26, then it is c2 = 676 ≥ 642.5, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 272 - 262
max_d = √2023 - 9 - 729 - 676
max_d = √609
max_d = 24.677925358506
Since max_d = 24.677925358506 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 272 - 272
max_d = √2023 - 9 - 729 - 729
max_d = √556
max_d = 23.579652245103
Since max_d = 23.579652245103 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 272 - 282
max_d = √2023 - 9 - 729 - 784
max_d = √501
max_d = 22.383029285599
Since max_d = 22.383029285599 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 272 - 292
max_d = √2023 - 9 - 729 - 841
max_d = √444
max_d = 21.071307505705
Since max_d = 21.071307505705 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 272 - 302
max_d = √2023 - 9 - 729 - 900
max_d = √385
max_d = 19.621416870349
Since max_d = 19.621416870349 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 272 - 312
max_d = √2023 - 9 - 729 - 961
max_d = √324
max_d = 18
Since max_d = 18, then (a, b, c, d) = (3, 27, 31, 18) is an integer solution proven below
32 + 272 + 312 + 182 → 9 + 729 + 961 + 324 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 272 - 322
max_d = √2023 - 9 - 729 - 1024
max_d = √261
max_d = 16.155494421404
Since max_d = 16.155494421404 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 272 - 332
max_d = √2023 - 9 - 729 - 1089
max_d = √196
max_d = 14
Since max_d = 14, then (a, b, c, d) = (3, 27, 33, 14) is an integer solution proven below
32 + 272 + 332 + 142 → 9 + 729 + 1089 + 196 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 272 - 342
max_d = √2023 - 9 - 729 - 1156
max_d = √129
max_d = 11.357816691601
Since max_d = 11.357816691601 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 272 - 352
max_d = √2023 - 9 - 729 - 1225
max_d = √60
max_d = 7.7459666924148
Since max_d = 7.7459666924148 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 282)
max_c = Floor(√2023 - 9 - 784)
max_c = Floor(√1230)
max_c = Floor(35.0713558335)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 282)/2 = 615
When min_c = 25, then it is c2 = 625 ≥ 615, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 282 - 252
max_d = √2023 - 9 - 784 - 625
max_d = √605
max_d = 24.596747752498
Since max_d = 24.596747752498 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 282 - 262
max_d = √2023 - 9 - 784 - 676
max_d = √554
max_d = 23.53720459188
Since max_d = 23.53720459188 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 282 - 272
max_d = √2023 - 9 - 784 - 729
max_d = √501
max_d = 22.383029285599
Since max_d = 22.383029285599 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 282 - 282
max_d = √2023 - 9 - 784 - 784
max_d = √446
max_d = 21.118712081943
Since max_d = 21.118712081943 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 282 - 292
max_d = √2023 - 9 - 784 - 841
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 282 - 302
max_d = √2023 - 9 - 784 - 900
max_d = √330
max_d = 18.165902124585
Since max_d = 18.165902124585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 282 - 312
max_d = √2023 - 9 - 784 - 961
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 282 - 322
max_d = √2023 - 9 - 784 - 1024
max_d = √206
max_d = 14.352700094407
Since max_d = 14.352700094407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 282 - 332
max_d = √2023 - 9 - 784 - 1089
max_d = √141
max_d = 11.874342087038
Since max_d = 11.874342087038 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 282 - 342
max_d = √2023 - 9 - 784 - 1156
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 282 - 352
max_d = √2023 - 9 - 784 - 1225
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 292)
max_c = Floor(√2023 - 9 - 841)
max_c = Floor(√1173)
max_c = Floor(34.249087579087)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 292)/2 = 586.5
When min_c = 25, then it is c2 = 625 ≥ 586.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 292 - 252
max_d = √2023 - 9 - 841 - 625
max_d = √548
max_d = 23.409399821439
Since max_d = 23.409399821439 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 292 - 262
max_d = √2023 - 9 - 841 - 676
max_d = √497
max_d = 22.293496809608
Since max_d = 22.293496809608 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 292 - 272
max_d = √2023 - 9 - 841 - 729
max_d = √444
max_d = 21.071307505705
Since max_d = 21.071307505705 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 292 - 282
max_d = √2023 - 9 - 841 - 784
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 292 - 292
max_d = √2023 - 9 - 841 - 841
max_d = √332
max_d = 18.220867158289
Since max_d = 18.220867158289 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 292 - 302
max_d = √2023 - 9 - 841 - 900
max_d = √273
max_d = 16.522711641858
Since max_d = 16.522711641858 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 292 - 312
max_d = √2023 - 9 - 841 - 961
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 292 - 322
max_d = √2023 - 9 - 841 - 1024
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 292 - 332
max_d = √2023 - 9 - 841 - 1089
max_d = √84
max_d = 9.1651513899117
Since max_d = 9.1651513899117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 292 - 342
max_d = √2023 - 9 - 841 - 1156
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 302)
max_c = Floor(√2023 - 9 - 900)
max_c = Floor(√1114)
max_c = Floor(33.376638536557)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 302)/2 = 557
When min_c = 24, then it is c2 = 576 ≥ 557, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 302 - 242
max_d = √2023 - 9 - 900 - 576
max_d = √538
max_d = 23.194827009486
Since max_d = 23.194827009486 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 302 - 252
max_d = √2023 - 9 - 900 - 625
max_d = √489
max_d = 22.113344387496
Since max_d = 22.113344387496 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 302 - 262
max_d = √2023 - 9 - 900 - 676
max_d = √438
max_d = 20.928449536456
Since max_d = 20.928449536456 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 302 - 272
max_d = √2023 - 9 - 900 - 729
max_d = √385
max_d = 19.621416870349
Since max_d = 19.621416870349 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 302 - 282
max_d = √2023 - 9 - 900 - 784
max_d = √330
max_d = 18.165902124585
Since max_d = 18.165902124585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 302 - 292
max_d = √2023 - 9 - 900 - 841
max_d = √273
max_d = 16.522711641858
Since max_d = 16.522711641858 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 302 - 302
max_d = √2023 - 9 - 900 - 900
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 302 - 312
max_d = √2023 - 9 - 900 - 961
max_d = √153
max_d = 12.369316876853
Since max_d = 12.369316876853 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 302 - 322
max_d = √2023 - 9 - 900 - 1024
max_d = √90
max_d = 9.4868329805051
Since max_d = 9.4868329805051 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 302 - 332
max_d = √2023 - 9 - 900 - 1089
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (3, 30, 33, 5) is an integer solution proven below
32 + 302 + 332 + 52 → 9 + 900 + 1089 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 312)
max_c = Floor(√2023 - 9 - 961)
max_c = Floor(√1053)
max_c = Floor(32.449961479176)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 312)/2 = 526.5
When min_c = 23, then it is c2 = 529 ≥ 526.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 312 - 232
max_d = √2023 - 9 - 961 - 529
max_d = √524
max_d = 22.891046284519
Since max_d = 22.891046284519 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 312 - 242
max_d = √2023 - 9 - 961 - 576
max_d = √477
max_d = 21.840329667842
Since max_d = 21.840329667842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 312 - 252
max_d = √2023 - 9 - 961 - 625
max_d = √428
max_d = 20.688160865577
Since max_d = 20.688160865577 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 312 - 262
max_d = √2023 - 9 - 961 - 676
max_d = √377
max_d = 19.416487838948
Since max_d = 19.416487838948 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 312 - 272
max_d = √2023 - 9 - 961 - 729
max_d = √324
max_d = 18
Since max_d = 18, then (a, b, c, d) = (3, 31, 27, 18) is an integer solution proven below
32 + 312 + 272 + 182 → 9 + 961 + 729 + 324 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 312 - 282
max_d = √2023 - 9 - 961 - 784
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 312 - 292
max_d = √2023 - 9 - 961 - 841
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 312 - 302
max_d = √2023 - 9 - 961 - 900
max_d = √153
max_d = 12.369316876853
Since max_d = 12.369316876853 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 312 - 312
max_d = √2023 - 9 - 961 - 961
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 312 - 322
max_d = √2023 - 9 - 961 - 1024
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 322)
max_c = Floor(√2023 - 9 - 1024)
max_c = Floor(√990)
max_c = Floor(31.464265445105)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 322)/2 = 495
When min_c = 23, then it is c2 = 529 ≥ 495, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 322 - 232
max_d = √2023 - 9 - 1024 - 529
max_d = √461
max_d = 21.470910553584
Since max_d = 21.470910553584 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 322 - 242
max_d = √2023 - 9 - 1024 - 576
max_d = √414
max_d = 20.346989949376
Since max_d = 20.346989949376 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 322 - 252
max_d = √2023 - 9 - 1024 - 625
max_d = √365
max_d = 19.104973174543
Since max_d = 19.104973174543 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 322 - 262
max_d = √2023 - 9 - 1024 - 676
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 322 - 272
max_d = √2023 - 9 - 1024 - 729
max_d = √261
max_d = 16.155494421404
Since max_d = 16.155494421404 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 322 - 282
max_d = √2023 - 9 - 1024 - 784
max_d = √206
max_d = 14.352700094407
Since max_d = 14.352700094407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 322 - 292
max_d = √2023 - 9 - 1024 - 841
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 322 - 302
max_d = √2023 - 9 - 1024 - 900
max_d = √90
max_d = 9.4868329805051
Since max_d = 9.4868329805051 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 322 - 312
max_d = √2023 - 9 - 1024 - 961
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 332)
max_c = Floor(√2023 - 9 - 1089)
max_c = Floor(√925)
max_c = Floor(30.413812651491)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 332)/2 = 462.5
When min_c = 22, then it is c2 = 484 ≥ 462.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 332 - 222
max_d = √2023 - 9 - 1089 - 484
max_d = √441
max_d = 21
Since max_d = 21, then (a, b, c, d) = (3, 33, 22, 21) is an integer solution proven below
32 + 332 + 222 + 212 → 9 + 1089 + 484 + 441 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 332 - 232
max_d = √2023 - 9 - 1089 - 529
max_d = √396
max_d = 19.899748742132
Since max_d = 19.899748742132 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 332 - 242
max_d = √2023 - 9 - 1089 - 576
max_d = √349
max_d = 18.681541692269
Since max_d = 18.681541692269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 332 - 252
max_d = √2023 - 9 - 1089 - 625
max_d = √300
max_d = 17.320508075689
Since max_d = 17.320508075689 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 332 - 262
max_d = √2023 - 9 - 1089 - 676
max_d = √249
max_d = 15.779733838059
Since max_d = 15.779733838059 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 332 - 272
max_d = √2023 - 9 - 1089 - 729
max_d = √196
max_d = 14
Since max_d = 14, then (a, b, c, d) = (3, 33, 27, 14) is an integer solution proven below
32 + 332 + 272 + 142 → 9 + 1089 + 729 + 196 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 332 - 282
max_d = √2023 - 9 - 1089 - 784
max_d = √141
max_d = 11.874342087038
Since max_d = 11.874342087038 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 332 - 292
max_d = √2023 - 9 - 1089 - 841
max_d = √84
max_d = 9.1651513899117
Since max_d = 9.1651513899117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 332 - 302
max_d = √2023 - 9 - 1089 - 900
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (3, 33, 30, 5) is an integer solution proven below
32 + 332 + 302 + 52 → 9 + 1089 + 900 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 342)
max_c = Floor(√2023 - 9 - 1156)
max_c = Floor(√858)
max_c = Floor(29.291637031754)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 342)/2 = 429
When min_c = 21, then it is c2 = 441 ≥ 429, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 342 - 212
max_d = √2023 - 9 - 1156 - 441
max_d = √417
max_d = 20.420577856662
Since max_d = 20.420577856662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 342 - 222
max_d = √2023 - 9 - 1156 - 484
max_d = √374
max_d = 19.339079605814
Since max_d = 19.339079605814 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 342 - 232
max_d = √2023 - 9 - 1156 - 529
max_d = √329
max_d = 18.138357147217
Since max_d = 18.138357147217 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 342 - 242
max_d = √2023 - 9 - 1156 - 576
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 342 - 252
max_d = √2023 - 9 - 1156 - 625
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 342 - 262
max_d = √2023 - 9 - 1156 - 676
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 342 - 272
max_d = √2023 - 9 - 1156 - 729
max_d = √129
max_d = 11.357816691601
Since max_d = 11.357816691601 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 342 - 282
max_d = √2023 - 9 - 1156 - 784
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 342 - 292
max_d = √2023 - 9 - 1156 - 841
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 352)
max_c = Floor(√2023 - 9 - 1225)
max_c = Floor(√789)
max_c = Floor(28.089143810376)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 352)/2 = 394.5
When min_c = 20, then it is c2 = 400 ≥ 394.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 352 - 202
max_d = √2023 - 9 - 1225 - 400
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 352 - 212
max_d = √2023 - 9 - 1225 - 441
max_d = √348
max_d = 18.654758106178
Since max_d = 18.654758106178 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 352 - 222
max_d = √2023 - 9 - 1225 - 484
max_d = √305
max_d = 17.464249196573
Since max_d = 17.464249196573 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 352 - 232
max_d = √2023 - 9 - 1225 - 529
max_d = √260
max_d = 16.124515496597
Since max_d = 16.124515496597 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 352 - 242
max_d = √2023 - 9 - 1225 - 576
max_d = √213
max_d = 14.594519519326
Since max_d = 14.594519519326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 352 - 252
max_d = √2023 - 9 - 1225 - 625
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 352 - 262
max_d = √2023 - 9 - 1225 - 676
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 352 - 272
max_d = √2023 - 9 - 1225 - 729
max_d = √60
max_d = 7.7459666924148
Since max_d = 7.7459666924148 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 352 - 282
max_d = √2023 - 9 - 1225 - 784
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 362)
max_c = Floor(√2023 - 9 - 1296)
max_c = Floor(√718)
max_c = Floor(26.795522013949)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 362)/2 = 359
When min_c = 19, then it is c2 = 361 ≥ 359, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 362 - 192
max_d = √2023 - 9 - 1296 - 361
max_d = √357
max_d = 18.894443627691
Since max_d = 18.894443627691 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 362 - 202
max_d = √2023 - 9 - 1296 - 400
max_d = √318
max_d = 17.832554500127
Since max_d = 17.832554500127 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 362 - 212
max_d = √2023 - 9 - 1296 - 441
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 362 - 222
max_d = √2023 - 9 - 1296 - 484
max_d = √234
max_d = 15.297058540778
Since max_d = 15.297058540778 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 362 - 232
max_d = √2023 - 9 - 1296 - 529
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 362 - 242
max_d = √2023 - 9 - 1296 - 576
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 362 - 252
max_d = √2023 - 9 - 1296 - 625
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 362 - 262
max_d = √2023 - 9 - 1296 - 676
max_d = √42
max_d = 6.4807406984079
Since max_d = 6.4807406984079 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 372)
max_c = Floor(√2023 - 9 - 1369)
max_c = Floor(√645)
max_c = Floor(25.396850198401)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 372)/2 = 322.5
When min_c = 18, then it is c2 = 324 ≥ 322.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 372 - 182
max_d = √2023 - 9 - 1369 - 324
max_d = √321
max_d = 17.916472867169
Since max_d = 17.916472867169 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 372 - 192
max_d = √2023 - 9 - 1369 - 361
max_d = √284
max_d = 16.852299546353
Since max_d = 16.852299546353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 372 - 202
max_d = √2023 - 9 - 1369 - 400
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 372 - 212
max_d = √2023 - 9 - 1369 - 441
max_d = √204
max_d = 14.282856857086
Since max_d = 14.282856857086 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 372 - 222
max_d = √2023 - 9 - 1369 - 484
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 372 - 232
max_d = √2023 - 9 - 1369 - 529
max_d = √116
max_d = 10.770329614269
Since max_d = 10.770329614269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 372 - 242
max_d = √2023 - 9 - 1369 - 576
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 372 - 252
max_d = √2023 - 9 - 1369 - 625
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 382)
max_c = Floor(√2023 - 9 - 1444)
max_c = Floor(√570)
max_c = Floor(23.874672772627)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 382)/2 = 285
When min_c = 17, then it is c2 = 289 ≥ 285, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 382 - 172
max_d = √2023 - 9 - 1444 - 289
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 382 - 182
max_d = √2023 - 9 - 1444 - 324
max_d = √246
max_d = 15.684387141358
Since max_d = 15.684387141358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 382 - 192
max_d = √2023 - 9 - 1444 - 361
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 382 - 202
max_d = √2023 - 9 - 1444 - 400
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 382 - 212
max_d = √2023 - 9 - 1444 - 441
max_d = √129
max_d = 11.357816691601
Since max_d = 11.357816691601 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 382 - 222
max_d = √2023 - 9 - 1444 - 484
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 382 - 232
max_d = √2023 - 9 - 1444 - 529
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 392)
max_c = Floor(√2023 - 9 - 1521)
max_c = Floor(√493)
max_c = Floor(22.203603311175)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 392)/2 = 246.5
When min_c = 16, then it is c2 = 256 ≥ 246.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 392 - 162
max_d = √2023 - 9 - 1521 - 256
max_d = √237
max_d = 15.394804318341
Since max_d = 15.394804318341 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 392 - 172
max_d = √2023 - 9 - 1521 - 289
max_d = √204
max_d = 14.282856857086
Since max_d = 14.282856857086 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 392 - 182
max_d = √2023 - 9 - 1521 - 324
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (3, 39, 18, 13) is an integer solution proven below
32 + 392 + 182 + 132 → 9 + 1521 + 324 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 392 - 192
max_d = √2023 - 9 - 1521 - 361
max_d = √132
max_d = 11.489125293076
Since max_d = 11.489125293076 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 392 - 202
max_d = √2023 - 9 - 1521 - 400
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 392 - 212
max_d = √2023 - 9 - 1521 - 441
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 392 - 222
max_d = √2023 - 9 - 1521 - 484
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (3, 39, 22, 3) is an integer solution proven below
32 + 392 + 222 + 32 → 9 + 1521 + 484 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 402)
max_c = Floor(√2023 - 9 - 1600)
max_c = Floor(√414)
max_c = Floor(20.346989949376)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 402)/2 = 207
When min_c = 15, then it is c2 = 225 ≥ 207, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 402 - 152
max_d = √2023 - 9 - 1600 - 225
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 402 - 162
max_d = √2023 - 9 - 1600 - 256
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 402 - 172
max_d = √2023 - 9 - 1600 - 289
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 402 - 182
max_d = √2023 - 9 - 1600 - 324
max_d = √90
max_d = 9.4868329805051
Since max_d = 9.4868329805051 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 402 - 192
max_d = √2023 - 9 - 1600 - 361
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 402 - 202
max_d = √2023 - 9 - 1600 - 400
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 412)
max_c = Floor(√2023 - 9 - 1681)
max_c = Floor(√333)
max_c = Floor(18.248287590895)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 412)/2 = 166.5
When min_c = 13, then it is c2 = 169 ≥ 166.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 412 - 132
max_d = √2023 - 9 - 1681 - 169
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 412 - 142
max_d = √2023 - 9 - 1681 - 196
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 412 - 152
max_d = √2023 - 9 - 1681 - 225
max_d = √108
max_d = 10.392304845413
Since max_d = 10.392304845413 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 412 - 162
max_d = √2023 - 9 - 1681 - 256
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 412 - 172
max_d = √2023 - 9 - 1681 - 289
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 412 - 182
max_d = √2023 - 9 - 1681 - 324
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (3, 41, 18, 3) is an integer solution proven below
32 + 412 + 182 + 32 → 9 + 1681 + 324 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 422)
max_c = Floor(√2023 - 9 - 1764)
max_c = Floor(√250)
max_c = Floor(15.811388300842)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 422)/2 = 125
When min_c = 12, then it is c2 = 144 ≥ 125, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 422 - 122
max_d = √2023 - 9 - 1764 - 144
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 422 - 132
max_d = √2023 - 9 - 1764 - 169
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (3, 42, 13, 9) is an integer solution proven below
32 + 422 + 132 + 92 → 9 + 1764 + 169 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 422 - 142
max_d = √2023 - 9 - 1764 - 196
max_d = √54
max_d = 7.3484692283495
Since max_d = 7.3484692283495 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 422 - 152
max_d = √2023 - 9 - 1764 - 225
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (3, 42, 15, 5) is an integer solution proven below
32 + 422 + 152 + 52 → 9 + 1764 + 225 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 432)
max_c = Floor(√2023 - 9 - 1849)
max_c = Floor(√165)
max_c = Floor(12.845232578665)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 432)/2 = 82.5
When min_c = 10, then it is c2 = 100 ≥ 82.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 432 - 102
max_d = √2023 - 9 - 1849 - 100
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 432 - 112
max_d = √2023 - 9 - 1849 - 121
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 432 - 122
max_d = √2023 - 9 - 1849 - 144
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 32 - 442)
max_c = Floor(√2023 - 9 - 1936)
max_c = Floor(√78)
max_c = Floor(8.8317608663278)
max_c = 8
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 32 - 442)/2 = 39
When min_c = 7, then it is c2 = 49 ≥ 39, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 442 - 72
max_d = √2023 - 9 - 1936 - 49
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 32 - 442 - 82
max_d = √2023 - 9 - 1936 - 64
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 42)
max_b = Floor(√2023 - 16)
max_b = Floor(√2007)
max_b = Floor(44.799553569204)
max_b = 44
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 42)/3 = 669
When min_b = 26, then it is b2 = 676 ≥ 669, so min_b = 26
(26, 44)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 262)
max_c = Floor(√2023 - 16 - 676)
max_c = Floor(√1331)
max_c = Floor(36.482872693909)
max_c = 36
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 262)/2 = 665.5
When min_c = 26, then it is c2 = 676 ≥ 665.5, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 262 - 262
max_d = √2023 - 16 - 676 - 676
max_d = √655
max_d = 25.592967784139
Since max_d = 25.592967784139 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 262 - 272
max_d = √2023 - 16 - 676 - 729
max_d = √602
max_d = 24.535688292771
Since max_d = 24.535688292771 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 262 - 282
max_d = √2023 - 16 - 676 - 784
max_d = √547
max_d = 23.388031127053
Since max_d = 23.388031127053 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 262 - 292
max_d = √2023 - 16 - 676 - 841
max_d = √490
max_d = 22.135943621179
Since max_d = 22.135943621179 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 262 - 302
max_d = √2023 - 16 - 676 - 900
max_d = √431
max_d = 20.760539492027
Since max_d = 20.760539492027 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 262 - 312
max_d = √2023 - 16 - 676 - 961
max_d = √370
max_d = 19.235384061671
Since max_d = 19.235384061671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 262 - 322
max_d = √2023 - 16 - 676 - 1024
max_d = √307
max_d = 17.521415467935
Since max_d = 17.521415467935 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 262 - 332
max_d = √2023 - 16 - 676 - 1089
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 262 - 342
max_d = √2023 - 16 - 676 - 1156
max_d = √175
max_d = 13.228756555323
Since max_d = 13.228756555323 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 262 - 352
max_d = √2023 - 16 - 676 - 1225
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 262 - 362
max_d = √2023 - 16 - 676 - 1296
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 272)
max_c = Floor(√2023 - 16 - 729)
max_c = Floor(√1278)
max_c = Floor(35.749125863439)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 272)/2 = 639
When min_c = 26, then it is c2 = 676 ≥ 639, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 272 - 262
max_d = √2023 - 16 - 729 - 676
max_d = √602
max_d = 24.535688292771
Since max_d = 24.535688292771 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 272 - 272
max_d = √2023 - 16 - 729 - 729
max_d = √549
max_d = 23.43074902772
Since max_d = 23.43074902772 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 272 - 282
max_d = √2023 - 16 - 729 - 784
max_d = √494
max_d = 22.226110770893
Since max_d = 22.226110770893 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 272 - 292
max_d = √2023 - 16 - 729 - 841
max_d = √437
max_d = 20.904544960367
Since max_d = 20.904544960367 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 272 - 302
max_d = √2023 - 16 - 729 - 900
max_d = √378
max_d = 19.442222095224
Since max_d = 19.442222095224 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 272 - 312
max_d = √2023 - 16 - 729 - 961
max_d = √317
max_d = 17.804493814765
Since max_d = 17.804493814765 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 272 - 322
max_d = √2023 - 16 - 729 - 1024
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 272 - 332
max_d = √2023 - 16 - 729 - 1089
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 272 - 342
max_d = √2023 - 16 - 729 - 1156
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 272 - 352
max_d = √2023 - 16 - 729 - 1225
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 282)
max_c = Floor(√2023 - 16 - 784)
max_c = Floor(√1223)
max_c = Floor(34.971416900091)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 282)/2 = 611.5
When min_c = 25, then it is c2 = 625 ≥ 611.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 282 - 252
max_d = √2023 - 16 - 784 - 625
max_d = √598
max_d = 24.454038521275
Since max_d = 24.454038521275 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 282 - 262
max_d = √2023 - 16 - 784 - 676
max_d = √547
max_d = 23.388031127053
Since max_d = 23.388031127053 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 282 - 272
max_d = √2023 - 16 - 784 - 729
max_d = √494
max_d = 22.226110770893
Since max_d = 22.226110770893 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 282 - 282
max_d = √2023 - 16 - 784 - 784
max_d = √439
max_d = 20.952326839757
Since max_d = 20.952326839757 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 282 - 292
max_d = √2023 - 16 - 784 - 841
max_d = √382
max_d = 19.544820285692
Since max_d = 19.544820285692 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 282 - 302
max_d = √2023 - 16 - 784 - 900
max_d = √323
max_d = 17.972200755611
Since max_d = 17.972200755611 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 282 - 312
max_d = √2023 - 16 - 784 - 961
max_d = √262
max_d = 16.186414056239
Since max_d = 16.186414056239 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 282 - 322
max_d = √2023 - 16 - 784 - 1024
max_d = √199
max_d = 14.106735979666
Since max_d = 14.106735979666 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 282 - 332
max_d = √2023 - 16 - 784 - 1089
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 282 - 342
max_d = √2023 - 16 - 784 - 1156
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 292)
max_c = Floor(√2023 - 16 - 841)
max_c = Floor(√1166)
max_c = Floor(34.146742157928)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 292)/2 = 583
When min_c = 25, then it is c2 = 625 ≥ 583, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 292 - 252
max_d = √2023 - 16 - 841 - 625
max_d = √541
max_d = 23.259406699226
Since max_d = 23.259406699226 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 292 - 262
max_d = √2023 - 16 - 841 - 676
max_d = √490
max_d = 22.135943621179
Since max_d = 22.135943621179 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 292 - 272
max_d = √2023 - 16 - 841 - 729
max_d = √437
max_d = 20.904544960367
Since max_d = 20.904544960367 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 292 - 282
max_d = √2023 - 16 - 841 - 784
max_d = √382
max_d = 19.544820285692
Since max_d = 19.544820285692 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 292 - 292
max_d = √2023 - 16 - 841 - 841
max_d = √325
max_d = 18.02775637732
Since max_d = 18.02775637732 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 292 - 302
max_d = √2023 - 16 - 841 - 900
max_d = √266
max_d = 16.3095064303
Since max_d = 16.3095064303 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 292 - 312
max_d = √2023 - 16 - 841 - 961
max_d = √205
max_d = 14.317821063276
Since max_d = 14.317821063276 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 292 - 322
max_d = √2023 - 16 - 841 - 1024
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 292 - 332
max_d = √2023 - 16 - 841 - 1089
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 292 - 342
max_d = √2023 - 16 - 841 - 1156
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 302)
max_c = Floor(√2023 - 16 - 900)
max_c = Floor(√1107)
max_c = Floor(33.271609519228)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 302)/2 = 553.5
When min_c = 24, then it is c2 = 576 ≥ 553.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 302 - 242
max_d = √2023 - 16 - 900 - 576
max_d = √531
max_d = 23.043437243606
Since max_d = 23.043437243606 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 302 - 252
max_d = √2023 - 16 - 900 - 625
max_d = √482
max_d = 21.9544984001
Since max_d = 21.9544984001 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 302 - 262
max_d = √2023 - 16 - 900 - 676
max_d = √431
max_d = 20.760539492027
Since max_d = 20.760539492027 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 302 - 272
max_d = √2023 - 16 - 900 - 729
max_d = √378
max_d = 19.442222095224
Since max_d = 19.442222095224 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 302 - 282
max_d = √2023 - 16 - 900 - 784
max_d = √323
max_d = 17.972200755611
Since max_d = 17.972200755611 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 302 - 292
max_d = √2023 - 16 - 900 - 841
max_d = √266
max_d = 16.3095064303
Since max_d = 16.3095064303 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 302 - 302
max_d = √2023 - 16 - 900 - 900
max_d = √207
max_d = 14.387494569938
Since max_d = 14.387494569938 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 302 - 312
max_d = √2023 - 16 - 900 - 961
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 302 - 322
max_d = √2023 - 16 - 900 - 1024
max_d = √83
max_d = 9.1104335791443
Since max_d = 9.1104335791443 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 302 - 332
max_d = √2023 - 16 - 900 - 1089
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 312)
max_c = Floor(√2023 - 16 - 961)
max_c = Floor(√1046)
max_c = Floor(32.341923257592)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 312)/2 = 523
When min_c = 23, then it is c2 = 529 ≥ 523, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 312 - 232
max_d = √2023 - 16 - 961 - 529
max_d = √517
max_d = 22.737634001804
Since max_d = 22.737634001804 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 312 - 242
max_d = √2023 - 16 - 961 - 576
max_d = √470
max_d = 21.679483388679
Since max_d = 21.679483388679 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 312 - 252
max_d = √2023 - 16 - 961 - 625
max_d = √421
max_d = 20.518284528683
Since max_d = 20.518284528683 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 312 - 262
max_d = √2023 - 16 - 961 - 676
max_d = √370
max_d = 19.235384061671
Since max_d = 19.235384061671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 312 - 272
max_d = √2023 - 16 - 961 - 729
max_d = √317
max_d = 17.804493814765
Since max_d = 17.804493814765 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 312 - 282
max_d = √2023 - 16 - 961 - 784
max_d = √262
max_d = 16.186414056239
Since max_d = 16.186414056239 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 312 - 292
max_d = √2023 - 16 - 961 - 841
max_d = √205
max_d = 14.317821063276
Since max_d = 14.317821063276 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 312 - 302
max_d = √2023 - 16 - 961 - 900
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 312 - 312
max_d = √2023 - 16 - 961 - 961
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 312 - 322
max_d = √2023 - 16 - 961 - 1024
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 322)
max_c = Floor(√2023 - 16 - 1024)
max_c = Floor(√983)
max_c = Floor(31.352830813182)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 322)/2 = 491.5
When min_c = 23, then it is c2 = 529 ≥ 491.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 322 - 232
max_d = √2023 - 16 - 1024 - 529
max_d = √454
max_d = 21.307275752663
Since max_d = 21.307275752663 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 322 - 242
max_d = √2023 - 16 - 1024 - 576
max_d = √407
max_d = 20.174241001832
Since max_d = 20.174241001832 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 322 - 252
max_d = √2023 - 16 - 1024 - 625
max_d = √358
max_d = 18.920887928425
Since max_d = 18.920887928425 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 322 - 262
max_d = √2023 - 16 - 1024 - 676
max_d = √307
max_d = 17.521415467935
Since max_d = 17.521415467935 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 322 - 272
max_d = √2023 - 16 - 1024 - 729
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 322 - 282
max_d = √2023 - 16 - 1024 - 784
max_d = √199
max_d = 14.106735979666
Since max_d = 14.106735979666 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 322 - 292
max_d = √2023 - 16 - 1024 - 841
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 322 - 302
max_d = √2023 - 16 - 1024 - 900
max_d = √83
max_d = 9.1104335791443
Since max_d = 9.1104335791443 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 322 - 312
max_d = √2023 - 16 - 1024 - 961
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 332)
max_c = Floor(√2023 - 16 - 1089)
max_c = Floor(√918)
max_c = Floor(30.298514815086)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 332)/2 = 459
When min_c = 22, then it is c2 = 484 ≥ 459, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 332 - 222
max_d = √2023 - 16 - 1089 - 484
max_d = √434
max_d = 20.832666656
Since max_d = 20.832666656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 332 - 232
max_d = √2023 - 16 - 1089 - 529
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 332 - 242
max_d = √2023 - 16 - 1089 - 576
max_d = √342
max_d = 18.493242008907
Since max_d = 18.493242008907 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 332 - 252
max_d = √2023 - 16 - 1089 - 625
max_d = √293
max_d = 17.117242768624
Since max_d = 17.117242768624 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 332 - 262
max_d = √2023 - 16 - 1089 - 676
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 332 - 272
max_d = √2023 - 16 - 1089 - 729
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 332 - 282
max_d = √2023 - 16 - 1089 - 784
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 332 - 292
max_d = √2023 - 16 - 1089 - 841
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 332 - 302
max_d = √2023 - 16 - 1089 - 900
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 342)
max_c = Floor(√2023 - 16 - 1156)
max_c = Floor(√851)
max_c = Floor(29.17190429163)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 342)/2 = 425.5
When min_c = 21, then it is c2 = 441 ≥ 425.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 342 - 212
max_d = √2023 - 16 - 1156 - 441
max_d = √410
max_d = 20.248456731317
Since max_d = 20.248456731317 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 342 - 222
max_d = √2023 - 16 - 1156 - 484
max_d = √367
max_d = 19.157244060668
Since max_d = 19.157244060668 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 342 - 232
max_d = √2023 - 16 - 1156 - 529
max_d = √322
max_d = 17.944358444926
Since max_d = 17.944358444926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 342 - 242
max_d = √2023 - 16 - 1156 - 576
max_d = √275
max_d = 16.583123951777
Since max_d = 16.583123951777 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 342 - 252
max_d = √2023 - 16 - 1156 - 625
max_d = √226
max_d = 15.033296378373
Since max_d = 15.033296378373 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 342 - 262
max_d = √2023 - 16 - 1156 - 676
max_d = √175
max_d = 13.228756555323
Since max_d = 13.228756555323 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 342 - 272
max_d = √2023 - 16 - 1156 - 729
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 342 - 282
max_d = √2023 - 16 - 1156 - 784
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 342 - 292
max_d = √2023 - 16 - 1156 - 841
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 352)
max_c = Floor(√2023 - 16 - 1225)
max_c = Floor(√782)
max_c = Floor(27.964262908219)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 352)/2 = 391
When min_c = 20, then it is c2 = 400 ≥ 391, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 352 - 202
max_d = √2023 - 16 - 1225 - 400
max_d = √382
max_d = 19.544820285692
Since max_d = 19.544820285692 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 352 - 212
max_d = √2023 - 16 - 1225 - 441
max_d = √341
max_d = 18.466185312619
Since max_d = 18.466185312619 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 352 - 222
max_d = √2023 - 16 - 1225 - 484
max_d = √298
max_d = 17.262676501632
Since max_d = 17.262676501632 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 352 - 232
max_d = √2023 - 16 - 1225 - 529
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 352 - 242
max_d = √2023 - 16 - 1225 - 576
max_d = √206
max_d = 14.352700094407
Since max_d = 14.352700094407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 352 - 252
max_d = √2023 - 16 - 1225 - 625
max_d = √157
max_d = 12.529964086142
Since max_d = 12.529964086142 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 352 - 262
max_d = √2023 - 16 - 1225 - 676
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 352 - 272
max_d = √2023 - 16 - 1225 - 729
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 362)
max_c = Floor(√2023 - 16 - 1296)
max_c = Floor(√711)
max_c = Floor(26.664583251947)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 362)/2 = 355.5
When min_c = 19, then it is c2 = 361 ≥ 355.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 362 - 192
max_d = √2023 - 16 - 1296 - 361
max_d = √350
max_d = 18.70828693387
Since max_d = 18.70828693387 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 362 - 202
max_d = √2023 - 16 - 1296 - 400
max_d = √311
max_d = 17.635192088548
Since max_d = 17.635192088548 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 362 - 212
max_d = √2023 - 16 - 1296 - 441
max_d = √270
max_d = 16.431676725155
Since max_d = 16.431676725155 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 362 - 222
max_d = √2023 - 16 - 1296 - 484
max_d = √227
max_d = 15.066519173319
Since max_d = 15.066519173319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 362 - 232
max_d = √2023 - 16 - 1296 - 529
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 362 - 242
max_d = √2023 - 16 - 1296 - 576
max_d = √135
max_d = 11.618950038622
Since max_d = 11.618950038622 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 362 - 252
max_d = √2023 - 16 - 1296 - 625
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 362 - 262
max_d = √2023 - 16 - 1296 - 676
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 372)
max_c = Floor(√2023 - 16 - 1369)
max_c = Floor(√638)
max_c = Floor(25.25866188063)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 372)/2 = 319
When min_c = 18, then it is c2 = 324 ≥ 319, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 372 - 182
max_d = √2023 - 16 - 1369 - 324
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 372 - 192
max_d = √2023 - 16 - 1369 - 361
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 372 - 202
max_d = √2023 - 16 - 1369 - 400
max_d = √238
max_d = 15.427248620542
Since max_d = 15.427248620542 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 372 - 212
max_d = √2023 - 16 - 1369 - 441
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 372 - 222
max_d = √2023 - 16 - 1369 - 484
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 372 - 232
max_d = √2023 - 16 - 1369 - 529
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 372 - 242
max_d = √2023 - 16 - 1369 - 576
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 372 - 252
max_d = √2023 - 16 - 1369 - 625
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 382)
max_c = Floor(√2023 - 16 - 1444)
max_c = Floor(√563)
max_c = Floor(23.727621035409)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 382)/2 = 281.5
When min_c = 17, then it is c2 = 289 ≥ 281.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 382 - 172
max_d = √2023 - 16 - 1444 - 289
max_d = √274
max_d = 16.552945357247
Since max_d = 16.552945357247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 382 - 182
max_d = √2023 - 16 - 1444 - 324
max_d = √239
max_d = 15.45962483374
Since max_d = 15.45962483374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 382 - 192
max_d = √2023 - 16 - 1444 - 361
max_d = √202
max_d = 14.212670403552
Since max_d = 14.212670403552 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 382 - 202
max_d = √2023 - 16 - 1444 - 400
max_d = √163
max_d = 12.767145334804
Since max_d = 12.767145334804 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 382 - 212
max_d = √2023 - 16 - 1444 - 441
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 382 - 222
max_d = √2023 - 16 - 1444 - 484
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 382 - 232
max_d = √2023 - 16 - 1444 - 529
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 392)
max_c = Floor(√2023 - 16 - 1521)
max_c = Floor(√486)
max_c = Floor(22.045407685049)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 392)/2 = 243
When min_c = 16, then it is c2 = 256 ≥ 243, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 392 - 162
max_d = √2023 - 16 - 1521 - 256
max_d = √230
max_d = 15.165750888103
Since max_d = 15.165750888103 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 392 - 172
max_d = √2023 - 16 - 1521 - 289
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 392 - 182
max_d = √2023 - 16 - 1521 - 324
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 392 - 192
max_d = √2023 - 16 - 1521 - 361
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 392 - 202
max_d = √2023 - 16 - 1521 - 400
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 392 - 212
max_d = √2023 - 16 - 1521 - 441
max_d = √45
max_d = 6.7082039324994
Since max_d = 6.7082039324994 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 392 - 222
max_d = √2023 - 16 - 1521 - 484
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 402)
max_c = Floor(√2023 - 16 - 1600)
max_c = Floor(√407)
max_c = Floor(20.174241001832)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 402)/2 = 203.5
When min_c = 15, then it is c2 = 225 ≥ 203.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 402 - 152
max_d = √2023 - 16 - 1600 - 225
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 402 - 162
max_d = √2023 - 16 - 1600 - 256
max_d = √151
max_d = 12.288205727445
Since max_d = 12.288205727445 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 402 - 172
max_d = √2023 - 16 - 1600 - 289
max_d = √118
max_d = 10.8627804912
Since max_d = 10.8627804912 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 402 - 182
max_d = √2023 - 16 - 1600 - 324
max_d = √83
max_d = 9.1104335791443
Since max_d = 9.1104335791443 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 402 - 192
max_d = √2023 - 16 - 1600 - 361
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 402 - 202
max_d = √2023 - 16 - 1600 - 400
max_d = √7
max_d = 2.6457513110646
Since max_d = 2.6457513110646 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 412)
max_c = Floor(√2023 - 16 - 1681)
max_c = Floor(√326)
max_c = Floor(18.055470085268)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 412)/2 = 163
When min_c = 13, then it is c2 = 169 ≥ 163, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 412 - 132
max_d = √2023 - 16 - 1681 - 169
max_d = √157
max_d = 12.529964086142
Since max_d = 12.529964086142 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 412 - 142
max_d = √2023 - 16 - 1681 - 196
max_d = √130
max_d = 11.401754250991
Since max_d = 11.401754250991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 412 - 152
max_d = √2023 - 16 - 1681 - 225
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 412 - 162
max_d = √2023 - 16 - 1681 - 256
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 412 - 172
max_d = √2023 - 16 - 1681 - 289
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 412 - 182
max_d = √2023 - 16 - 1681 - 324
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 422)
max_c = Floor(√2023 - 16 - 1764)
max_c = Floor(√243)
max_c = Floor(15.58845726812)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 422)/2 = 121.5
When min_c = 12, then it is c2 = 144 ≥ 121.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 422 - 122
max_d = √2023 - 16 - 1764 - 144
max_d = √99
max_d = 9.9498743710662
Since max_d = 9.9498743710662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 422 - 132
max_d = √2023 - 16 - 1764 - 169
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 422 - 142
max_d = √2023 - 16 - 1764 - 196
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 422 - 152
max_d = √2023 - 16 - 1764 - 225
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 432)
max_c = Floor(√2023 - 16 - 1849)
max_c = Floor(√158)
max_c = Floor(12.569805089977)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 432)/2 = 79
When min_c = 9, then it is c2 = 81 ≥ 79, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 432 - 92
max_d = √2023 - 16 - 1849 - 81
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 432 - 102
max_d = √2023 - 16 - 1849 - 100
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 432 - 112
max_d = √2023 - 16 - 1849 - 121
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 432 - 122
max_d = √2023 - 16 - 1849 - 144
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 42 - 442)
max_c = Floor(√2023 - 16 - 1936)
max_c = Floor(√71)
max_c = Floor(8.4261497731764)
max_c = 8
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 42 - 442)/2 = 35.5
When min_c = 6, then it is c2 = 36 ≥ 35.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 442 - 62
max_d = √2023 - 16 - 1936 - 36
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 442 - 72
max_d = √2023 - 16 - 1936 - 49
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 42 - 442 - 82
max_d = √2023 - 16 - 1936 - 64
max_d = √7
max_d = 2.6457513110646
Since max_d = 2.6457513110646 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 52)
max_b = Floor(√2023 - 25)
max_b = Floor(√1998)
max_b = Floor(44.698993277254)
max_b = 44
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 52)/3 = 666
When min_b = 26, then it is b2 = 676 ≥ 666, so min_b = 26
(26, 44)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 262)
max_c = Floor(√2023 - 25 - 676)
max_c = Floor(√1322)
max_c = Floor(36.359317925396)
max_c = 36
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 262)/2 = 661
When min_c = 26, then it is c2 = 676 ≥ 661, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 262 - 262
max_d = √2023 - 25 - 676 - 676
max_d = √646
max_d = 25.416530054278
Since max_d = 25.416530054278 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 262 - 272
max_d = √2023 - 25 - 676 - 729
max_d = √593
max_d = 24.351591323772
Since max_d = 24.351591323772 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 262 - 282
max_d = √2023 - 25 - 676 - 784
max_d = √538
max_d = 23.194827009486
Since max_d = 23.194827009486 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 262 - 292
max_d = √2023 - 25 - 676 - 841
max_d = √481
max_d = 21.931712199461
Since max_d = 21.931712199461 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 262 - 302
max_d = √2023 - 25 - 676 - 900
max_d = √422
max_d = 20.542638584174
Since max_d = 20.542638584174 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 262 - 312
max_d = √2023 - 25 - 676 - 961
max_d = √361
max_d = 19
Since max_d = 19, then (a, b, c, d) = (5, 26, 31, 19) is an integer solution proven below
52 + 262 + 312 + 192 → 25 + 676 + 961 + 361 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 262 - 322
max_d = √2023 - 25 - 676 - 1024
max_d = √298
max_d = 17.262676501632
Since max_d = 17.262676501632 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 262 - 332
max_d = √2023 - 25 - 676 - 1089
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 262 - 342
max_d = √2023 - 25 - 676 - 1156
max_d = √166
max_d = 12.884098726725
Since max_d = 12.884098726725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 262 - 352
max_d = √2023 - 25 - 676 - 1225
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 262 - 362
max_d = √2023 - 25 - 676 - 1296
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 272)
max_c = Floor(√2023 - 25 - 729)
max_c = Floor(√1269)
max_c = Floor(35.623026261114)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 272)/2 = 634.5
When min_c = 26, then it is c2 = 676 ≥ 634.5, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 272 - 262
max_d = √2023 - 25 - 729 - 676
max_d = √593
max_d = 24.351591323772
Since max_d = 24.351591323772 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 272 - 272
max_d = √2023 - 25 - 729 - 729
max_d = √540
max_d = 23.237900077245
Since max_d = 23.237900077245 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 272 - 282
max_d = √2023 - 25 - 729 - 784
max_d = √485
max_d = 22.022715545545
Since max_d = 22.022715545545 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 272 - 292
max_d = √2023 - 25 - 729 - 841
max_d = √428
max_d = 20.688160865577
Since max_d = 20.688160865577 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 272 - 302
max_d = √2023 - 25 - 729 - 900
max_d = √369
max_d = 19.209372712299
Since max_d = 19.209372712299 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 272 - 312
max_d = √2023 - 25 - 729 - 961
max_d = √308
max_d = 17.549928774784
Since max_d = 17.549928774784 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 272 - 322
max_d = √2023 - 25 - 729 - 1024
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 272 - 332
max_d = √2023 - 25 - 729 - 1089
max_d = √180
max_d = 13.416407864999
Since max_d = 13.416407864999 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 272 - 342
max_d = √2023 - 25 - 729 - 1156
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 272 - 352
max_d = √2023 - 25 - 729 - 1225
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 282)
max_c = Floor(√2023 - 25 - 784)
max_c = Floor(√1214)
max_c = Floor(34.842502780369)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 282)/2 = 607
When min_c = 25, then it is c2 = 625 ≥ 607, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 282 - 252
max_d = √2023 - 25 - 784 - 625
max_d = √589
max_d = 24.269322199023
Since max_d = 24.269322199023 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 282 - 262
max_d = √2023 - 25 - 784 - 676
max_d = √538
max_d = 23.194827009486
Since max_d = 23.194827009486 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 282 - 272
max_d = √2023 - 25 - 784 - 729
max_d = √485
max_d = 22.022715545545
Since max_d = 22.022715545545 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 282 - 282
max_d = √2023 - 25 - 784 - 784
max_d = √430
max_d = 20.736441353328
Since max_d = 20.736441353328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 282 - 292
max_d = √2023 - 25 - 784 - 841
max_d = √373
max_d = 19.313207915828
Since max_d = 19.313207915828 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 282 - 302
max_d = √2023 - 25 - 784 - 900
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 282 - 312
max_d = √2023 - 25 - 784 - 961
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 282 - 322
max_d = √2023 - 25 - 784 - 1024
max_d = √190
max_d = 13.78404875209
Since max_d = 13.78404875209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 282 - 332
max_d = √2023 - 25 - 784 - 1089
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 282 - 342
max_d = √2023 - 25 - 784 - 1156
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 292)
max_c = Floor(√2023 - 25 - 841)
max_c = Floor(√1157)
max_c = Floor(34.01470270339)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 292)/2 = 578.5
When min_c = 25, then it is c2 = 625 ≥ 578.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 292 - 252
max_d = √2023 - 25 - 841 - 625
max_d = √532
max_d = 23.065125189342
Since max_d = 23.065125189342 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 292 - 262
max_d = √2023 - 25 - 841 - 676
max_d = √481
max_d = 21.931712199461
Since max_d = 21.931712199461 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 292 - 272
max_d = √2023 - 25 - 841 - 729
max_d = √428
max_d = 20.688160865577
Since max_d = 20.688160865577 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 292 - 282
max_d = √2023 - 25 - 841 - 784
max_d = √373
max_d = 19.313207915828
Since max_d = 19.313207915828 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 292 - 292
max_d = √2023 - 25 - 841 - 841
max_d = √316
max_d = 17.776388834631
Since max_d = 17.776388834631 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 292 - 302
max_d = √2023 - 25 - 841 - 900
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 292 - 312
max_d = √2023 - 25 - 841 - 961
max_d = √196
max_d = 14
Since max_d = 14, then (a, b, c, d) = (5, 29, 31, 14) is an integer solution proven below
52 + 292 + 312 + 142 → 25 + 841 + 961 + 196 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 292 - 322
max_d = √2023 - 25 - 841 - 1024
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 292 - 332
max_d = √2023 - 25 - 841 - 1089
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 292 - 342
max_d = √2023 - 25 - 841 - 1156
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (5, 29, 34, 1) is an integer solution proven below
52 + 292 + 342 + 12 → 25 + 841 + 1156 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 302)
max_c = Floor(√2023 - 25 - 900)
max_c = Floor(√1098)
max_c = Floor(33.136083051562)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 302)/2 = 549
When min_c = 24, then it is c2 = 576 ≥ 549, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 302 - 242
max_d = √2023 - 25 - 900 - 576
max_d = √522
max_d = 22.847319317592
Since max_d = 22.847319317592 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 302 - 252
max_d = √2023 - 25 - 900 - 625
max_d = √473
max_d = 21.748563170932
Since max_d = 21.748563170932 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 302 - 262
max_d = √2023 - 25 - 900 - 676
max_d = √422
max_d = 20.542638584174
Since max_d = 20.542638584174 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 302 - 272
max_d = √2023 - 25 - 900 - 729
max_d = √369
max_d = 19.209372712299
Since max_d = 19.209372712299 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 302 - 282
max_d = √2023 - 25 - 900 - 784
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 302 - 292
max_d = √2023 - 25 - 900 - 841
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 302 - 302
max_d = √2023 - 25 - 900 - 900
max_d = √198
max_d = 14.07124727947
Since max_d = 14.07124727947 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 302 - 312
max_d = √2023 - 25 - 900 - 961
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 302 - 322
max_d = √2023 - 25 - 900 - 1024
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 302 - 332
max_d = √2023 - 25 - 900 - 1089
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (5, 30, 33, 3) is an integer solution proven below
52 + 302 + 332 + 32 → 25 + 900 + 1089 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 312)
max_c = Floor(√2023 - 25 - 961)
max_c = Floor(√1037)
max_c = Floor(32.202484376209)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 312)/2 = 518.5
When min_c = 23, then it is c2 = 529 ≥ 518.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 312 - 232
max_d = √2023 - 25 - 961 - 529
max_d = √508
max_d = 22.538855339169
Since max_d = 22.538855339169 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 312 - 242
max_d = √2023 - 25 - 961 - 576
max_d = √461
max_d = 21.470910553584
Since max_d = 21.470910553584 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 312 - 252
max_d = √2023 - 25 - 961 - 625
max_d = √412
max_d = 20.297783130184
Since max_d = 20.297783130184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 312 - 262
max_d = √2023 - 25 - 961 - 676
max_d = √361
max_d = 19
Since max_d = 19, then (a, b, c, d) = (5, 31, 26, 19) is an integer solution proven below
52 + 312 + 262 + 192 → 25 + 961 + 676 + 361 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 312 - 272
max_d = √2023 - 25 - 961 - 729
max_d = √308
max_d = 17.549928774784
Since max_d = 17.549928774784 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 312 - 282
max_d = √2023 - 25 - 961 - 784
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 312 - 292
max_d = √2023 - 25 - 961 - 841
max_d = √196
max_d = 14
Since max_d = 14, then (a, b, c, d) = (5, 31, 29, 14) is an integer solution proven below
52 + 312 + 292 + 142 → 25 + 961 + 841 + 196 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 312 - 302
max_d = √2023 - 25 - 961 - 900
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 312 - 312
max_d = √2023 - 25 - 961 - 961
max_d = √76
max_d = 8.7177978870813
Since max_d = 8.7177978870813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 312 - 322
max_d = √2023 - 25 - 961 - 1024
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 322)
max_c = Floor(√2023 - 25 - 1024)
max_c = Floor(√974)
max_c = Floor(31.208973068654)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 322)/2 = 487
When min_c = 23, then it is c2 = 529 ≥ 487, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 322 - 232
max_d = √2023 - 25 - 1024 - 529
max_d = √445
max_d = 21.095023109729
Since max_d = 21.095023109729 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 322 - 242
max_d = √2023 - 25 - 1024 - 576
max_d = √398
max_d = 19.94993734326
Since max_d = 19.94993734326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 322 - 252
max_d = √2023 - 25 - 1024 - 625
max_d = √349
max_d = 18.681541692269
Since max_d = 18.681541692269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 322 - 262
max_d = √2023 - 25 - 1024 - 676
max_d = √298
max_d = 17.262676501632
Since max_d = 17.262676501632 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 322 - 272
max_d = √2023 - 25 - 1024 - 729
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 322 - 282
max_d = √2023 - 25 - 1024 - 784
max_d = √190
max_d = 13.78404875209
Since max_d = 13.78404875209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 322 - 292
max_d = √2023 - 25 - 1024 - 841
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 322 - 302
max_d = √2023 - 25 - 1024 - 900
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 322 - 312
max_d = √2023 - 25 - 1024 - 961
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 332)
max_c = Floor(√2023 - 25 - 1089)
max_c = Floor(√909)
max_c = Floor(30.149626863363)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 332)/2 = 454.5
When min_c = 22, then it is c2 = 484 ≥ 454.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 332 - 222
max_d = √2023 - 25 - 1089 - 484
max_d = √425
max_d = 20.615528128088
Since max_d = 20.615528128088 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 332 - 232
max_d = √2023 - 25 - 1089 - 529
max_d = √380
max_d = 19.493588689618
Since max_d = 19.493588689618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 332 - 242
max_d = √2023 - 25 - 1089 - 576
max_d = √333
max_d = 18.248287590895
Since max_d = 18.248287590895 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 332 - 252
max_d = √2023 - 25 - 1089 - 625
max_d = √284
max_d = 16.852299546353
Since max_d = 16.852299546353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 332 - 262
max_d = √2023 - 25 - 1089 - 676
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 332 - 272
max_d = √2023 - 25 - 1089 - 729
max_d = √180
max_d = 13.416407864999
Since max_d = 13.416407864999 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 332 - 282
max_d = √2023 - 25 - 1089 - 784
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 332 - 292
max_d = √2023 - 25 - 1089 - 841
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 332 - 302
max_d = √2023 - 25 - 1089 - 900
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (5, 33, 30, 3) is an integer solution proven below
52 + 332 + 302 + 32 → 25 + 1089 + 900 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 342)
max_c = Floor(√2023 - 25 - 1156)
max_c = Floor(√842)
max_c = Floor(29.017236257094)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 342)/2 = 421
When min_c = 21, then it is c2 = 441 ≥ 421, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 342 - 212
max_d = √2023 - 25 - 1156 - 441
max_d = √401
max_d = 20.024984394501
Since max_d = 20.024984394501 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 342 - 222
max_d = √2023 - 25 - 1156 - 484
max_d = √358
max_d = 18.920887928425
Since max_d = 18.920887928425 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 342 - 232
max_d = √2023 - 25 - 1156 - 529
max_d = √313
max_d = 17.691806012954
Since max_d = 17.691806012954 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 342 - 242
max_d = √2023 - 25 - 1156 - 576
max_d = √266
max_d = 16.3095064303
Since max_d = 16.3095064303 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 342 - 252
max_d = √2023 - 25 - 1156 - 625
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 342 - 262
max_d = √2023 - 25 - 1156 - 676
max_d = √166
max_d = 12.884098726725
Since max_d = 12.884098726725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 342 - 272
max_d = √2023 - 25 - 1156 - 729
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 342 - 282
max_d = √2023 - 25 - 1156 - 784
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 342 - 292
max_d = √2023 - 25 - 1156 - 841
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (5, 34, 29, 1) is an integer solution proven below
52 + 342 + 292 + 12 → 25 + 1156 + 841 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 352)
max_c = Floor(√2023 - 25 - 1225)
max_c = Floor(√773)
max_c = Floor(27.802877548916)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 352)/2 = 386.5
When min_c = 20, then it is c2 = 400 ≥ 386.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 352 - 202
max_d = √2023 - 25 - 1225 - 400
max_d = √373
max_d = 19.313207915828
Since max_d = 19.313207915828 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 352 - 212
max_d = √2023 - 25 - 1225 - 441
max_d = √332
max_d = 18.220867158289
Since max_d = 18.220867158289 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 352 - 222
max_d = √2023 - 25 - 1225 - 484
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (5, 35, 22, 17) is an integer solution proven below
52 + 352 + 222 + 172 → 25 + 1225 + 484 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 352 - 232
max_d = √2023 - 25 - 1225 - 529
max_d = √244
max_d = 15.620499351813
Since max_d = 15.620499351813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 352 - 242
max_d = √2023 - 25 - 1225 - 576
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 352 - 252
max_d = √2023 - 25 - 1225 - 625
max_d = √148
max_d = 12.165525060596
Since max_d = 12.165525060596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 352 - 262
max_d = √2023 - 25 - 1225 - 676
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 352 - 272
max_d = √2023 - 25 - 1225 - 729
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 362)
max_c = Floor(√2023 - 25 - 1296)
max_c = Floor(√702)
max_c = Floor(26.495282598984)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 362)/2 = 351
When min_c = 19, then it is c2 = 361 ≥ 351, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 362 - 192
max_d = √2023 - 25 - 1296 - 361
max_d = √341
max_d = 18.466185312619
Since max_d = 18.466185312619 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 362 - 202
max_d = √2023 - 25 - 1296 - 400
max_d = √302
max_d = 17.378147196983
Since max_d = 17.378147196983 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 362 - 212
max_d = √2023 - 25 - 1296 - 441
max_d = √261
max_d = 16.155494421404
Since max_d = 16.155494421404 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 362 - 222
max_d = √2023 - 25 - 1296 - 484
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 362 - 232
max_d = √2023 - 25 - 1296 - 529
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 362 - 242
max_d = √2023 - 25 - 1296 - 576
max_d = √126
max_d = 11.224972160322
Since max_d = 11.224972160322 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 362 - 252
max_d = √2023 - 25 - 1296 - 625
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 362 - 262
max_d = √2023 - 25 - 1296 - 676
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 372)
max_c = Floor(√2023 - 25 - 1369)
max_c = Floor(√629)
max_c = Floor(25.079872407969)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 372)/2 = 314.5
When min_c = 18, then it is c2 = 324 ≥ 314.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 372 - 182
max_d = √2023 - 25 - 1369 - 324
max_d = √305
max_d = 17.464249196573
Since max_d = 17.464249196573 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 372 - 192
max_d = √2023 - 25 - 1369 - 361
max_d = √268
max_d = 16.370705543745
Since max_d = 16.370705543745 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 372 - 202
max_d = √2023 - 25 - 1369 - 400
max_d = √229
max_d = 15.132745950422
Since max_d = 15.132745950422 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 372 - 212
max_d = √2023 - 25 - 1369 - 441
max_d = √188
max_d = 13.711309200802
Since max_d = 13.711309200802 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 372 - 222
max_d = √2023 - 25 - 1369 - 484
max_d = √145
max_d = 12.041594578792
Since max_d = 12.041594578792 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 372 - 232
max_d = √2023 - 25 - 1369 - 529
max_d = √100
max_d = 10
Since max_d = 10, then (a, b, c, d) = (5, 37, 23, 10) is an integer solution proven below
52 + 372 + 232 + 102 → 25 + 1369 + 529 + 100 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 372 - 242
max_d = √2023 - 25 - 1369 - 576
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 372 - 252
max_d = √2023 - 25 - 1369 - 625
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (5, 37, 25, 2) is an integer solution proven below
52 + 372 + 252 + 22 → 25 + 1369 + 625 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 382)
max_c = Floor(√2023 - 25 - 1444)
max_c = Floor(√554)
max_c = Floor(23.53720459188)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 382)/2 = 277
When min_c = 17, then it is c2 = 289 ≥ 277, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 382 - 172
max_d = √2023 - 25 - 1444 - 289
max_d = √265
max_d = 16.2788205961
Since max_d = 16.2788205961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 382 - 182
max_d = √2023 - 25 - 1444 - 324
max_d = √230
max_d = 15.165750888103
Since max_d = 15.165750888103 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 382 - 192
max_d = √2023 - 25 - 1444 - 361
max_d = √193
max_d = 13.89244398945
Since max_d = 13.89244398945 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 382 - 202
max_d = √2023 - 25 - 1444 - 400
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 382 - 212
max_d = √2023 - 25 - 1444 - 441
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 382 - 222
max_d = √2023 - 25 - 1444 - 484
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 382 - 232
max_d = √2023 - 25 - 1444 - 529
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (5, 38, 23, 5) is an integer solution proven below
52 + 382 + 232 + 52 → 25 + 1444 + 529 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 392)
max_c = Floor(√2023 - 25 - 1521)
max_c = Floor(√477)
max_c = Floor(21.840329667842)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 392)/2 = 238.5
When min_c = 16, then it is c2 = 256 ≥ 238.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 392 - 162
max_d = √2023 - 25 - 1521 - 256
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 392 - 172
max_d = √2023 - 25 - 1521 - 289
max_d = √188
max_d = 13.711309200802
Since max_d = 13.711309200802 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 392 - 182
max_d = √2023 - 25 - 1521 - 324
max_d = √153
max_d = 12.369316876853
Since max_d = 12.369316876853 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 392 - 192
max_d = √2023 - 25 - 1521 - 361
max_d = √116
max_d = 10.770329614269
Since max_d = 10.770329614269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 392 - 202
max_d = √2023 - 25 - 1521 - 400
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 392 - 212
max_d = √2023 - 25 - 1521 - 441
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (5, 39, 21, 6) is an integer solution proven below
52 + 392 + 212 + 62 → 25 + 1521 + 441 + 36 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 402)
max_c = Floor(√2023 - 25 - 1600)
max_c = Floor(√398)
max_c = Floor(19.94993734326)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 402)/2 = 199
When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 402 - 152
max_d = √2023 - 25 - 1600 - 225
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 402 - 162
max_d = √2023 - 25 - 1600 - 256
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 402 - 172
max_d = √2023 - 25 - 1600 - 289
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 402 - 182
max_d = √2023 - 25 - 1600 - 324
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 402 - 192
max_d = √2023 - 25 - 1600 - 361
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 412)
max_c = Floor(√2023 - 25 - 1681)
max_c = Floor(√317)
max_c = Floor(17.804493814765)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 412)/2 = 158.5
When min_c = 13, then it is c2 = 169 ≥ 158.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 412 - 132
max_d = √2023 - 25 - 1681 - 169
max_d = √148
max_d = 12.165525060596
Since max_d = 12.165525060596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 412 - 142
max_d = √2023 - 25 - 1681 - 196
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (5, 41, 14, 11) is an integer solution proven below
52 + 412 + 142 + 112 → 25 + 1681 + 196 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 412 - 152
max_d = √2023 - 25 - 1681 - 225
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 412 - 162
max_d = √2023 - 25 - 1681 - 256
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 412 - 172
max_d = √2023 - 25 - 1681 - 289
max_d = √28
max_d = 5.2915026221292
Since max_d = 5.2915026221292 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 422)
max_c = Floor(√2023 - 25 - 1764)
max_c = Floor(√234)
max_c = Floor(15.297058540778)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 422)/2 = 117
When min_c = 11, then it is c2 = 121 ≥ 117, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 422 - 112
max_d = √2023 - 25 - 1764 - 121
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 422 - 122
max_d = √2023 - 25 - 1764 - 144
max_d = √90
max_d = 9.4868329805051
Since max_d = 9.4868329805051 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 422 - 132
max_d = √2023 - 25 - 1764 - 169
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 422 - 142
max_d = √2023 - 25 - 1764 - 196
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 422 - 152
max_d = √2023 - 25 - 1764 - 225
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (5, 42, 15, 3) is an integer solution proven below
52 + 422 + 152 + 32 → 25 + 1764 + 225 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 432)
max_c = Floor(√2023 - 25 - 1849)
max_c = Floor(√149)
max_c = Floor(12.206555615734)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 432)/2 = 74.5
When min_c = 9, then it is c2 = 81 ≥ 74.5, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 432 - 92
max_d = √2023 - 25 - 1849 - 81
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 432 - 102
max_d = √2023 - 25 - 1849 - 100
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (5, 43, 10, 7) is an integer solution proven below
52 + 432 + 102 + 72 → 25 + 1849 + 100 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 432 - 112
max_d = √2023 - 25 - 1849 - 121
max_d = √28
max_d = 5.2915026221292
Since max_d = 5.2915026221292 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 432 - 122
max_d = √2023 - 25 - 1849 - 144
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 52 - 442)
max_c = Floor(√2023 - 25 - 1936)
max_c = Floor(√62)
max_c = Floor(7.8740078740118)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 52 - 442)/2 = 31
When min_c = 6, then it is c2 = 36 ≥ 31, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 442 - 62
max_d = √2023 - 25 - 1936 - 36
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 52 - 442 - 72
max_d = √2023 - 25 - 1936 - 49
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 62)
max_b = Floor(√2023 - 36)
max_b = Floor(√1987)
max_b = Floor(44.575778176045)
max_b = 44
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 62)/3 = 662.33333333333
When min_b = 26, then it is b2 = 676 ≥ 662.33333333333, so min_b = 26
(26, 44)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 262)
max_c = Floor(√2023 - 36 - 676)
max_c = Floor(√1311)
max_c = Floor(36.207733980463)
max_c = 36
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 262)/2 = 655.5
When min_c = 26, then it is c2 = 676 ≥ 655.5, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 262 - 262
max_d = √2023 - 36 - 676 - 676
max_d = √635
max_d = 25.199206336708
Since max_d = 25.199206336708 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 262 - 272
max_d = √2023 - 36 - 676 - 729
max_d = √582
max_d = 24.12467616363
Since max_d = 24.12467616363 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 262 - 282
max_d = √2023 - 36 - 676 - 784
max_d = √527
max_d = 22.956480566498
Since max_d = 22.956480566498 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 262 - 292
max_d = √2023 - 36 - 676 - 841
max_d = √470
max_d = 21.679483388679
Since max_d = 21.679483388679 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 262 - 302
max_d = √2023 - 36 - 676 - 900
max_d = √411
max_d = 20.273134932713
Since max_d = 20.273134932713 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 262 - 312
max_d = √2023 - 36 - 676 - 961
max_d = √350
max_d = 18.70828693387
Since max_d = 18.70828693387 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 262 - 322
max_d = √2023 - 36 - 676 - 1024
max_d = √287
max_d = 16.941074346097
Since max_d = 16.941074346097 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 262 - 332
max_d = √2023 - 36 - 676 - 1089
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 262 - 342
max_d = √2023 - 36 - 676 - 1156
max_d = √155
max_d = 12.449899597989
Since max_d = 12.449899597989 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 262 - 352
max_d = √2023 - 36 - 676 - 1225
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 262 - 362
max_d = √2023 - 36 - 676 - 1296
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 272)
max_c = Floor(√2023 - 36 - 729)
max_c = Floor(√1258)
max_c = Floor(35.468295701936)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 272)/2 = 629
When min_c = 26, then it is c2 = 676 ≥ 629, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 272 - 262
max_d = √2023 - 36 - 729 - 676
max_d = √582
max_d = 24.12467616363
Since max_d = 24.12467616363 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 272 - 272
max_d = √2023 - 36 - 729 - 729
max_d = √529
max_d = 23
Since max_d = 23, then (a, b, c, d) = (6, 27, 27, 23) is an integer solution proven below
62 + 272 + 272 + 232 → 36 + 729 + 729 + 529 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 272 - 282
max_d = √2023 - 36 - 729 - 784
max_d = √474
max_d = 21.771541057077
Since max_d = 21.771541057077 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 272 - 292
max_d = √2023 - 36 - 729 - 841
max_d = √417
max_d = 20.420577856662
Since max_d = 20.420577856662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 272 - 302
max_d = √2023 - 36 - 729 - 900
max_d = √358
max_d = 18.920887928425
Since max_d = 18.920887928425 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 272 - 312
max_d = √2023 - 36 - 729 - 961
max_d = √297
max_d = 17.233687939614
Since max_d = 17.233687939614 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 272 - 322
max_d = √2023 - 36 - 729 - 1024
max_d = √234
max_d = 15.297058540778
Since max_d = 15.297058540778 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 272 - 332
max_d = √2023 - 36 - 729 - 1089
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (6, 27, 33, 13) is an integer solution proven below
62 + 272 + 332 + 132 → 36 + 729 + 1089 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 272 - 342
max_d = √2023 - 36 - 729 - 1156
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 272 - 352
max_d = √2023 - 36 - 729 - 1225
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 282)
max_c = Floor(√2023 - 36 - 784)
max_c = Floor(√1203)
max_c = Floor(34.684290392049)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 282)/2 = 601.5
When min_c = 25, then it is c2 = 625 ≥ 601.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 282 - 252
max_d = √2023 - 36 - 784 - 625
max_d = √578
max_d = 24.041630560343
Since max_d = 24.041630560343 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 282 - 262
max_d = √2023 - 36 - 784 - 676
max_d = √527
max_d = 22.956480566498
Since max_d = 22.956480566498 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 282 - 272
max_d = √2023 - 36 - 784 - 729
max_d = √474
max_d = 21.771541057077
Since max_d = 21.771541057077 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 282 - 282
max_d = √2023 - 36 - 784 - 784
max_d = √419
max_d = 20.469489490459
Since max_d = 20.469489490459 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 282 - 292
max_d = √2023 - 36 - 784 - 841
max_d = √362
max_d = 19.02629759044
Since max_d = 19.02629759044 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 282 - 302
max_d = √2023 - 36 - 784 - 900
max_d = √303
max_d = 17.406895185529
Since max_d = 17.406895185529 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 282 - 312
max_d = √2023 - 36 - 784 - 961
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 282 - 322
max_d = √2023 - 36 - 784 - 1024
max_d = √179
max_d = 13.37908816026
Since max_d = 13.37908816026 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 282 - 332
max_d = √2023 - 36 - 784 - 1089
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 282 - 342
max_d = √2023 - 36 - 784 - 1156
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 292)
max_c = Floor(√2023 - 36 - 841)
max_c = Floor(√1146)
max_c = Floor(33.852621759622)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 292)/2 = 573
When min_c = 24, then it is c2 = 576 ≥ 573, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 292 - 242
max_d = √2023 - 36 - 841 - 576
max_d = √570
max_d = 23.874672772627
Since max_d = 23.874672772627 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 292 - 252
max_d = √2023 - 36 - 841 - 625
max_d = √521
max_d = 22.825424421027
Since max_d = 22.825424421027 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 292 - 262
max_d = √2023 - 36 - 841 - 676
max_d = √470
max_d = 21.679483388679
Since max_d = 21.679483388679 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 292 - 272
max_d = √2023 - 36 - 841 - 729
max_d = √417
max_d = 20.420577856662
Since max_d = 20.420577856662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 292 - 282
max_d = √2023 - 36 - 841 - 784
max_d = √362
max_d = 19.02629759044
Since max_d = 19.02629759044 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 292 - 292
max_d = √2023 - 36 - 841 - 841
max_d = √305
max_d = 17.464249196573
Since max_d = 17.464249196573 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 292 - 302
max_d = √2023 - 36 - 841 - 900
max_d = √246
max_d = 15.684387141358
Since max_d = 15.684387141358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 292 - 312
max_d = √2023 - 36 - 841 - 961
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 292 - 322
max_d = √2023 - 36 - 841 - 1024
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 292 - 332
max_d = √2023 - 36 - 841 - 1089
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 302)
max_c = Floor(√2023 - 36 - 900)
max_c = Floor(√1087)
max_c = Floor(32.969683043669)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 302)/2 = 543.5
When min_c = 24, then it is c2 = 576 ≥ 543.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 302 - 242
max_d = √2023 - 36 - 900 - 576
max_d = √511
max_d = 22.605309110915
Since max_d = 22.605309110915 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 302 - 252
max_d = √2023 - 36 - 900 - 625
max_d = √462
max_d = 21.494185260205
Since max_d = 21.494185260205 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 302 - 262
max_d = √2023 - 36 - 900 - 676
max_d = √411
max_d = 20.273134932713
Since max_d = 20.273134932713 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 302 - 272
max_d = √2023 - 36 - 900 - 729
max_d = √358
max_d = 18.920887928425
Since max_d = 18.920887928425 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 302 - 282
max_d = √2023 - 36 - 900 - 784
max_d = √303
max_d = 17.406895185529
Since max_d = 17.406895185529 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 302 - 292
max_d = √2023 - 36 - 900 - 841
max_d = √246
max_d = 15.684387141358
Since max_d = 15.684387141358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 302 - 302
max_d = √2023 - 36 - 900 - 900
max_d = √187
max_d = 13.674794331177
Since max_d = 13.674794331177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 302 - 312
max_d = √2023 - 36 - 900 - 961
max_d = √126
max_d = 11.224972160322
Since max_d = 11.224972160322 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 302 - 322
max_d = √2023 - 36 - 900 - 1024
max_d = √63
max_d = 7.9372539331938
Since max_d = 7.9372539331938 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 312)
max_c = Floor(√2023 - 36 - 961)
max_c = Floor(√1026)
max_c = Floor(32.031234756094)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 312)/2 = 513
When min_c = 23, then it is c2 = 529 ≥ 513, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 312 - 232
max_d = √2023 - 36 - 961 - 529
max_d = √497
max_d = 22.293496809608
Since max_d = 22.293496809608 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 312 - 242
max_d = √2023 - 36 - 961 - 576
max_d = √450
max_d = 21.213203435596
Since max_d = 21.213203435596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 312 - 252
max_d = √2023 - 36 - 961 - 625
max_d = √401
max_d = 20.024984394501
Since max_d = 20.024984394501 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 312 - 262
max_d = √2023 - 36 - 961 - 676
max_d = √350
max_d = 18.70828693387
Since max_d = 18.70828693387 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 312 - 272
max_d = √2023 - 36 - 961 - 729
max_d = √297
max_d = 17.233687939614
Since max_d = 17.233687939614 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 312 - 282
max_d = √2023 - 36 - 961 - 784
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 312 - 292
max_d = √2023 - 36 - 961 - 841
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 312 - 302
max_d = √2023 - 36 - 961 - 900
max_d = √126
max_d = 11.224972160322
Since max_d = 11.224972160322 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 312 - 312
max_d = √2023 - 36 - 961 - 961
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 312 - 322
max_d = √2023 - 36 - 961 - 1024
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 322)
max_c = Floor(√2023 - 36 - 1024)
max_c = Floor(√963)
max_c = Floor(31.032241298366)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 322)/2 = 481.5
When min_c = 22, then it is c2 = 484 ≥ 481.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 322 - 222
max_d = √2023 - 36 - 1024 - 484
max_d = √479
max_d = 21.886068628239
Since max_d = 21.886068628239 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 322 - 232
max_d = √2023 - 36 - 1024 - 529
max_d = √434
max_d = 20.832666656
Since max_d = 20.832666656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 322 - 242
max_d = √2023 - 36 - 1024 - 576
max_d = √387
max_d = 19.672315572906
Since max_d = 19.672315572906 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 322 - 252
max_d = √2023 - 36 - 1024 - 625
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 322 - 262
max_d = √2023 - 36 - 1024 - 676
max_d = √287
max_d = 16.941074346097
Since max_d = 16.941074346097 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 322 - 272
max_d = √2023 - 36 - 1024 - 729
max_d = √234
max_d = 15.297058540778
Since max_d = 15.297058540778 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 322 - 282
max_d = √2023 - 36 - 1024 - 784
max_d = √179
max_d = 13.37908816026
Since max_d = 13.37908816026 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 322 - 292
max_d = √2023 - 36 - 1024 - 841
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 322 - 302
max_d = √2023 - 36 - 1024 - 900
max_d = √63
max_d = 7.9372539331938
Since max_d = 7.9372539331938 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 322 - 312
max_d = √2023 - 36 - 1024 - 961
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 332)
max_c = Floor(√2023 - 36 - 1089)
max_c = Floor(√898)
max_c = Floor(29.966648127543)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 332)/2 = 449
When min_c = 22, then it is c2 = 484 ≥ 449, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 332 - 222
max_d = √2023 - 36 - 1089 - 484
max_d = √414
max_d = 20.346989949376
Since max_d = 20.346989949376 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 332 - 232
max_d = √2023 - 36 - 1089 - 529
max_d = √369
max_d = 19.209372712299
Since max_d = 19.209372712299 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 332 - 242
max_d = √2023 - 36 - 1089 - 576
max_d = √322
max_d = 17.944358444926
Since max_d = 17.944358444926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 332 - 252
max_d = √2023 - 36 - 1089 - 625
max_d = √273
max_d = 16.522711641858
Since max_d = 16.522711641858 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 332 - 262
max_d = √2023 - 36 - 1089 - 676
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 332 - 272
max_d = √2023 - 36 - 1089 - 729
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (6, 33, 27, 13) is an integer solution proven below
62 + 332 + 272 + 132 → 36 + 1089 + 729 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 332 - 282
max_d = √2023 - 36 - 1089 - 784
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 332 - 292
max_d = √2023 - 36 - 1089 - 841
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 342)
max_c = Floor(√2023 - 36 - 1156)
max_c = Floor(√831)
max_c = Floor(28.827070610799)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 342)/2 = 415.5
When min_c = 21, then it is c2 = 441 ≥ 415.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 342 - 212
max_d = √2023 - 36 - 1156 - 441
max_d = √390
max_d = 19.748417658131
Since max_d = 19.748417658131 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 342 - 222
max_d = √2023 - 36 - 1156 - 484
max_d = √347
max_d = 18.627936010197
Since max_d = 18.627936010197 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 342 - 232
max_d = √2023 - 36 - 1156 - 529
max_d = √302
max_d = 17.378147196983
Since max_d = 17.378147196983 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 342 - 242
max_d = √2023 - 36 - 1156 - 576
max_d = √255
max_d = 15.968719422671
Since max_d = 15.968719422671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 342 - 252
max_d = √2023 - 36 - 1156 - 625
max_d = √206
max_d = 14.352700094407
Since max_d = 14.352700094407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 342 - 262
max_d = √2023 - 36 - 1156 - 676
max_d = √155
max_d = 12.449899597989
Since max_d = 12.449899597989 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 342 - 272
max_d = √2023 - 36 - 1156 - 729
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 342 - 282
max_d = √2023 - 36 - 1156 - 784
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 352)
max_c = Floor(√2023 - 36 - 1225)
max_c = Floor(√762)
max_c = Floor(27.604347483685)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 352)/2 = 381
When min_c = 20, then it is c2 = 400 ≥ 381, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 352 - 202
max_d = √2023 - 36 - 1225 - 400
max_d = √362
max_d = 19.02629759044
Since max_d = 19.02629759044 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 352 - 212
max_d = √2023 - 36 - 1225 - 441
max_d = √321
max_d = 17.916472867169
Since max_d = 17.916472867169 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 352 - 222
max_d = √2023 - 36 - 1225 - 484
max_d = √278
max_d = 16.673332000533
Since max_d = 16.673332000533 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 352 - 232
max_d = √2023 - 36 - 1225 - 529
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 352 - 242
max_d = √2023 - 36 - 1225 - 576
max_d = √186
max_d = 13.638181696986
Since max_d = 13.638181696986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 352 - 252
max_d = √2023 - 36 - 1225 - 625
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 352 - 262
max_d = √2023 - 36 - 1225 - 676
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 352 - 272
max_d = √2023 - 36 - 1225 - 729
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 362)
max_c = Floor(√2023 - 36 - 1296)
max_c = Floor(√691)
max_c = Floor(26.28687885619)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 362)/2 = 345.5
When min_c = 19, then it is c2 = 361 ≥ 345.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 362 - 192
max_d = √2023 - 36 - 1296 - 361
max_d = √330
max_d = 18.165902124585
Since max_d = 18.165902124585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 362 - 202
max_d = √2023 - 36 - 1296 - 400
max_d = √291
max_d = 17.058722109232
Since max_d = 17.058722109232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 362 - 212
max_d = √2023 - 36 - 1296 - 441
max_d = √250
max_d = 15.811388300842
Since max_d = 15.811388300842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 362 - 222
max_d = √2023 - 36 - 1296 - 484
max_d = √207
max_d = 14.387494569938
Since max_d = 14.387494569938 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 362 - 232
max_d = √2023 - 36 - 1296 - 529
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 362 - 242
max_d = √2023 - 36 - 1296 - 576
max_d = √115
max_d = 10.723805294764
Since max_d = 10.723805294764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 362 - 252
max_d = √2023 - 36 - 1296 - 625
max_d = √66
max_d = 8.124038404636
Since max_d = 8.124038404636 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 362 - 262
max_d = √2023 - 36 - 1296 - 676
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 372)
max_c = Floor(√2023 - 36 - 1369)
max_c = Floor(√618)
max_c = Floor(24.859605789312)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 372)/2 = 309
When min_c = 18, then it is c2 = 324 ≥ 309, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 372 - 182
max_d = √2023 - 36 - 1369 - 324
max_d = √294
max_d = 17.146428199482
Since max_d = 17.146428199482 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 372 - 192
max_d = √2023 - 36 - 1369 - 361
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 372 - 202
max_d = √2023 - 36 - 1369 - 400
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 372 - 212
max_d = √2023 - 36 - 1369 - 441
max_d = √177
max_d = 13.30413469565
Since max_d = 13.30413469565 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 372 - 222
max_d = √2023 - 36 - 1369 - 484
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 372 - 232
max_d = √2023 - 36 - 1369 - 529
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 372 - 242
max_d = √2023 - 36 - 1369 - 576
max_d = √42
max_d = 6.4807406984079
Since max_d = 6.4807406984079 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 382)
max_c = Floor(√2023 - 36 - 1444)
max_c = Floor(√543)
max_c = Floor(23.302360395462)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 382)/2 = 271.5
When min_c = 17, then it is c2 = 289 ≥ 271.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 382 - 172
max_d = √2023 - 36 - 1444 - 289
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 382 - 182
max_d = √2023 - 36 - 1444 - 324
max_d = √219
max_d = 14.798648586949
Since max_d = 14.798648586949 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 382 - 192
max_d = √2023 - 36 - 1444 - 361
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 382 - 202
max_d = √2023 - 36 - 1444 - 400
max_d = √143
max_d = 11.958260743101
Since max_d = 11.958260743101 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 382 - 212
max_d = √2023 - 36 - 1444 - 441
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 382 - 222
max_d = √2023 - 36 - 1444 - 484
max_d = √59
max_d = 7.6811457478686
Since max_d = 7.6811457478686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 382 - 232
max_d = √2023 - 36 - 1444 - 529
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 392)
max_c = Floor(√2023 - 36 - 1521)
max_c = Floor(√466)
max_c = Floor(21.587033144923)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 392)/2 = 233
When min_c = 16, then it is c2 = 256 ≥ 233, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 392 - 162
max_d = √2023 - 36 - 1521 - 256
max_d = √210
max_d = 14.491376746189
Since max_d = 14.491376746189 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 392 - 172
max_d = √2023 - 36 - 1521 - 289
max_d = √177
max_d = 13.30413469565
Since max_d = 13.30413469565 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 392 - 182
max_d = √2023 - 36 - 1521 - 324
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 392 - 192
max_d = √2023 - 36 - 1521 - 361
max_d = √105
max_d = 10.24695076596
Since max_d = 10.24695076596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 392 - 202
max_d = √2023 - 36 - 1521 - 400
max_d = √66
max_d = 8.124038404636
Since max_d = 8.124038404636 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 392 - 212
max_d = √2023 - 36 - 1521 - 441
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (6, 39, 21, 5) is an integer solution proven below
62 + 392 + 212 + 52 → 36 + 1521 + 441 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 402)
max_c = Floor(√2023 - 36 - 1600)
max_c = Floor(√387)
max_c = Floor(19.672315572906)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 402)/2 = 193.5
When min_c = 14, then it is c2 = 196 ≥ 193.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 402 - 142
max_d = √2023 - 36 - 1600 - 196
max_d = √191
max_d = 13.820274961085
Since max_d = 13.820274961085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 402 - 152
max_d = √2023 - 36 - 1600 - 225
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 402 - 162
max_d = √2023 - 36 - 1600 - 256
max_d = √131
max_d = 11.44552314226
Since max_d = 11.44552314226 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 402 - 172
max_d = √2023 - 36 - 1600 - 289
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 402 - 182
max_d = √2023 - 36 - 1600 - 324
max_d = √63
max_d = 7.9372539331938
Since max_d = 7.9372539331938 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 402 - 192
max_d = √2023 - 36 - 1600 - 361
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 412)
max_c = Floor(√2023 - 36 - 1681)
max_c = Floor(√306)
max_c = Floor(17.492855684536)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 412)/2 = 153
When min_c = 13, then it is c2 = 169 ≥ 153, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 412 - 132
max_d = √2023 - 36 - 1681 - 169
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 412 - 142
max_d = √2023 - 36 - 1681 - 196
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 412 - 152
max_d = √2023 - 36 - 1681 - 225
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (6, 41, 15, 9) is an integer solution proven below
62 + 412 + 152 + 92 → 36 + 1681 + 225 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 412 - 162
max_d = √2023 - 36 - 1681 - 256
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 412 - 172
max_d = √2023 - 36 - 1681 - 289
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 422)
max_c = Floor(√2023 - 36 - 1764)
max_c = Floor(√223)
max_c = Floor(14.933184523068)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 422)/2 = 111.5
When min_c = 11, then it is c2 = 121 ≥ 111.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 422 - 112
max_d = √2023 - 36 - 1764 - 121
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 422 - 122
max_d = √2023 - 36 - 1764 - 144
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 422 - 132
max_d = √2023 - 36 - 1764 - 169
max_d = √54
max_d = 7.3484692283495
Since max_d = 7.3484692283495 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 422 - 142
max_d = √2023 - 36 - 1764 - 196
max_d = √27
max_d = 5.1961524227066
Since max_d = 5.1961524227066 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 432)
max_c = Floor(√2023 - 36 - 1849)
max_c = Floor(√138)
max_c = Floor(11.747340124471)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 432)/2 = 69
When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 432 - 92
max_d = √2023 - 36 - 1849 - 81
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 432 - 102
max_d = √2023 - 36 - 1849 - 100
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 432 - 112
max_d = √2023 - 36 - 1849 - 121
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 62 - 442)
max_c = Floor(√2023 - 36 - 1936)
max_c = Floor(√51)
max_c = Floor(7.1414284285429)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 62 - 442)/2 = 25.5
When min_c = 6, then it is c2 = 36 ≥ 25.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 442 - 62
max_d = √2023 - 36 - 1936 - 36
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 62 - 442 - 72
max_d = √2023 - 36 - 1936 - 49
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 72)
max_b = Floor(√2023 - 49)
max_b = Floor(√1974)
max_b = Floor(44.429719783046)
max_b = 44
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 72)/3 = 658
When min_b = 26, then it is b2 = 676 ≥ 658, so min_b = 26
(26, 44)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 262)
max_c = Floor(√2023 - 49 - 676)
max_c = Floor(√1298)
max_c = Floor(36.027767069304)
max_c = 36
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 262)/2 = 649
When min_c = 26, then it is c2 = 676 ≥ 649, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 262 - 262
max_d = √2023 - 49 - 676 - 676
max_d = √622
max_d = 24.93992782668
Since max_d = 24.93992782668 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 262 - 272
max_d = √2023 - 49 - 676 - 729
max_d = √569
max_d = 23.853720883753
Since max_d = 23.853720883753 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 262 - 282
max_d = √2023 - 49 - 676 - 784
max_d = √514
max_d = 22.671568097509
Since max_d = 22.671568097509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 262 - 292
max_d = √2023 - 49 - 676 - 841
max_d = √457
max_d = 21.377558326432
Since max_d = 21.377558326432 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 262 - 302
max_d = √2023 - 49 - 676 - 900
max_d = √398
max_d = 19.94993734326
Since max_d = 19.94993734326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 262 - 312
max_d = √2023 - 49 - 676 - 961
max_d = √337
max_d = 18.357559750686
Since max_d = 18.357559750686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 262 - 322
max_d = √2023 - 49 - 676 - 1024
max_d = √274
max_d = 16.552945357247
Since max_d = 16.552945357247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 262 - 332
max_d = √2023 - 49 - 676 - 1089
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 262 - 342
max_d = √2023 - 49 - 676 - 1156
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 262 - 352
max_d = √2023 - 49 - 676 - 1225
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 262 - 362
max_d = √2023 - 49 - 676 - 1296
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 272)
max_c = Floor(√2023 - 49 - 729)
max_c = Floor(√1245)
max_c = Floor(35.284557528755)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 272)/2 = 622.5
When min_c = 25, then it is c2 = 625 ≥ 622.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 272 - 252
max_d = √2023 - 49 - 729 - 625
max_d = √620
max_d = 24.899799195977
Since max_d = 24.899799195977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 272 - 262
max_d = √2023 - 49 - 729 - 676
max_d = √569
max_d = 23.853720883753
Since max_d = 23.853720883753 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 272 - 272
max_d = √2023 - 49 - 729 - 729
max_d = √516
max_d = 22.715633383201
Since max_d = 22.715633383201 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 272 - 282
max_d = √2023 - 49 - 729 - 784
max_d = √461
max_d = 21.470910553584
Since max_d = 21.470910553584 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 272 - 292
max_d = √2023 - 49 - 729 - 841
max_d = √404
max_d = 20.099751242242
Since max_d = 20.099751242242 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 272 - 302
max_d = √2023 - 49 - 729 - 900
max_d = √345
max_d = 18.574175621007
Since max_d = 18.574175621007 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 272 - 312
max_d = √2023 - 49 - 729 - 961
max_d = √284
max_d = 16.852299546353
Since max_d = 16.852299546353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 272 - 322
max_d = √2023 - 49 - 729 - 1024
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 272 - 332
max_d = √2023 - 49 - 729 - 1089
max_d = √156
max_d = 12.489995996797
Since max_d = 12.489995996797 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 272 - 342
max_d = √2023 - 49 - 729 - 1156
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 272 - 352
max_d = √2023 - 49 - 729 - 1225
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 282)
max_c = Floor(√2023 - 49 - 784)
max_c = Floor(√1190)
max_c = Floor(34.496376621321)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 282)/2 = 595
When min_c = 25, then it is c2 = 625 ≥ 595, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 282 - 252
max_d = √2023 - 49 - 784 - 625
max_d = √565
max_d = 23.769728648009
Since max_d = 23.769728648009 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 282 - 262
max_d = √2023 - 49 - 784 - 676
max_d = √514
max_d = 22.671568097509
Since max_d = 22.671568097509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 282 - 272
max_d = √2023 - 49 - 784 - 729
max_d = √461
max_d = 21.470910553584
Since max_d = 21.470910553584 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 282 - 282
max_d = √2023 - 49 - 784 - 784
max_d = √406
max_d = 20.14944167961
Since max_d = 20.14944167961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 282 - 292
max_d = √2023 - 49 - 784 - 841
max_d = √349
max_d = 18.681541692269
Since max_d = 18.681541692269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 282 - 302
max_d = √2023 - 49 - 784 - 900
max_d = √290
max_d = 17.029386365926
Since max_d = 17.029386365926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 282 - 312
max_d = √2023 - 49 - 784 - 961
max_d = √229
max_d = 15.132745950422
Since max_d = 15.132745950422 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 282 - 322
max_d = √2023 - 49 - 784 - 1024
max_d = √166
max_d = 12.884098726725
Since max_d = 12.884098726725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 282 - 332
max_d = √2023 - 49 - 784 - 1089
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 282 - 342
max_d = √2023 - 49 - 784 - 1156
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 292)
max_c = Floor(√2023 - 49 - 841)
max_c = Floor(√1133)
max_c = Floor(33.660065359414)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 292)/2 = 566.5
When min_c = 24, then it is c2 = 576 ≥ 566.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 292 - 242
max_d = √2023 - 49 - 841 - 576
max_d = √557
max_d = 23.600847442412
Since max_d = 23.600847442412 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 292 - 252
max_d = √2023 - 49 - 841 - 625
max_d = √508
max_d = 22.538855339169
Since max_d = 22.538855339169 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 292 - 262
max_d = √2023 - 49 - 841 - 676
max_d = √457
max_d = 21.377558326432
Since max_d = 21.377558326432 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 292 - 272
max_d = √2023 - 49 - 841 - 729
max_d = √404
max_d = 20.099751242242
Since max_d = 20.099751242242 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 292 - 282
max_d = √2023 - 49 - 841 - 784
max_d = √349
max_d = 18.681541692269
Since max_d = 18.681541692269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 292 - 292
max_d = √2023 - 49 - 841 - 841
max_d = √292
max_d = 17.088007490635
Since max_d = 17.088007490635 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 292 - 302
max_d = √2023 - 49 - 841 - 900
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 292 - 312
max_d = √2023 - 49 - 841 - 961
max_d = √172
max_d = 13.114877048604
Since max_d = 13.114877048604 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 292 - 322
max_d = √2023 - 49 - 841 - 1024
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 292 - 332
max_d = √2023 - 49 - 841 - 1089
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 302)
max_c = Floor(√2023 - 49 - 900)
max_c = Floor(√1074)
max_c = Floor(32.771939216348)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 302)/2 = 537
When min_c = 24, then it is c2 = 576 ≥ 537, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 302 - 242
max_d = √2023 - 49 - 900 - 576
max_d = √498
max_d = 22.315913604421
Since max_d = 22.315913604421 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 302 - 252
max_d = √2023 - 49 - 900 - 625
max_d = √449
max_d = 21.189620100417
Since max_d = 21.189620100417 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 302 - 262
max_d = √2023 - 49 - 900 - 676
max_d = √398
max_d = 19.94993734326
Since max_d = 19.94993734326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 302 - 272
max_d = √2023 - 49 - 900 - 729
max_d = √345
max_d = 18.574175621007
Since max_d = 18.574175621007 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 302 - 282
max_d = √2023 - 49 - 900 - 784
max_d = √290
max_d = 17.029386365926
Since max_d = 17.029386365926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 302 - 292
max_d = √2023 - 49 - 900 - 841
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 302 - 302
max_d = √2023 - 49 - 900 - 900
max_d = √174
max_d = 13.190905958273
Since max_d = 13.190905958273 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 302 - 312
max_d = √2023 - 49 - 900 - 961
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 302 - 322
max_d = √2023 - 49 - 900 - 1024
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 312)
max_c = Floor(√2023 - 49 - 961)
max_c = Floor(√1013)
max_c = Floor(31.827660925679)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 312)/2 = 506.5
When min_c = 23, then it is c2 = 529 ≥ 506.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 312 - 232
max_d = √2023 - 49 - 961 - 529
max_d = √484
max_d = 22
Since max_d = 22, then (a, b, c, d) = (7, 31, 23, 22) is an integer solution proven below
72 + 312 + 232 + 222 → 49 + 961 + 529 + 484 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 312 - 242
max_d = √2023 - 49 - 961 - 576
max_d = √437
max_d = 20.904544960367
Since max_d = 20.904544960367 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 312 - 252
max_d = √2023 - 49 - 961 - 625
max_d = √388
max_d = 19.697715603592
Since max_d = 19.697715603592 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 312 - 262
max_d = √2023 - 49 - 961 - 676
max_d = √337
max_d = 18.357559750686
Since max_d = 18.357559750686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 312 - 272
max_d = √2023 - 49 - 961 - 729
max_d = √284
max_d = 16.852299546353
Since max_d = 16.852299546353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 312 - 282
max_d = √2023 - 49 - 961 - 784
max_d = √229
max_d = 15.132745950422
Since max_d = 15.132745950422 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 312 - 292
max_d = √2023 - 49 - 961 - 841
max_d = √172
max_d = 13.114877048604
Since max_d = 13.114877048604 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 312 - 302
max_d = √2023 - 49 - 961 - 900
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 312 - 312
max_d = √2023 - 49 - 961 - 961
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 322)
max_c = Floor(√2023 - 49 - 1024)
max_c = Floor(√950)
max_c = Floor(30.822070014845)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 322)/2 = 475
When min_c = 22, then it is c2 = 484 ≥ 475, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 322 - 222
max_d = √2023 - 49 - 1024 - 484
max_d = √466
max_d = 21.587033144923
Since max_d = 21.587033144923 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 322 - 232
max_d = √2023 - 49 - 1024 - 529
max_d = √421
max_d = 20.518284528683
Since max_d = 20.518284528683 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 322 - 242
max_d = √2023 - 49 - 1024 - 576
max_d = √374
max_d = 19.339079605814
Since max_d = 19.339079605814 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 322 - 252
max_d = √2023 - 49 - 1024 - 625
max_d = √325
max_d = 18.02775637732
Since max_d = 18.02775637732 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 322 - 262
max_d = √2023 - 49 - 1024 - 676
max_d = √274
max_d = 16.552945357247
Since max_d = 16.552945357247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 322 - 272
max_d = √2023 - 49 - 1024 - 729
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 322 - 282
max_d = √2023 - 49 - 1024 - 784
max_d = √166
max_d = 12.884098726725
Since max_d = 12.884098726725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 322 - 292
max_d = √2023 - 49 - 1024 - 841
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 322 - 302
max_d = √2023 - 49 - 1024 - 900
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 332)
max_c = Floor(√2023 - 49 - 1089)
max_c = Floor(√885)
max_c = Floor(29.748949561287)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 332)/2 = 442.5
When min_c = 22, then it is c2 = 484 ≥ 442.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 332 - 222
max_d = √2023 - 49 - 1089 - 484
max_d = √401
max_d = 20.024984394501
Since max_d = 20.024984394501 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 332 - 232
max_d = √2023 - 49 - 1089 - 529
max_d = √356
max_d = 18.867962264113
Since max_d = 18.867962264113 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 332 - 242
max_d = √2023 - 49 - 1089 - 576
max_d = √309
max_d = 17.578395831247
Since max_d = 17.578395831247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 332 - 252
max_d = √2023 - 49 - 1089 - 625
max_d = √260
max_d = 16.124515496597
Since max_d = 16.124515496597 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 332 - 262
max_d = √2023 - 49 - 1089 - 676
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 332 - 272
max_d = √2023 - 49 - 1089 - 729
max_d = √156
max_d = 12.489995996797
Since max_d = 12.489995996797 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 332 - 282
max_d = √2023 - 49 - 1089 - 784
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 332 - 292
max_d = √2023 - 49 - 1089 - 841
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 342)
max_c = Floor(√2023 - 49 - 1156)
max_c = Floor(√818)
max_c = Floor(28.60069929215)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 342)/2 = 409
When min_c = 21, then it is c2 = 441 ≥ 409, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 342 - 212
max_d = √2023 - 49 - 1156 - 441
max_d = √377
max_d = 19.416487838948
Since max_d = 19.416487838948 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 342 - 222
max_d = √2023 - 49 - 1156 - 484
max_d = √334
max_d = 18.275666882497
Since max_d = 18.275666882497 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 342 - 232
max_d = √2023 - 49 - 1156 - 529
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (7, 34, 23, 17) is an integer solution proven below
72 + 342 + 232 + 172 → 49 + 1156 + 529 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 342 - 242
max_d = √2023 - 49 - 1156 - 576
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 342 - 252
max_d = √2023 - 49 - 1156 - 625
max_d = √193
max_d = 13.89244398945
Since max_d = 13.89244398945 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 342 - 262
max_d = √2023 - 49 - 1156 - 676
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 342 - 272
max_d = √2023 - 49 - 1156 - 729
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 342 - 282
max_d = √2023 - 49 - 1156 - 784
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 352)
max_c = Floor(√2023 - 49 - 1225)
max_c = Floor(√749)
max_c = Floor(27.367864366808)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 352)/2 = 374.5
When min_c = 20, then it is c2 = 400 ≥ 374.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 352 - 202
max_d = √2023 - 49 - 1225 - 400
max_d = √349
max_d = 18.681541692269
Since max_d = 18.681541692269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 352 - 212
max_d = √2023 - 49 - 1225 - 441
max_d = √308
max_d = 17.549928774784
Since max_d = 17.549928774784 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 352 - 222
max_d = √2023 - 49 - 1225 - 484
max_d = √265
max_d = 16.2788205961
Since max_d = 16.2788205961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 352 - 232
max_d = √2023 - 49 - 1225 - 529
max_d = √220
max_d = 14.832396974191
Since max_d = 14.832396974191 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 352 - 242
max_d = √2023 - 49 - 1225 - 576
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 352 - 252
max_d = √2023 - 49 - 1225 - 625
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 352 - 262
max_d = √2023 - 49 - 1225 - 676
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 352 - 272
max_d = √2023 - 49 - 1225 - 729
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 362)
max_c = Floor(√2023 - 49 - 1296)
max_c = Floor(√678)
max_c = Floor(26.038433132583)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 362)/2 = 339
When min_c = 19, then it is c2 = 361 ≥ 339, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 362 - 192
max_d = √2023 - 49 - 1296 - 361
max_d = √317
max_d = 17.804493814765
Since max_d = 17.804493814765 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 362 - 202
max_d = √2023 - 49 - 1296 - 400
max_d = √278
max_d = 16.673332000533
Since max_d = 16.673332000533 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 362 - 212
max_d = √2023 - 49 - 1296 - 441
max_d = √237
max_d = 15.394804318341
Since max_d = 15.394804318341 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 362 - 222
max_d = √2023 - 49 - 1296 - 484
max_d = √194
max_d = 13.928388277184
Since max_d = 13.928388277184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 362 - 232
max_d = √2023 - 49 - 1296 - 529
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 362 - 242
max_d = √2023 - 49 - 1296 - 576
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 362 - 252
max_d = √2023 - 49 - 1296 - 625
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 362 - 262
max_d = √2023 - 49 - 1296 - 676
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 372)
max_c = Floor(√2023 - 49 - 1369)
max_c = Floor(√605)
max_c = Floor(24.596747752498)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 372)/2 = 302.5
When min_c = 18, then it is c2 = 324 ≥ 302.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 372 - 182
max_d = √2023 - 49 - 1369 - 324
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 372 - 192
max_d = √2023 - 49 - 1369 - 361
max_d = √244
max_d = 15.620499351813
Since max_d = 15.620499351813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 372 - 202
max_d = √2023 - 49 - 1369 - 400
max_d = √205
max_d = 14.317821063276
Since max_d = 14.317821063276 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 372 - 212
max_d = √2023 - 49 - 1369 - 441
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 372 - 222
max_d = √2023 - 49 - 1369 - 484
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (7, 37, 22, 11) is an integer solution proven below
72 + 372 + 222 + 112 → 49 + 1369 + 484 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 372 - 232
max_d = √2023 - 49 - 1369 - 529
max_d = √76
max_d = 8.7177978870813
Since max_d = 8.7177978870813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 372 - 242
max_d = √2023 - 49 - 1369 - 576
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 382)
max_c = Floor(√2023 - 49 - 1444)
max_c = Floor(√530)
max_c = Floor(23.021728866443)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 382)/2 = 265
When min_c = 17, then it is c2 = 289 ≥ 265, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 382 - 172
max_d = √2023 - 49 - 1444 - 289
max_d = √241
max_d = 15.52417469626
Since max_d = 15.52417469626 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 382 - 182
max_d = √2023 - 49 - 1444 - 324
max_d = √206
max_d = 14.352700094407
Since max_d = 14.352700094407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 382 - 192
max_d = √2023 - 49 - 1444 - 361
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (7, 38, 19, 13) is an integer solution proven below
72 + 382 + 192 + 132 → 49 + 1444 + 361 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 382 - 202
max_d = √2023 - 49 - 1444 - 400
max_d = √130
max_d = 11.401754250991
Since max_d = 11.401754250991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 382 - 212
max_d = √2023 - 49 - 1444 - 441
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 382 - 222
max_d = √2023 - 49 - 1444 - 484
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 382 - 232
max_d = √2023 - 49 - 1444 - 529
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (7, 38, 23, 1) is an integer solution proven below
72 + 382 + 232 + 12 → 49 + 1444 + 529 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 392)
max_c = Floor(√2023 - 49 - 1521)
max_c = Floor(√453)
max_c = Floor(21.283796653793)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 392)/2 = 226.5
When min_c = 16, then it is c2 = 256 ≥ 226.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 392 - 162
max_d = √2023 - 49 - 1521 - 256
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 392 - 172
max_d = √2023 - 49 - 1521 - 289
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 392 - 182
max_d = √2023 - 49 - 1521 - 324
max_d = √129
max_d = 11.357816691601
Since max_d = 11.357816691601 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 392 - 192
max_d = √2023 - 49 - 1521 - 361
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 392 - 202
max_d = √2023 - 49 - 1521 - 400
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 392 - 212
max_d = √2023 - 49 - 1521 - 441
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 402)
max_c = Floor(√2023 - 49 - 1600)
max_c = Floor(√374)
max_c = Floor(19.339079605814)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 402)/2 = 187
When min_c = 14, then it is c2 = 196 ≥ 187, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 402 - 142
max_d = √2023 - 49 - 1600 - 196
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 402 - 152
max_d = √2023 - 49 - 1600 - 225
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 402 - 162
max_d = √2023 - 49 - 1600 - 256
max_d = √118
max_d = 10.8627804912
Since max_d = 10.8627804912 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 402 - 172
max_d = √2023 - 49 - 1600 - 289
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 402 - 182
max_d = √2023 - 49 - 1600 - 324
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 402 - 192
max_d = √2023 - 49 - 1600 - 361
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 412)
max_c = Floor(√2023 - 49 - 1681)
max_c = Floor(√293)
max_c = Floor(17.117242768624)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 412)/2 = 146.5
When min_c = 13, then it is c2 = 169 ≥ 146.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 412 - 132
max_d = √2023 - 49 - 1681 - 169
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 412 - 142
max_d = √2023 - 49 - 1681 - 196
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 412 - 152
max_d = √2023 - 49 - 1681 - 225
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 412 - 162
max_d = √2023 - 49 - 1681 - 256
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 412 - 172
max_d = √2023 - 49 - 1681 - 289
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (7, 41, 17, 2) is an integer solution proven below
72 + 412 + 172 + 22 → 49 + 1681 + 289 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 422)
max_c = Floor(√2023 - 49 - 1764)
max_c = Floor(√210)
max_c = Floor(14.491376746189)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 422)/2 = 105
When min_c = 11, then it is c2 = 121 ≥ 105, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 422 - 112
max_d = √2023 - 49 - 1764 - 121
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 422 - 122
max_d = √2023 - 49 - 1764 - 144
max_d = √66
max_d = 8.124038404636
Since max_d = 8.124038404636 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 422 - 132
max_d = √2023 - 49 - 1764 - 169
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 422 - 142
max_d = √2023 - 49 - 1764 - 196
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 432)
max_c = Floor(√2023 - 49 - 1849)
max_c = Floor(√125)
max_c = Floor(11.180339887499)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 432)/2 = 62.5
When min_c = 8, then it is c2 = 64 ≥ 62.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 432 - 82
max_d = √2023 - 49 - 1849 - 64
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 432 - 92
max_d = √2023 - 49 - 1849 - 81
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 432 - 102
max_d = √2023 - 49 - 1849 - 100
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (7, 43, 10, 5) is an integer solution proven below
72 + 432 + 102 + 52 → 49 + 1849 + 100 + 25 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 432 - 112
max_d = √2023 - 49 - 1849 - 121
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (7, 43, 11, 2) is an integer solution proven below
72 + 432 + 112 + 22 → 49 + 1849 + 121 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 72 - 442)
max_c = Floor(√2023 - 49 - 1936)
max_c = Floor(√38)
max_c = Floor(6.164414002969)
max_c = 6
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 72 - 442)/2 = 19
When min_c = 5, then it is c2 = 25 ≥ 19, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 442 - 52
max_d = √2023 - 49 - 1936 - 25
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 72 - 442 - 62
max_d = √2023 - 49 - 1936 - 36
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 82)
max_b = Floor(√2023 - 64)
max_b = Floor(√1959)
max_b = Floor(44.260591952661)
max_b = 44
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 82)/3 = 653
When min_b = 26, then it is b2 = 676 ≥ 653, so min_b = 26
(26, 44)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 262)
max_c = Floor(√2023 - 64 - 676)
max_c = Floor(√1283)
max_c = Floor(35.818989377145)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 262)/2 = 641.5
When min_c = 26, then it is c2 = 676 ≥ 641.5, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 262 - 262
max_d = √2023 - 64 - 676 - 676
max_d = √607
max_d = 24.63736998951
Since max_d = 24.63736998951 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 262 - 272
max_d = √2023 - 64 - 676 - 729
max_d = √554
max_d = 23.53720459188
Since max_d = 23.53720459188 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 262 - 282
max_d = √2023 - 64 - 676 - 784
max_d = √499
max_d = 22.338307903689
Since max_d = 22.338307903689 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 262 - 292
max_d = √2023 - 64 - 676 - 841
max_d = √442
max_d = 21.023796041629
Since max_d = 21.023796041629 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 262 - 302
max_d = √2023 - 64 - 676 - 900
max_d = √383
max_d = 19.570385790781
Since max_d = 19.570385790781 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 262 - 312
max_d = √2023 - 64 - 676 - 961
max_d = √322
max_d = 17.944358444926
Since max_d = 17.944358444926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 262 - 322
max_d = √2023 - 64 - 676 - 1024
max_d = √259
max_d = 16.093476939431
Since max_d = 16.093476939431 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 262 - 332
max_d = √2023 - 64 - 676 - 1089
max_d = √194
max_d = 13.928388277184
Since max_d = 13.928388277184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 262 - 342
max_d = √2023 - 64 - 676 - 1156
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 262 - 352
max_d = √2023 - 64 - 676 - 1225
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 272)
max_c = Floor(√2023 - 64 - 729)
max_c = Floor(√1230)
max_c = Floor(35.0713558335)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 272)/2 = 615
When min_c = 25, then it is c2 = 625 ≥ 615, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 272 - 252
max_d = √2023 - 64 - 729 - 625
max_d = √605
max_d = 24.596747752498
Since max_d = 24.596747752498 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 272 - 262
max_d = √2023 - 64 - 729 - 676
max_d = √554
max_d = 23.53720459188
Since max_d = 23.53720459188 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 272 - 272
max_d = √2023 - 64 - 729 - 729
max_d = √501
max_d = 22.383029285599
Since max_d = 22.383029285599 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 272 - 282
max_d = √2023 - 64 - 729 - 784
max_d = √446
max_d = 21.118712081943
Since max_d = 21.118712081943 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 272 - 292
max_d = √2023 - 64 - 729 - 841
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 272 - 302
max_d = √2023 - 64 - 729 - 900
max_d = √330
max_d = 18.165902124585
Since max_d = 18.165902124585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 272 - 312
max_d = √2023 - 64 - 729 - 961
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 272 - 322
max_d = √2023 - 64 - 729 - 1024
max_d = √206
max_d = 14.352700094407
Since max_d = 14.352700094407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 272 - 332
max_d = √2023 - 64 - 729 - 1089
max_d = √141
max_d = 11.874342087038
Since max_d = 11.874342087038 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 272 - 342
max_d = √2023 - 64 - 729 - 1156
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 272 - 352
max_d = √2023 - 64 - 729 - 1225
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 282)
max_c = Floor(√2023 - 64 - 784)
max_c = Floor(√1175)
max_c = Floor(34.278273002005)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 282)/2 = 587.5
When min_c = 25, then it is c2 = 625 ≥ 587.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 282 - 252
max_d = √2023 - 64 - 784 - 625
max_d = √550
max_d = 23.452078799117
Since max_d = 23.452078799117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 282 - 262
max_d = √2023 - 64 - 784 - 676
max_d = √499
max_d = 22.338307903689
Since max_d = 22.338307903689 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 282 - 272
max_d = √2023 - 64 - 784 - 729
max_d = √446
max_d = 21.118712081943
Since max_d = 21.118712081943 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 282 - 282
max_d = √2023 - 64 - 784 - 784
max_d = √391
max_d = 19.773719933285
Since max_d = 19.773719933285 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 282 - 292
max_d = √2023 - 64 - 784 - 841
max_d = √334
max_d = 18.275666882497
Since max_d = 18.275666882497 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 282 - 302
max_d = √2023 - 64 - 784 - 900
max_d = √275
max_d = 16.583123951777
Since max_d = 16.583123951777 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 282 - 312
max_d = √2023 - 64 - 784 - 961
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 282 - 322
max_d = √2023 - 64 - 784 - 1024
max_d = √151
max_d = 12.288205727445
Since max_d = 12.288205727445 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 282 - 332
max_d = √2023 - 64 - 784 - 1089
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 282 - 342
max_d = √2023 - 64 - 784 - 1156
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 292)
max_c = Floor(√2023 - 64 - 841)
max_c = Floor(√1118)
max_c = Floor(33.436506994601)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 292)/2 = 559
When min_c = 24, then it is c2 = 576 ≥ 559, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 292 - 242
max_d = √2023 - 64 - 841 - 576
max_d = √542
max_d = 23.280893453646
Since max_d = 23.280893453646 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 292 - 252
max_d = √2023 - 64 - 841 - 625
max_d = √493
max_d = 22.203603311175
Since max_d = 22.203603311175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 292 - 262
max_d = √2023 - 64 - 841 - 676
max_d = √442
max_d = 21.023796041629
Since max_d = 21.023796041629 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 292 - 272
max_d = √2023 - 64 - 841 - 729
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 292 - 282
max_d = √2023 - 64 - 841 - 784
max_d = √334
max_d = 18.275666882497
Since max_d = 18.275666882497 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 292 - 292
max_d = √2023 - 64 - 841 - 841
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 292 - 302
max_d = √2023 - 64 - 841 - 900
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 292 - 312
max_d = √2023 - 64 - 841 - 961
max_d = √157
max_d = 12.529964086142
Since max_d = 12.529964086142 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 292 - 322
max_d = √2023 - 64 - 841 - 1024
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 292 - 332
max_d = √2023 - 64 - 841 - 1089
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 302)
max_c = Floor(√2023 - 64 - 900)
max_c = Floor(√1059)
max_c = Floor(32.542280190546)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 302)/2 = 529.5
When min_c = 24, then it is c2 = 576 ≥ 529.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 302 - 242
max_d = √2023 - 64 - 900 - 576
max_d = √483
max_d = 21.977260975836
Since max_d = 21.977260975836 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 302 - 252
max_d = √2023 - 64 - 900 - 625
max_d = √434
max_d = 20.832666656
Since max_d = 20.832666656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 302 - 262
max_d = √2023 - 64 - 900 - 676
max_d = √383
max_d = 19.570385790781
Since max_d = 19.570385790781 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 302 - 272
max_d = √2023 - 64 - 900 - 729
max_d = √330
max_d = 18.165902124585
Since max_d = 18.165902124585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 302 - 282
max_d = √2023 - 64 - 900 - 784
max_d = √275
max_d = 16.583123951777
Since max_d = 16.583123951777 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 302 - 292
max_d = √2023 - 64 - 900 - 841
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 302 - 302
max_d = √2023 - 64 - 900 - 900
max_d = √159
max_d = 12.609520212918
Since max_d = 12.609520212918 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 302 - 312
max_d = √2023 - 64 - 900 - 961
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 302 - 322
max_d = √2023 - 64 - 900 - 1024
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 312)
max_c = Floor(√2023 - 64 - 961)
max_c = Floor(√998)
max_c = Floor(31.591137997863)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 312)/2 = 499
When min_c = 23, then it is c2 = 529 ≥ 499, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 312 - 232
max_d = √2023 - 64 - 961 - 529
max_d = √469
max_d = 21.656407827708
Since max_d = 21.656407827708 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 312 - 242
max_d = √2023 - 64 - 961 - 576
max_d = √422
max_d = 20.542638584174
Since max_d = 20.542638584174 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 312 - 252
max_d = √2023 - 64 - 961 - 625
max_d = √373
max_d = 19.313207915828
Since max_d = 19.313207915828 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 312 - 262
max_d = √2023 - 64 - 961 - 676
max_d = √322
max_d = 17.944358444926
Since max_d = 17.944358444926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 312 - 272
max_d = √2023 - 64 - 961 - 729
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 312 - 282
max_d = √2023 - 64 - 961 - 784
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 312 - 292
max_d = √2023 - 64 - 961 - 841
max_d = √157
max_d = 12.529964086142
Since max_d = 12.529964086142 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 312 - 302
max_d = √2023 - 64 - 961 - 900
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 312 - 312
max_d = √2023 - 64 - 961 - 961
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 322)
max_c = Floor(√2023 - 64 - 1024)
max_c = Floor(√935)
max_c = Floor(30.577769702841)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 322)/2 = 467.5
When min_c = 22, then it is c2 = 484 ≥ 467.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 322 - 222
max_d = √2023 - 64 - 1024 - 484
max_d = √451
max_d = 21.236760581595
Since max_d = 21.236760581595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 322 - 232
max_d = √2023 - 64 - 1024 - 529
max_d = √406
max_d = 20.14944167961
Since max_d = 20.14944167961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 322 - 242
max_d = √2023 - 64 - 1024 - 576
max_d = √359
max_d = 18.947295321496
Since max_d = 18.947295321496 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 322 - 252
max_d = √2023 - 64 - 1024 - 625
max_d = √310
max_d = 17.606816861659
Since max_d = 17.606816861659 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 322 - 262
max_d = √2023 - 64 - 1024 - 676
max_d = √259
max_d = 16.093476939431
Since max_d = 16.093476939431 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 322 - 272
max_d = √2023 - 64 - 1024 - 729
max_d = √206
max_d = 14.352700094407
Since max_d = 14.352700094407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 322 - 282
max_d = √2023 - 64 - 1024 - 784
max_d = √151
max_d = 12.288205727445
Since max_d = 12.288205727445 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 322 - 292
max_d = √2023 - 64 - 1024 - 841
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 322 - 302
max_d = √2023 - 64 - 1024 - 900
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 332)
max_c = Floor(√2023 - 64 - 1089)
max_c = Floor(√870)
max_c = Floor(29.495762407505)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 332)/2 = 435
When min_c = 21, then it is c2 = 441 ≥ 435, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 332 - 212
max_d = √2023 - 64 - 1089 - 441
max_d = √429
max_d = 20.712315177208
Since max_d = 20.712315177208 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 332 - 222
max_d = √2023 - 64 - 1089 - 484
max_d = √386
max_d = 19.646882704388
Since max_d = 19.646882704388 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 332 - 232
max_d = √2023 - 64 - 1089 - 529
max_d = √341
max_d = 18.466185312619
Since max_d = 18.466185312619 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 332 - 242
max_d = √2023 - 64 - 1089 - 576
max_d = √294
max_d = 17.146428199482
Since max_d = 17.146428199482 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 332 - 252
max_d = √2023 - 64 - 1089 - 625
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 332 - 262
max_d = √2023 - 64 - 1089 - 676
max_d = √194
max_d = 13.928388277184
Since max_d = 13.928388277184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 332 - 272
max_d = √2023 - 64 - 1089 - 729
max_d = √141
max_d = 11.874342087038
Since max_d = 11.874342087038 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 332 - 282
max_d = √2023 - 64 - 1089 - 784
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 332 - 292
max_d = √2023 - 64 - 1089 - 841
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 342)
max_c = Floor(√2023 - 64 - 1156)
max_c = Floor(√803)
max_c = Floor(28.33725463061)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 342)/2 = 401.5
When min_c = 21, then it is c2 = 441 ≥ 401.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 342 - 212
max_d = √2023 - 64 - 1156 - 441
max_d = √362
max_d = 19.02629759044
Since max_d = 19.02629759044 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 342 - 222
max_d = √2023 - 64 - 1156 - 484
max_d = √319
max_d = 17.860571099492
Since max_d = 17.860571099492 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 342 - 232
max_d = √2023 - 64 - 1156 - 529
max_d = √274
max_d = 16.552945357247
Since max_d = 16.552945357247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 342 - 242
max_d = √2023 - 64 - 1156 - 576
max_d = √227
max_d = 15.066519173319
Since max_d = 15.066519173319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 342 - 252
max_d = √2023 - 64 - 1156 - 625
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 342 - 262
max_d = √2023 - 64 - 1156 - 676
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 342 - 272
max_d = √2023 - 64 - 1156 - 729
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 342 - 282
max_d = √2023 - 64 - 1156 - 784
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 352)
max_c = Floor(√2023 - 64 - 1225)
max_c = Floor(√734)
max_c = Floor(27.092434368288)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 352)/2 = 367
When min_c = 20, then it is c2 = 400 ≥ 367, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 352 - 202
max_d = √2023 - 64 - 1225 - 400
max_d = √334
max_d = 18.275666882497
Since max_d = 18.275666882497 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 352 - 212
max_d = √2023 - 64 - 1225 - 441
max_d = √293
max_d = 17.117242768624
Since max_d = 17.117242768624 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 352 - 222
max_d = √2023 - 64 - 1225 - 484
max_d = √250
max_d = 15.811388300842
Since max_d = 15.811388300842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 352 - 232
max_d = √2023 - 64 - 1225 - 529
max_d = √205
max_d = 14.317821063276
Since max_d = 14.317821063276 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 352 - 242
max_d = √2023 - 64 - 1225 - 576
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 352 - 252
max_d = √2023 - 64 - 1225 - 625
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 352 - 262
max_d = √2023 - 64 - 1225 - 676
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 352 - 272
max_d = √2023 - 64 - 1225 - 729
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 362)
max_c = Floor(√2023 - 64 - 1296)
max_c = Floor(√663)
max_c = Floor(25.748786379167)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 362)/2 = 331.5
When min_c = 19, then it is c2 = 361 ≥ 331.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 362 - 192
max_d = √2023 - 64 - 1296 - 361
max_d = √302
max_d = 17.378147196983
Since max_d = 17.378147196983 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 362 - 202
max_d = √2023 - 64 - 1296 - 400
max_d = √263
max_d = 16.217274740227
Since max_d = 16.217274740227 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 362 - 212
max_d = √2023 - 64 - 1296 - 441
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 362 - 222
max_d = √2023 - 64 - 1296 - 484
max_d = √179
max_d = 13.37908816026
Since max_d = 13.37908816026 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 362 - 232
max_d = √2023 - 64 - 1296 - 529
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 362 - 242
max_d = √2023 - 64 - 1296 - 576
max_d = √87
max_d = 9.3273790530888
Since max_d = 9.3273790530888 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 362 - 252
max_d = √2023 - 64 - 1296 - 625
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 372)
max_c = Floor(√2023 - 64 - 1369)
max_c = Floor(√590)
max_c = Floor(24.289915602982)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 372)/2 = 295
When min_c = 18, then it is c2 = 324 ≥ 295, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 372 - 182
max_d = √2023 - 64 - 1369 - 324
max_d = √266
max_d = 16.3095064303
Since max_d = 16.3095064303 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 372 - 192
max_d = √2023 - 64 - 1369 - 361
max_d = √229
max_d = 15.132745950422
Since max_d = 15.132745950422 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 372 - 202
max_d = √2023 - 64 - 1369 - 400
max_d = √190
max_d = 13.78404875209
Since max_d = 13.78404875209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 372 - 212
max_d = √2023 - 64 - 1369 - 441
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 372 - 222
max_d = √2023 - 64 - 1369 - 484
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 372 - 232
max_d = √2023 - 64 - 1369 - 529
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 372 - 242
max_d = √2023 - 64 - 1369 - 576
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 382)
max_c = Floor(√2023 - 64 - 1444)
max_c = Floor(√515)
max_c = Floor(22.69361143582)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 382)/2 = 257.5
When min_c = 17, then it is c2 = 289 ≥ 257.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 382 - 172
max_d = √2023 - 64 - 1444 - 289
max_d = √226
max_d = 15.033296378373
Since max_d = 15.033296378373 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 382 - 182
max_d = √2023 - 64 - 1444 - 324
max_d = √191
max_d = 13.820274961085
Since max_d = 13.820274961085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 382 - 192
max_d = √2023 - 64 - 1444 - 361
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 382 - 202
max_d = √2023 - 64 - 1444 - 400
max_d = √115
max_d = 10.723805294764
Since max_d = 10.723805294764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 382 - 212
max_d = √2023 - 64 - 1444 - 441
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 382 - 222
max_d = √2023 - 64 - 1444 - 484
max_d = √31
max_d = 5.56776436283
Since max_d = 5.56776436283 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 392)
max_c = Floor(√2023 - 64 - 1521)
max_c = Floor(√438)
max_c = Floor(20.928449536456)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 392)/2 = 219
When min_c = 15, then it is c2 = 225 ≥ 219, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 392 - 152
max_d = √2023 - 64 - 1521 - 225
max_d = √213
max_d = 14.594519519326
Since max_d = 14.594519519326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 392 - 162
max_d = √2023 - 64 - 1521 - 256
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 392 - 172
max_d = √2023 - 64 - 1521 - 289
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 392 - 182
max_d = √2023 - 64 - 1521 - 324
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 392 - 192
max_d = √2023 - 64 - 1521 - 361
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 392 - 202
max_d = √2023 - 64 - 1521 - 400
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 402)
max_c = Floor(√2023 - 64 - 1600)
max_c = Floor(√359)
max_c = Floor(18.947295321496)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 402)/2 = 179.5
When min_c = 14, then it is c2 = 196 ≥ 179.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 402 - 142
max_d = √2023 - 64 - 1600 - 196
max_d = √163
max_d = 12.767145334804
Since max_d = 12.767145334804 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 402 - 152
max_d = √2023 - 64 - 1600 - 225
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 402 - 162
max_d = √2023 - 64 - 1600 - 256
max_d = √103
max_d = 10.148891565092
Since max_d = 10.148891565092 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 402 - 172
max_d = √2023 - 64 - 1600 - 289
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 402 - 182
max_d = √2023 - 64 - 1600 - 324
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 412)
max_c = Floor(√2023 - 64 - 1681)
max_c = Floor(√278)
max_c = Floor(16.673332000533)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 412)/2 = 139
When min_c = 12, then it is c2 = 144 ≥ 139, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 412 - 122
max_d = √2023 - 64 - 1681 - 144
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 412 - 132
max_d = √2023 - 64 - 1681 - 169
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 412 - 142
max_d = √2023 - 64 - 1681 - 196
max_d = √82
max_d = 9.0553851381374
Since max_d = 9.0553851381374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 412 - 152
max_d = √2023 - 64 - 1681 - 225
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 412 - 162
max_d = √2023 - 64 - 1681 - 256
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 422)
max_c = Floor(√2023 - 64 - 1764)
max_c = Floor(√195)
max_c = Floor(13.964240043769)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 422)/2 = 97.5
When min_c = 10, then it is c2 = 100 ≥ 97.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 422 - 102
max_d = √2023 - 64 - 1764 - 100
max_d = √95
max_d = 9.746794344809
Since max_d = 9.746794344809 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 422 - 112
max_d = √2023 - 64 - 1764 - 121
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 422 - 122
max_d = √2023 - 64 - 1764 - 144
max_d = √51
max_d = 7.1414284285429
Since max_d = 7.1414284285429 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 422 - 132
max_d = √2023 - 64 - 1764 - 169
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 432)
max_c = Floor(√2023 - 64 - 1849)
max_c = Floor(√110)
max_c = Floor(10.488088481702)
max_c = 10
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 432)/2 = 55
When min_c = 8, then it is c2 = 64 ≥ 55, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 432 - 82
max_d = √2023 - 64 - 1849 - 64
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 432 - 92
max_d = √2023 - 64 - 1849 - 81
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 432 - 102
max_d = √2023 - 64 - 1849 - 100
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 82 - 442)
max_c = Floor(√2023 - 64 - 1936)
max_c = Floor(√23)
max_c = Floor(4.7958315233127)
max_c = 4
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 82 - 442)/2 = 11.5
When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 82 - 442 - 42
max_d = √2023 - 64 - 1936 - 16
max_d = √7
max_d = 2.6457513110646
Since max_d = 2.6457513110646 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 92)
max_b = Floor(√2023 - 81)
max_b = Floor(√1942)
max_b = Floor(44.068129073061)
max_b = 44
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 92)/3 = 647.33333333333
When min_b = 26, then it is b2 = 676 ≥ 647.33333333333, so min_b = 26
(26, 44)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 262)
max_c = Floor(√2023 - 81 - 676)
max_c = Floor(√1266)
max_c = Floor(35.580893749314)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 262)/2 = 633
When min_c = 26, then it is c2 = 676 ≥ 633, so min_c = 26
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 262 - 262
max_d = √2023 - 81 - 676 - 676
max_d = √590
max_d = 24.289915602982
Since max_d = 24.289915602982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 262 - 272
max_d = √2023 - 81 - 676 - 729
max_d = √537
max_d = 23.173260452513
Since max_d = 23.173260452513 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 262 - 282
max_d = √2023 - 81 - 676 - 784
max_d = √482
max_d = 21.9544984001
Since max_d = 21.9544984001 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 262 - 292
max_d = √2023 - 81 - 676 - 841
max_d = √425
max_d = 20.615528128088
Since max_d = 20.615528128088 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 262 - 302
max_d = √2023 - 81 - 676 - 900
max_d = √366
max_d = 19.131126469709
Since max_d = 19.131126469709 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 262 - 312
max_d = √2023 - 81 - 676 - 961
max_d = √305
max_d = 17.464249196573
Since max_d = 17.464249196573 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 262 - 322
max_d = √2023 - 81 - 676 - 1024
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 262 - 332
max_d = √2023 - 81 - 676 - 1089
max_d = √177
max_d = 13.30413469565
Since max_d = 13.30413469565 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 262 - 342
max_d = √2023 - 81 - 676 - 1156
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 262 - 352
max_d = √2023 - 81 - 676 - 1225
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 272)
max_c = Floor(√2023 - 81 - 729)
max_c = Floor(√1213)
max_c = Floor(34.828149534536)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 272)/2 = 606.5
When min_c = 25, then it is c2 = 625 ≥ 606.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 272 - 252
max_d = √2023 - 81 - 729 - 625
max_d = √588
max_d = 24.248711305964
Since max_d = 24.248711305964 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 272 - 262
max_d = √2023 - 81 - 729 - 676
max_d = √537
max_d = 23.173260452513
Since max_d = 23.173260452513 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 272 - 272
max_d = √2023 - 81 - 729 - 729
max_d = √484
max_d = 22
Since max_d = 22, then (a, b, c, d) = (9, 27, 27, 22) is an integer solution proven below
92 + 272 + 272 + 222 → 81 + 729 + 729 + 484 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 272 - 282
max_d = √2023 - 81 - 729 - 784
max_d = √429
max_d = 20.712315177208
Since max_d = 20.712315177208 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 272 - 292
max_d = √2023 - 81 - 729 - 841
max_d = √372
max_d = 19.287301521986
Since max_d = 19.287301521986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 272 - 302
max_d = √2023 - 81 - 729 - 900
max_d = √313
max_d = 17.691806012954
Since max_d = 17.691806012954 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 272 - 312
max_d = √2023 - 81 - 729 - 961
max_d = √252
max_d = 15.874507866388
Since max_d = 15.874507866388 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 272 - 322
max_d = √2023 - 81 - 729 - 1024
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 272 - 332
max_d = √2023 - 81 - 729 - 1089
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 272 - 342
max_d = √2023 - 81 - 729 - 1156
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 282)
max_c = Floor(√2023 - 81 - 784)
max_c = Floor(√1158)
max_c = Floor(34.029399054347)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 282)/2 = 579
When min_c = 25, then it is c2 = 625 ≥ 579, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 282 - 252
max_d = √2023 - 81 - 784 - 625
max_d = √533
max_d = 23.08679276123
Since max_d = 23.08679276123 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 282 - 262
max_d = √2023 - 81 - 784 - 676
max_d = √482
max_d = 21.9544984001
Since max_d = 21.9544984001 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 282 - 272
max_d = √2023 - 81 - 784 - 729
max_d = √429
max_d = 20.712315177208
Since max_d = 20.712315177208 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 282 - 282
max_d = √2023 - 81 - 784 - 784
max_d = √374
max_d = 19.339079605814
Since max_d = 19.339079605814 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 282 - 292
max_d = √2023 - 81 - 784 - 841
max_d = √317
max_d = 17.804493814765
Since max_d = 17.804493814765 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 282 - 302
max_d = √2023 - 81 - 784 - 900
max_d = √258
max_d = 16.062378404209
Since max_d = 16.062378404209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 282 - 312
max_d = √2023 - 81 - 784 - 961
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 282 - 322
max_d = √2023 - 81 - 784 - 1024
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 282 - 332
max_d = √2023 - 81 - 784 - 1089
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 282 - 342
max_d = √2023 - 81 - 784 - 1156
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 292)
max_c = Floor(√2023 - 81 - 841)
max_c = Floor(√1101)
max_c = Floor(33.181320046074)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 292)/2 = 550.5
When min_c = 24, then it is c2 = 576 ≥ 550.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 292 - 242
max_d = √2023 - 81 - 841 - 576
max_d = √525
max_d = 22.912878474779
Since max_d = 22.912878474779 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 292 - 252
max_d = √2023 - 81 - 841 - 625
max_d = √476
max_d = 21.817424229271
Since max_d = 21.817424229271 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 292 - 262
max_d = √2023 - 81 - 841 - 676
max_d = √425
max_d = 20.615528128088
Since max_d = 20.615528128088 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 292 - 272
max_d = √2023 - 81 - 841 - 729
max_d = √372
max_d = 19.287301521986
Since max_d = 19.287301521986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 292 - 282
max_d = √2023 - 81 - 841 - 784
max_d = √317
max_d = 17.804493814765
Since max_d = 17.804493814765 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 292 - 292
max_d = √2023 - 81 - 841 - 841
max_d = √260
max_d = 16.124515496597
Since max_d = 16.124515496597 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 292 - 302
max_d = √2023 - 81 - 841 - 900
max_d = √201
max_d = 14.177446878758
Since max_d = 14.177446878758 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 292 - 312
max_d = √2023 - 81 - 841 - 961
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 292 - 322
max_d = √2023 - 81 - 841 - 1024
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 292 - 332
max_d = √2023 - 81 - 841 - 1089
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 302)
max_c = Floor(√2023 - 81 - 900)
max_c = Floor(√1042)
max_c = Floor(32.280024783138)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 302)/2 = 521
When min_c = 23, then it is c2 = 529 ≥ 521, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 302 - 232
max_d = √2023 - 81 - 900 - 529
max_d = √513
max_d = 22.649503305812
Since max_d = 22.649503305812 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 302 - 242
max_d = √2023 - 81 - 900 - 576
max_d = √466
max_d = 21.587033144923
Since max_d = 21.587033144923 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 302 - 252
max_d = √2023 - 81 - 900 - 625
max_d = √417
max_d = 20.420577856662
Since max_d = 20.420577856662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 302 - 262
max_d = √2023 - 81 - 900 - 676
max_d = √366
max_d = 19.131126469709
Since max_d = 19.131126469709 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 302 - 272
max_d = √2023 - 81 - 900 - 729
max_d = √313
max_d = 17.691806012954
Since max_d = 17.691806012954 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 302 - 282
max_d = √2023 - 81 - 900 - 784
max_d = √258
max_d = 16.062378404209
Since max_d = 16.062378404209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 302 - 292
max_d = √2023 - 81 - 900 - 841
max_d = √201
max_d = 14.177446878758
Since max_d = 14.177446878758 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 302 - 302
max_d = √2023 - 81 - 900 - 900
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 302 - 312
max_d = √2023 - 81 - 900 - 961
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (9, 30, 31, 9) is an integer solution proven below
92 + 302 + 312 + 92 → 81 + 900 + 961 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 302 - 322
max_d = √2023 - 81 - 900 - 1024
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 312)
max_c = Floor(√2023 - 81 - 961)
max_c = Floor(√981)
max_c = Floor(31.320919526732)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 312)/2 = 490.5
When min_c = 23, then it is c2 = 529 ≥ 490.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 312 - 232
max_d = √2023 - 81 - 961 - 529
max_d = √452
max_d = 21.260291625469
Since max_d = 21.260291625469 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 312 - 242
max_d = √2023 - 81 - 961 - 576
max_d = √405
max_d = 20.124611797498
Since max_d = 20.124611797498 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 312 - 252
max_d = √2023 - 81 - 961 - 625
max_d = √356
max_d = 18.867962264113
Since max_d = 18.867962264113 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 312 - 262
max_d = √2023 - 81 - 961 - 676
max_d = √305
max_d = 17.464249196573
Since max_d = 17.464249196573 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 312 - 272
max_d = √2023 - 81 - 961 - 729
max_d = √252
max_d = 15.874507866388
Since max_d = 15.874507866388 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 312 - 282
max_d = √2023 - 81 - 961 - 784
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 312 - 292
max_d = √2023 - 81 - 961 - 841
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 312 - 302
max_d = √2023 - 81 - 961 - 900
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (9, 31, 30, 9) is an integer solution proven below
92 + 312 + 302 + 92 → 81 + 961 + 900 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 312 - 312
max_d = √2023 - 81 - 961 - 961
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 322)
max_c = Floor(√2023 - 81 - 1024)
max_c = Floor(√918)
max_c = Floor(30.298514815086)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 322)/2 = 459
When min_c = 22, then it is c2 = 484 ≥ 459, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 322 - 222
max_d = √2023 - 81 - 1024 - 484
max_d = √434
max_d = 20.832666656
Since max_d = 20.832666656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 322 - 232
max_d = √2023 - 81 - 1024 - 529
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 322 - 242
max_d = √2023 - 81 - 1024 - 576
max_d = √342
max_d = 18.493242008907
Since max_d = 18.493242008907 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 322 - 252
max_d = √2023 - 81 - 1024 - 625
max_d = √293
max_d = 17.117242768624
Since max_d = 17.117242768624 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 322 - 262
max_d = √2023 - 81 - 1024 - 676
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 322 - 272
max_d = √2023 - 81 - 1024 - 729
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 322 - 282
max_d = √2023 - 81 - 1024 - 784
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 322 - 292
max_d = √2023 - 81 - 1024 - 841
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 322 - 302
max_d = √2023 - 81 - 1024 - 900
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 332)
max_c = Floor(√2023 - 81 - 1089)
max_c = Floor(√853)
max_c = Floor(29.20616373302)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 332)/2 = 426.5
When min_c = 21, then it is c2 = 441 ≥ 426.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 332 - 212
max_d = √2023 - 81 - 1089 - 441
max_d = √412
max_d = 20.297783130184
Since max_d = 20.297783130184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 332 - 222
max_d = √2023 - 81 - 1089 - 484
max_d = √369
max_d = 19.209372712299
Since max_d = 19.209372712299 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 332 - 232
max_d = √2023 - 81 - 1089 - 529
max_d = √324
max_d = 18
Since max_d = 18, then (a, b, c, d) = (9, 33, 23, 18) is an integer solution proven below
92 + 332 + 232 + 182 → 81 + 1089 + 529 + 324 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 332 - 242
max_d = √2023 - 81 - 1089 - 576
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 332 - 252
max_d = √2023 - 81 - 1089 - 625
max_d = √228
max_d = 15.099668870541
Since max_d = 15.099668870541 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 332 - 262
max_d = √2023 - 81 - 1089 - 676
max_d = √177
max_d = 13.30413469565
Since max_d = 13.30413469565 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 332 - 272
max_d = √2023 - 81 - 1089 - 729
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 332 - 282
max_d = √2023 - 81 - 1089 - 784
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 332 - 292
max_d = √2023 - 81 - 1089 - 841
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 342)
max_c = Floor(√2023 - 81 - 1156)
max_c = Floor(√786)
max_c = Floor(28.035691537752)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 342)/2 = 393
When min_c = 20, then it is c2 = 400 ≥ 393, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 342 - 202
max_d = √2023 - 81 - 1156 - 400
max_d = √386
max_d = 19.646882704388
Since max_d = 19.646882704388 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 342 - 212
max_d = √2023 - 81 - 1156 - 441
max_d = √345
max_d = 18.574175621007
Since max_d = 18.574175621007 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 342 - 222
max_d = √2023 - 81 - 1156 - 484
max_d = √302
max_d = 17.378147196983
Since max_d = 17.378147196983 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 342 - 232
max_d = √2023 - 81 - 1156 - 529
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 342 - 242
max_d = √2023 - 81 - 1156 - 576
max_d = √210
max_d = 14.491376746189
Since max_d = 14.491376746189 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 342 - 252
max_d = √2023 - 81 - 1156 - 625
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 342 - 262
max_d = √2023 - 81 - 1156 - 676
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 342 - 272
max_d = √2023 - 81 - 1156 - 729
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 342 - 282
max_d = √2023 - 81 - 1156 - 784
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 352)
max_c = Floor(√2023 - 81 - 1225)
max_c = Floor(√717)
max_c = Floor(26.776855677992)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 352)/2 = 358.5
When min_c = 19, then it is c2 = 361 ≥ 358.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 352 - 192
max_d = √2023 - 81 - 1225 - 361
max_d = √356
max_d = 18.867962264113
Since max_d = 18.867962264113 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 352 - 202
max_d = √2023 - 81 - 1225 - 400
max_d = √317
max_d = 17.804493814765
Since max_d = 17.804493814765 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 352 - 212
max_d = √2023 - 81 - 1225 - 441
max_d = √276
max_d = 16.613247725836
Since max_d = 16.613247725836 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 352 - 222
max_d = √2023 - 81 - 1225 - 484
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 352 - 232
max_d = √2023 - 81 - 1225 - 529
max_d = √188
max_d = 13.711309200802
Since max_d = 13.711309200802 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 352 - 242
max_d = √2023 - 81 - 1225 - 576
max_d = √141
max_d = 11.874342087038
Since max_d = 11.874342087038 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 352 - 252
max_d = √2023 - 81 - 1225 - 625
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 352 - 262
max_d = √2023 - 81 - 1225 - 676
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 362)
max_c = Floor(√2023 - 81 - 1296)
max_c = Floor(√646)
max_c = Floor(25.416530054278)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 362)/2 = 323
When min_c = 18, then it is c2 = 324 ≥ 323, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 362 - 182
max_d = √2023 - 81 - 1296 - 324
max_d = √322
max_d = 17.944358444926
Since max_d = 17.944358444926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 362 - 192
max_d = √2023 - 81 - 1296 - 361
max_d = √285
max_d = 16.881943016134
Since max_d = 16.881943016134 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 362 - 202
max_d = √2023 - 81 - 1296 - 400
max_d = √246
max_d = 15.684387141358
Since max_d = 15.684387141358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 362 - 212
max_d = √2023 - 81 - 1296 - 441
max_d = √205
max_d = 14.317821063276
Since max_d = 14.317821063276 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 362 - 222
max_d = √2023 - 81 - 1296 - 484
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 362 - 232
max_d = √2023 - 81 - 1296 - 529
max_d = √117
max_d = 10.816653826392
Since max_d = 10.816653826392 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 362 - 242
max_d = √2023 - 81 - 1296 - 576
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 362 - 252
max_d = √2023 - 81 - 1296 - 625
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 372)
max_c = Floor(√2023 - 81 - 1369)
max_c = Floor(√573)
max_c = Floor(23.937418407172)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 372)/2 = 286.5
When min_c = 17, then it is c2 = 289 ≥ 286.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 372 - 172
max_d = √2023 - 81 - 1369 - 289
max_d = √284
max_d = 16.852299546353
Since max_d = 16.852299546353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 372 - 182
max_d = √2023 - 81 - 1369 - 324
max_d = √249
max_d = 15.779733838059
Since max_d = 15.779733838059 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 372 - 192
max_d = √2023 - 81 - 1369 - 361
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 372 - 202
max_d = √2023 - 81 - 1369 - 400
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 372 - 212
max_d = √2023 - 81 - 1369 - 441
max_d = √132
max_d = 11.489125293076
Since max_d = 11.489125293076 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 372 - 222
max_d = √2023 - 81 - 1369 - 484
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 372 - 232
max_d = √2023 - 81 - 1369 - 529
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 382)
max_c = Floor(√2023 - 81 - 1444)
max_c = Floor(√498)
max_c = Floor(22.315913604421)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 382)/2 = 249
When min_c = 16, then it is c2 = 256 ≥ 249, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 382 - 162
max_d = √2023 - 81 - 1444 - 256
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 382 - 172
max_d = √2023 - 81 - 1444 - 289
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 382 - 182
max_d = √2023 - 81 - 1444 - 324
max_d = √174
max_d = 13.190905958273
Since max_d = 13.190905958273 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 382 - 192
max_d = √2023 - 81 - 1444 - 361
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 382 - 202
max_d = √2023 - 81 - 1444 - 400
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 382 - 212
max_d = √2023 - 81 - 1444 - 441
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 382 - 222
max_d = √2023 - 81 - 1444 - 484
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 392)
max_c = Floor(√2023 - 81 - 1521)
max_c = Floor(√421)
max_c = Floor(20.518284528683)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 392)/2 = 210.5
When min_c = 15, then it is c2 = 225 ≥ 210.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 392 - 152
max_d = √2023 - 81 - 1521 - 225
max_d = √196
max_d = 14
Since max_d = 14, then (a, b, c, d) = (9, 39, 15, 14) is an integer solution proven below
92 + 392 + 152 + 142 → 81 + 1521 + 225 + 196 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 392 - 162
max_d = √2023 - 81 - 1521 - 256
max_d = √165
max_d = 12.845232578665
Since max_d = 12.845232578665 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 392 - 172
max_d = √2023 - 81 - 1521 - 289
max_d = √132
max_d = 11.489125293076
Since max_d = 11.489125293076 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 392 - 182
max_d = √2023 - 81 - 1521 - 324
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 392 - 192
max_d = √2023 - 81 - 1521 - 361
max_d = √60
max_d = 7.7459666924148
Since max_d = 7.7459666924148 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 392 - 202
max_d = √2023 - 81 - 1521 - 400
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 402)
max_c = Floor(√2023 - 81 - 1600)
max_c = Floor(√342)
max_c = Floor(18.493242008907)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 402)/2 = 171
When min_c = 14, then it is c2 = 196 ≥ 171, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 402 - 142
max_d = √2023 - 81 - 1600 - 196
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 402 - 152
max_d = √2023 - 81 - 1600 - 225
max_d = √117
max_d = 10.816653826392
Since max_d = 10.816653826392 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 402 - 162
max_d = √2023 - 81 - 1600 - 256
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 402 - 172
max_d = √2023 - 81 - 1600 - 289
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 402 - 182
max_d = √2023 - 81 - 1600 - 324
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 412)
max_c = Floor(√2023 - 81 - 1681)
max_c = Floor(√261)
max_c = Floor(16.155494421404)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 412)/2 = 130.5
When min_c = 12, then it is c2 = 144 ≥ 130.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 412 - 122
max_d = √2023 - 81 - 1681 - 144
max_d = √117
max_d = 10.816653826392
Since max_d = 10.816653826392 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 412 - 132
max_d = √2023 - 81 - 1681 - 169
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 412 - 142
max_d = √2023 - 81 - 1681 - 196
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 412 - 152
max_d = √2023 - 81 - 1681 - 225
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (9, 41, 15, 6) is an integer solution proven below
92 + 412 + 152 + 62 → 81 + 1681 + 225 + 36 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 412 - 162
max_d = √2023 - 81 - 1681 - 256
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 422)
max_c = Floor(√2023 - 81 - 1764)
max_c = Floor(√178)
max_c = Floor(13.341664064126)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 422)/2 = 89
When min_c = 10, then it is c2 = 100 ≥ 89, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 422 - 102
max_d = √2023 - 81 - 1764 - 100
max_d = √78
max_d = 8.8317608663278
Since max_d = 8.8317608663278 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 422 - 112
max_d = √2023 - 81 - 1764 - 121
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 422 - 122
max_d = √2023 - 81 - 1764 - 144
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 422 - 132
max_d = √2023 - 81 - 1764 - 169
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (9, 42, 13, 3) is an integer solution proven below
92 + 422 + 132 + 32 → 81 + 1764 + 169 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 432)
max_c = Floor(√2023 - 81 - 1849)
max_c = Floor(√93)
max_c = Floor(9.643650760993)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 432)/2 = 46.5
When min_c = 7, then it is c2 = 49 ≥ 46.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 432 - 72
max_d = √2023 - 81 - 1849 - 49
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 432 - 82
max_d = √2023 - 81 - 1849 - 64
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 432 - 92
max_d = √2023 - 81 - 1849 - 81
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 92 - 442)
max_c = Floor(√2023 - 81 - 1936)
max_c = Floor(√6)
max_c = Floor(2.4494897427832)
max_c = 2
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 92 - 442)/2 = 3
When min_c = 2, then it is c2 = 4 ≥ 3, so min_c = 2
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 92 - 442 - 22
max_d = √2023 - 81 - 1936 - 4
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 102)
max_b = Floor(√2023 - 100)
max_b = Floor(√1923)
max_b = Floor(43.852023898561)
max_b = 43
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 102)/3 = 641
When min_b = 26, then it is b2 = 676 ≥ 641, so min_b = 26
(26, 43)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 262)
max_c = Floor(√2023 - 100 - 676)
max_c = Floor(√1247)
max_c = Floor(35.312887166019)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 262)/2 = 623.5
When min_c = 25, then it is c2 = 625 ≥ 623.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 262 - 252
max_d = √2023 - 100 - 676 - 625
max_d = √622
max_d = 24.93992782668
Since max_d = 24.93992782668 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 262 - 262
max_d = √2023 - 100 - 676 - 676
max_d = √571
max_d = 23.895606290697
Since max_d = 23.895606290697 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 262 - 272
max_d = √2023 - 100 - 676 - 729
max_d = √518
max_d = 22.759613353482
Since max_d = 22.759613353482 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 262 - 282
max_d = √2023 - 100 - 676 - 784
max_d = √463
max_d = 21.51743479135
Since max_d = 21.51743479135 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 262 - 292
max_d = √2023 - 100 - 676 - 841
max_d = √406
max_d = 20.14944167961
Since max_d = 20.14944167961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 262 - 302
max_d = √2023 - 100 - 676 - 900
max_d = √347
max_d = 18.627936010197
Since max_d = 18.627936010197 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 262 - 312
max_d = √2023 - 100 - 676 - 961
max_d = √286
max_d = 16.911534525288
Since max_d = 16.911534525288 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 262 - 322
max_d = √2023 - 100 - 676 - 1024
max_d = √223
max_d = 14.933184523068
Since max_d = 14.933184523068 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 262 - 332
max_d = √2023 - 100 - 676 - 1089
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 262 - 342
max_d = √2023 - 100 - 676 - 1156
max_d = √91
max_d = 9.5393920141695
Since max_d = 9.5393920141695 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 262 - 352
max_d = √2023 - 100 - 676 - 1225
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 272)
max_c = Floor(√2023 - 100 - 729)
max_c = Floor(√1194)
max_c = Floor(34.554305086342)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 272)/2 = 597
When min_c = 25, then it is c2 = 625 ≥ 597, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 272 - 252
max_d = √2023 - 100 - 729 - 625
max_d = √569
max_d = 23.853720883753
Since max_d = 23.853720883753 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 272 - 262
max_d = √2023 - 100 - 729 - 676
max_d = √518
max_d = 22.759613353482
Since max_d = 22.759613353482 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 272 - 272
max_d = √2023 - 100 - 729 - 729
max_d = √465
max_d = 21.563858652848
Since max_d = 21.563858652848 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 272 - 282
max_d = √2023 - 100 - 729 - 784
max_d = √410
max_d = 20.248456731317
Since max_d = 20.248456731317 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 272 - 292
max_d = √2023 - 100 - 729 - 841
max_d = √353
max_d = 18.788294228056
Since max_d = 18.788294228056 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 272 - 302
max_d = √2023 - 100 - 729 - 900
max_d = √294
max_d = 17.146428199482
Since max_d = 17.146428199482 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 272 - 312
max_d = √2023 - 100 - 729 - 961
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 272 - 322
max_d = √2023 - 100 - 729 - 1024
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 272 - 332
max_d = √2023 - 100 - 729 - 1089
max_d = √105
max_d = 10.24695076596
Since max_d = 10.24695076596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 272 - 342
max_d = √2023 - 100 - 729 - 1156
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 282)
max_c = Floor(√2023 - 100 - 784)
max_c = Floor(√1139)
max_c = Floor(33.749074061372)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 282)/2 = 569.5
When min_c = 24, then it is c2 = 576 ≥ 569.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 282 - 242
max_d = √2023 - 100 - 784 - 576
max_d = √563
max_d = 23.727621035409
Since max_d = 23.727621035409 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 282 - 252
max_d = √2023 - 100 - 784 - 625
max_d = √514
max_d = 22.671568097509
Since max_d = 22.671568097509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 282 - 262
max_d = √2023 - 100 - 784 - 676
max_d = √463
max_d = 21.51743479135
Since max_d = 21.51743479135 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 282 - 272
max_d = √2023 - 100 - 784 - 729
max_d = √410
max_d = 20.248456731317
Since max_d = 20.248456731317 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 282 - 282
max_d = √2023 - 100 - 784 - 784
max_d = √355
max_d = 18.841443681417
Since max_d = 18.841443681417 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 282 - 292
max_d = √2023 - 100 - 784 - 841
max_d = √298
max_d = 17.262676501632
Since max_d = 17.262676501632 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 282 - 302
max_d = √2023 - 100 - 784 - 900
max_d = √239
max_d = 15.45962483374
Since max_d = 15.45962483374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 282 - 312
max_d = √2023 - 100 - 784 - 961
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 282 - 322
max_d = √2023 - 100 - 784 - 1024
max_d = √115
max_d = 10.723805294764
Since max_d = 10.723805294764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 282 - 332
max_d = √2023 - 100 - 784 - 1089
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 292)
max_c = Floor(√2023 - 100 - 841)
max_c = Floor(√1082)
max_c = Floor(32.893768406797)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 292)/2 = 541
When min_c = 24, then it is c2 = 576 ≥ 541, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 292 - 242
max_d = √2023 - 100 - 841 - 576
max_d = √506
max_d = 22.494443758404
Since max_d = 22.494443758404 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 292 - 252
max_d = √2023 - 100 - 841 - 625
max_d = √457
max_d = 21.377558326432
Since max_d = 21.377558326432 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 292 - 262
max_d = √2023 - 100 - 841 - 676
max_d = √406
max_d = 20.14944167961
Since max_d = 20.14944167961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 292 - 272
max_d = √2023 - 100 - 841 - 729
max_d = √353
max_d = 18.788294228056
Since max_d = 18.788294228056 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 292 - 282
max_d = √2023 - 100 - 841 - 784
max_d = √298
max_d = 17.262676501632
Since max_d = 17.262676501632 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 292 - 292
max_d = √2023 - 100 - 841 - 841
max_d = √241
max_d = 15.52417469626
Since max_d = 15.52417469626 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 292 - 302
max_d = √2023 - 100 - 841 - 900
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 292 - 312
max_d = √2023 - 100 - 841 - 961
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (10, 29, 31, 11) is an integer solution proven below
102 + 292 + 312 + 112 → 100 + 841 + 961 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 292 - 322
max_d = √2023 - 100 - 841 - 1024
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 302)
max_c = Floor(√2023 - 100 - 900)
max_c = Floor(√1023)
max_c = Floor(31.984371183439)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 302)/2 = 511.5
When min_c = 23, then it is c2 = 529 ≥ 511.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 302 - 232
max_d = √2023 - 100 - 900 - 529
max_d = √494
max_d = 22.226110770893
Since max_d = 22.226110770893 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 302 - 242
max_d = √2023 - 100 - 900 - 576
max_d = √447
max_d = 21.142374511866
Since max_d = 21.142374511866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 302 - 252
max_d = √2023 - 100 - 900 - 625
max_d = √398
max_d = 19.94993734326
Since max_d = 19.94993734326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 302 - 262
max_d = √2023 - 100 - 900 - 676
max_d = √347
max_d = 18.627936010197
Since max_d = 18.627936010197 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 302 - 272
max_d = √2023 - 100 - 900 - 729
max_d = √294
max_d = 17.146428199482
Since max_d = 17.146428199482 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 302 - 282
max_d = √2023 - 100 - 900 - 784
max_d = √239
max_d = 15.45962483374
Since max_d = 15.45962483374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 302 - 292
max_d = √2023 - 100 - 900 - 841
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 302 - 302
max_d = √2023 - 100 - 900 - 900
max_d = √123
max_d = 11.090536506409
Since max_d = 11.090536506409 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 302 - 312
max_d = √2023 - 100 - 900 - 961
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 312)
max_c = Floor(√2023 - 100 - 961)
max_c = Floor(√962)
max_c = Floor(31.016124838542)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 312)/2 = 481
When min_c = 22, then it is c2 = 484 ≥ 481, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 312 - 222
max_d = √2023 - 100 - 961 - 484
max_d = √478
max_d = 21.863211109075
Since max_d = 21.863211109075 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 312 - 232
max_d = √2023 - 100 - 961 - 529
max_d = √433
max_d = 20.808652046685
Since max_d = 20.808652046685 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 312 - 242
max_d = √2023 - 100 - 961 - 576
max_d = √386
max_d = 19.646882704388
Since max_d = 19.646882704388 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 312 - 252
max_d = √2023 - 100 - 961 - 625
max_d = √337
max_d = 18.357559750686
Since max_d = 18.357559750686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 312 - 262
max_d = √2023 - 100 - 961 - 676
max_d = √286
max_d = 16.911534525288
Since max_d = 16.911534525288 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 312 - 272
max_d = √2023 - 100 - 961 - 729
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 312 - 282
max_d = √2023 - 100 - 961 - 784
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 312 - 292
max_d = √2023 - 100 - 961 - 841
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (10, 31, 29, 11) is an integer solution proven below
102 + 312 + 292 + 112 → 100 + 961 + 841 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 312 - 302
max_d = √2023 - 100 - 961 - 900
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 312 - 312
max_d = √2023 - 100 - 961 - 961
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (10, 31, 31, 1) is an integer solution proven below
102 + 312 + 312 + 12 → 100 + 961 + 961 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 322)
max_c = Floor(√2023 - 100 - 1024)
max_c = Floor(√899)
max_c = Floor(29.98332870113)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 322)/2 = 449.5
When min_c = 22, then it is c2 = 484 ≥ 449.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 322 - 222
max_d = √2023 - 100 - 1024 - 484
max_d = √415
max_d = 20.371548787463
Since max_d = 20.371548787463 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 322 - 232
max_d = √2023 - 100 - 1024 - 529
max_d = √370
max_d = 19.235384061671
Since max_d = 19.235384061671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 322 - 242
max_d = √2023 - 100 - 1024 - 576
max_d = √323
max_d = 17.972200755611
Since max_d = 17.972200755611 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 322 - 252
max_d = √2023 - 100 - 1024 - 625
max_d = √274
max_d = 16.552945357247
Since max_d = 16.552945357247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 322 - 262
max_d = √2023 - 100 - 1024 - 676
max_d = √223
max_d = 14.933184523068
Since max_d = 14.933184523068 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 322 - 272
max_d = √2023 - 100 - 1024 - 729
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 322 - 282
max_d = √2023 - 100 - 1024 - 784
max_d = √115
max_d = 10.723805294764
Since max_d = 10.723805294764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 322 - 292
max_d = √2023 - 100 - 1024 - 841
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 332)
max_c = Floor(√2023 - 100 - 1089)
max_c = Floor(√834)
max_c = Floor(28.879058156387)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 332)/2 = 417
When min_c = 21, then it is c2 = 441 ≥ 417, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 332 - 212
max_d = √2023 - 100 - 1089 - 441
max_d = √393
max_d = 19.824227601599
Since max_d = 19.824227601599 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 332 - 222
max_d = √2023 - 100 - 1089 - 484
max_d = √350
max_d = 18.70828693387
Since max_d = 18.70828693387 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 332 - 232
max_d = √2023 - 100 - 1089 - 529
max_d = √305
max_d = 17.464249196573
Since max_d = 17.464249196573 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 332 - 242
max_d = √2023 - 100 - 1089 - 576
max_d = √258
max_d = 16.062378404209
Since max_d = 16.062378404209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 332 - 252
max_d = √2023 - 100 - 1089 - 625
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 332 - 262
max_d = √2023 - 100 - 1089 - 676
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 332 - 272
max_d = √2023 - 100 - 1089 - 729
max_d = √105
max_d = 10.24695076596
Since max_d = 10.24695076596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 332 - 282
max_d = √2023 - 100 - 1089 - 784
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 342)
max_c = Floor(√2023 - 100 - 1156)
max_c = Floor(√767)
max_c = Floor(27.694764848252)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 342)/2 = 383.5
When min_c = 20, then it is c2 = 400 ≥ 383.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 342 - 202
max_d = √2023 - 100 - 1156 - 400
max_d = √367
max_d = 19.157244060668
Since max_d = 19.157244060668 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 342 - 212
max_d = √2023 - 100 - 1156 - 441
max_d = √326
max_d = 18.055470085268
Since max_d = 18.055470085268 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 342 - 222
max_d = √2023 - 100 - 1156 - 484
max_d = √283
max_d = 16.822603841261
Since max_d = 16.822603841261 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 342 - 232
max_d = √2023 - 100 - 1156 - 529
max_d = √238
max_d = 15.427248620542
Since max_d = 15.427248620542 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 342 - 242
max_d = √2023 - 100 - 1156 - 576
max_d = √191
max_d = 13.820274961085
Since max_d = 13.820274961085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 342 - 252
max_d = √2023 - 100 - 1156 - 625
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 342 - 262
max_d = √2023 - 100 - 1156 - 676
max_d = √91
max_d = 9.5393920141695
Since max_d = 9.5393920141695 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 342 - 272
max_d = √2023 - 100 - 1156 - 729
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 352)
max_c = Floor(√2023 - 100 - 1225)
max_c = Floor(√698)
max_c = Floor(26.419689627246)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 352)/2 = 349
When min_c = 19, then it is c2 = 361 ≥ 349, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 352 - 192
max_d = √2023 - 100 - 1225 - 361
max_d = √337
max_d = 18.357559750686
Since max_d = 18.357559750686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 352 - 202
max_d = √2023 - 100 - 1225 - 400
max_d = √298
max_d = 17.262676501632
Since max_d = 17.262676501632 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 352 - 212
max_d = √2023 - 100 - 1225 - 441
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 352 - 222
max_d = √2023 - 100 - 1225 - 484
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 352 - 232
max_d = √2023 - 100 - 1225 - 529
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (10, 35, 23, 13) is an integer solution proven below
102 + 352 + 232 + 132 → 100 + 1225 + 529 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 352 - 242
max_d = √2023 - 100 - 1225 - 576
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 352 - 252
max_d = √2023 - 100 - 1225 - 625
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 352 - 262
max_d = √2023 - 100 - 1225 - 676
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 362)
max_c = Floor(√2023 - 100 - 1296)
max_c = Floor(√627)
max_c = Floor(25.039968051098)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 362)/2 = 313.5
When min_c = 18, then it is c2 = 324 ≥ 313.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 362 - 182
max_d = √2023 - 100 - 1296 - 324
max_d = √303
max_d = 17.406895185529
Since max_d = 17.406895185529 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 362 - 192
max_d = √2023 - 100 - 1296 - 361
max_d = √266
max_d = 16.3095064303
Since max_d = 16.3095064303 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 362 - 202
max_d = √2023 - 100 - 1296 - 400
max_d = √227
max_d = 15.066519173319
Since max_d = 15.066519173319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 362 - 212
max_d = √2023 - 100 - 1296 - 441
max_d = √186
max_d = 13.638181696986
Since max_d = 13.638181696986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 362 - 222
max_d = √2023 - 100 - 1296 - 484
max_d = √143
max_d = 11.958260743101
Since max_d = 11.958260743101 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 362 - 232
max_d = √2023 - 100 - 1296 - 529
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 362 - 242
max_d = √2023 - 100 - 1296 - 576
max_d = √51
max_d = 7.1414284285429
Since max_d = 7.1414284285429 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 362 - 252
max_d = √2023 - 100 - 1296 - 625
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 372)
max_c = Floor(√2023 - 100 - 1369)
max_c = Floor(√554)
max_c = Floor(23.53720459188)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 372)/2 = 277
When min_c = 17, then it is c2 = 289 ≥ 277, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 372 - 172
max_d = √2023 - 100 - 1369 - 289
max_d = √265
max_d = 16.2788205961
Since max_d = 16.2788205961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 372 - 182
max_d = √2023 - 100 - 1369 - 324
max_d = √230
max_d = 15.165750888103
Since max_d = 15.165750888103 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 372 - 192
max_d = √2023 - 100 - 1369 - 361
max_d = √193
max_d = 13.89244398945
Since max_d = 13.89244398945 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 372 - 202
max_d = √2023 - 100 - 1369 - 400
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 372 - 212
max_d = √2023 - 100 - 1369 - 441
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 372 - 222
max_d = √2023 - 100 - 1369 - 484
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 372 - 232
max_d = √2023 - 100 - 1369 - 529
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (10, 37, 23, 5) is an integer solution proven below
102 + 372 + 232 + 52 → 100 + 1369 + 529 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 382)
max_c = Floor(√2023 - 100 - 1444)
max_c = Floor(√479)
max_c = Floor(21.886068628239)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 382)/2 = 239.5
When min_c = 16, then it is c2 = 256 ≥ 239.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 382 - 162
max_d = √2023 - 100 - 1444 - 256
max_d = √223
max_d = 14.933184523068
Since max_d = 14.933184523068 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 382 - 172
max_d = √2023 - 100 - 1444 - 289
max_d = √190
max_d = 13.78404875209
Since max_d = 13.78404875209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 382 - 182
max_d = √2023 - 100 - 1444 - 324
max_d = √155
max_d = 12.449899597989
Since max_d = 12.449899597989 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 382 - 192
max_d = √2023 - 100 - 1444 - 361
max_d = √118
max_d = 10.8627804912
Since max_d = 10.8627804912 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 382 - 202
max_d = √2023 - 100 - 1444 - 400
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 382 - 212
max_d = √2023 - 100 - 1444 - 441
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 392)
max_c = Floor(√2023 - 100 - 1521)
max_c = Floor(√402)
max_c = Floor(20.049937655763)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 392)/2 = 201
When min_c = 15, then it is c2 = 225 ≥ 201, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 392 - 152
max_d = √2023 - 100 - 1521 - 225
max_d = √177
max_d = 13.30413469565
Since max_d = 13.30413469565 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 392 - 162
max_d = √2023 - 100 - 1521 - 256
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 392 - 172
max_d = √2023 - 100 - 1521 - 289
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 392 - 182
max_d = √2023 - 100 - 1521 - 324
max_d = √78
max_d = 8.8317608663278
Since max_d = 8.8317608663278 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 392 - 192
max_d = √2023 - 100 - 1521 - 361
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 392 - 202
max_d = √2023 - 100 - 1521 - 400
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 402)
max_c = Floor(√2023 - 100 - 1600)
max_c = Floor(√323)
max_c = Floor(17.972200755611)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 402)/2 = 161.5
When min_c = 13, then it is c2 = 169 ≥ 161.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 402 - 132
max_d = √2023 - 100 - 1600 - 169
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 402 - 142
max_d = √2023 - 100 - 1600 - 196
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 402 - 152
max_d = √2023 - 100 - 1600 - 225
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 402 - 162
max_d = √2023 - 100 - 1600 - 256
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 402 - 172
max_d = √2023 - 100 - 1600 - 289
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 412)
max_c = Floor(√2023 - 100 - 1681)
max_c = Floor(√242)
max_c = Floor(15.556349186104)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 412)/2 = 121
When min_c = 11, then it is c2 = 121 ≥ 121, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 412 - 112
max_d = √2023 - 100 - 1681 - 121
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (10, 41, 11, 11) is an integer solution proven below
102 + 412 + 112 + 112 → 100 + 1681 + 121 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 412 - 122
max_d = √2023 - 100 - 1681 - 144
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 412 - 132
max_d = √2023 - 100 - 1681 - 169
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 412 - 142
max_d = √2023 - 100 - 1681 - 196
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 412 - 152
max_d = √2023 - 100 - 1681 - 225
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 422)
max_c = Floor(√2023 - 100 - 1764)
max_c = Floor(√159)
max_c = Floor(12.609520212918)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 422)/2 = 79.5
When min_c = 9, then it is c2 = 81 ≥ 79.5, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 422 - 92
max_d = √2023 - 100 - 1764 - 81
max_d = √78
max_d = 8.8317608663278
Since max_d = 8.8317608663278 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 422 - 102
max_d = √2023 - 100 - 1764 - 100
max_d = √59
max_d = 7.6811457478686
Since max_d = 7.6811457478686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 422 - 112
max_d = √2023 - 100 - 1764 - 121
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 422 - 122
max_d = √2023 - 100 - 1764 - 144
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 102 - 432)
max_c = Floor(√2023 - 100 - 1849)
max_c = Floor(√74)
max_c = Floor(8.6023252670426)
max_c = 8
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 102 - 432)/2 = 37
When min_c = 7, then it is c2 = 49 ≥ 37, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 432 - 72
max_d = √2023 - 100 - 1849 - 49
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (10, 43, 7, 5) is an integer solution proven below
102 + 432 + 72 + 52 → 100 + 1849 + 49 + 25 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 102 - 432 - 82
max_d = √2023 - 100 - 1849 - 64
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 112)
max_b = Floor(√2023 - 121)
max_b = Floor(√1902)
max_b = Floor(43.611924974713)
max_b = 43
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 112)/3 = 634
When min_b = 26, then it is b2 = 676 ≥ 634, so min_b = 26
(26, 43)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 262)
max_c = Floor(√2023 - 121 - 676)
max_c = Floor(√1226)
max_c = Floor(35.014282800023)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 262)/2 = 613
When min_c = 25, then it is c2 = 625 ≥ 613, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 262 - 252
max_d = √2023 - 121 - 676 - 625
max_d = √601
max_d = 24.515301344263
Since max_d = 24.515301344263 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 262 - 262
max_d = √2023 - 121 - 676 - 676
max_d = √550
max_d = 23.452078799117
Since max_d = 23.452078799117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 262 - 272
max_d = √2023 - 121 - 676 - 729
max_d = √497
max_d = 22.293496809608
Since max_d = 22.293496809608 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 262 - 282
max_d = √2023 - 121 - 676 - 784
max_d = √442
max_d = 21.023796041629
Since max_d = 21.023796041629 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 262 - 292
max_d = √2023 - 121 - 676 - 841
max_d = √385
max_d = 19.621416870349
Since max_d = 19.621416870349 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 262 - 302
max_d = √2023 - 121 - 676 - 900
max_d = √326
max_d = 18.055470085268
Since max_d = 18.055470085268 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 262 - 312
max_d = √2023 - 121 - 676 - 961
max_d = √265
max_d = 16.2788205961
Since max_d = 16.2788205961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 262 - 322
max_d = √2023 - 121 - 676 - 1024
max_d = √202
max_d = 14.212670403552
Since max_d = 14.212670403552 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 262 - 332
max_d = √2023 - 121 - 676 - 1089
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 262 - 342
max_d = √2023 - 121 - 676 - 1156
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 262 - 352
max_d = √2023 - 121 - 676 - 1225
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (11, 26, 35, 1) is an integer solution proven below
112 + 262 + 352 + 12 → 121 + 676 + 1225 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 272)
max_c = Floor(√2023 - 121 - 729)
max_c = Floor(√1173)
max_c = Floor(34.249087579087)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 272)/2 = 586.5
When min_c = 25, then it is c2 = 625 ≥ 586.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 272 - 252
max_d = √2023 - 121 - 729 - 625
max_d = √548
max_d = 23.409399821439
Since max_d = 23.409399821439 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 272 - 262
max_d = √2023 - 121 - 729 - 676
max_d = √497
max_d = 22.293496809608
Since max_d = 22.293496809608 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 272 - 272
max_d = √2023 - 121 - 729 - 729
max_d = √444
max_d = 21.071307505705
Since max_d = 21.071307505705 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 272 - 282
max_d = √2023 - 121 - 729 - 784
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 272 - 292
max_d = √2023 - 121 - 729 - 841
max_d = √332
max_d = 18.220867158289
Since max_d = 18.220867158289 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 272 - 302
max_d = √2023 - 121 - 729 - 900
max_d = √273
max_d = 16.522711641858
Since max_d = 16.522711641858 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 272 - 312
max_d = √2023 - 121 - 729 - 961
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 272 - 322
max_d = √2023 - 121 - 729 - 1024
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 272 - 332
max_d = √2023 - 121 - 729 - 1089
max_d = √84
max_d = 9.1651513899117
Since max_d = 9.1651513899117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 272 - 342
max_d = √2023 - 121 - 729 - 1156
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 282)
max_c = Floor(√2023 - 121 - 784)
max_c = Floor(√1118)
max_c = Floor(33.436506994601)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 282)/2 = 559
When min_c = 24, then it is c2 = 576 ≥ 559, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 282 - 242
max_d = √2023 - 121 - 784 - 576
max_d = √542
max_d = 23.280893453646
Since max_d = 23.280893453646 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 282 - 252
max_d = √2023 - 121 - 784 - 625
max_d = √493
max_d = 22.203603311175
Since max_d = 22.203603311175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 282 - 262
max_d = √2023 - 121 - 784 - 676
max_d = √442
max_d = 21.023796041629
Since max_d = 21.023796041629 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 282 - 272
max_d = √2023 - 121 - 784 - 729
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 282 - 282
max_d = √2023 - 121 - 784 - 784
max_d = √334
max_d = 18.275666882497
Since max_d = 18.275666882497 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 282 - 292
max_d = √2023 - 121 - 784 - 841
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 282 - 302
max_d = √2023 - 121 - 784 - 900
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 282 - 312
max_d = √2023 - 121 - 784 - 961
max_d = √157
max_d = 12.529964086142
Since max_d = 12.529964086142 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 282 - 322
max_d = √2023 - 121 - 784 - 1024
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 282 - 332
max_d = √2023 - 121 - 784 - 1089
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 292)
max_c = Floor(√2023 - 121 - 841)
max_c = Floor(√1061)
max_c = Floor(32.572994949805)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 292)/2 = 530.5
When min_c = 24, then it is c2 = 576 ≥ 530.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 292 - 242
max_d = √2023 - 121 - 841 - 576
max_d = √485
max_d = 22.022715545545
Since max_d = 22.022715545545 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 292 - 252
max_d = √2023 - 121 - 841 - 625
max_d = √436
max_d = 20.880613017821
Since max_d = 20.880613017821 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 292 - 262
max_d = √2023 - 121 - 841 - 676
max_d = √385
max_d = 19.621416870349
Since max_d = 19.621416870349 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 292 - 272
max_d = √2023 - 121 - 841 - 729
max_d = √332
max_d = 18.220867158289
Since max_d = 18.220867158289 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 292 - 282
max_d = √2023 - 121 - 841 - 784
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 292 - 292
max_d = √2023 - 121 - 841 - 841
max_d = √220
max_d = 14.832396974191
Since max_d = 14.832396974191 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 292 - 302
max_d = √2023 - 121 - 841 - 900
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 292 - 312
max_d = √2023 - 121 - 841 - 961
max_d = √100
max_d = 10
Since max_d = 10, then (a, b, c, d) = (11, 29, 31, 10) is an integer solution proven below
112 + 292 + 312 + 102 → 121 + 841 + 961 + 100 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 292 - 322
max_d = √2023 - 121 - 841 - 1024
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 302)
max_c = Floor(√2023 - 121 - 900)
max_c = Floor(√1002)
max_c = Floor(31.654383582689)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 302)/2 = 501
When min_c = 23, then it is c2 = 529 ≥ 501, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 302 - 232
max_d = √2023 - 121 - 900 - 529
max_d = √473
max_d = 21.748563170932
Since max_d = 21.748563170932 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 302 - 242
max_d = √2023 - 121 - 900 - 576
max_d = √426
max_d = 20.63976744055
Since max_d = 20.63976744055 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 302 - 252
max_d = √2023 - 121 - 900 - 625
max_d = √377
max_d = 19.416487838948
Since max_d = 19.416487838948 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 302 - 262
max_d = √2023 - 121 - 900 - 676
max_d = √326
max_d = 18.055470085268
Since max_d = 18.055470085268 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 302 - 272
max_d = √2023 - 121 - 900 - 729
max_d = √273
max_d = 16.522711641858
Since max_d = 16.522711641858 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 302 - 282
max_d = √2023 - 121 - 900 - 784
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 302 - 292
max_d = √2023 - 121 - 900 - 841
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 302 - 302
max_d = √2023 - 121 - 900 - 900
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 302 - 312
max_d = √2023 - 121 - 900 - 961
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 312)
max_c = Floor(√2023 - 121 - 961)
max_c = Floor(√941)
max_c = Floor(30.675723300356)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 312)/2 = 470.5
When min_c = 22, then it is c2 = 484 ≥ 470.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 312 - 222
max_d = √2023 - 121 - 961 - 484
max_d = √457
max_d = 21.377558326432
Since max_d = 21.377558326432 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 312 - 232
max_d = √2023 - 121 - 961 - 529
max_d = √412
max_d = 20.297783130184
Since max_d = 20.297783130184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 312 - 242
max_d = √2023 - 121 - 961 - 576
max_d = √365
max_d = 19.104973174543
Since max_d = 19.104973174543 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 312 - 252
max_d = √2023 - 121 - 961 - 625
max_d = √316
max_d = 17.776388834631
Since max_d = 17.776388834631 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 312 - 262
max_d = √2023 - 121 - 961 - 676
max_d = √265
max_d = 16.2788205961
Since max_d = 16.2788205961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 312 - 272
max_d = √2023 - 121 - 961 - 729
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 312 - 282
max_d = √2023 - 121 - 961 - 784
max_d = √157
max_d = 12.529964086142
Since max_d = 12.529964086142 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 312 - 292
max_d = √2023 - 121 - 961 - 841
max_d = √100
max_d = 10
Since max_d = 10, then (a, b, c, d) = (11, 31, 29, 10) is an integer solution proven below
112 + 312 + 292 + 102 → 121 + 961 + 841 + 100 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 312 - 302
max_d = √2023 - 121 - 961 - 900
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 322)
max_c = Floor(√2023 - 121 - 1024)
max_c = Floor(√878)
max_c = Floor(29.631064780058)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 322)/2 = 439
When min_c = 21, then it is c2 = 441 ≥ 439, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 322 - 212
max_d = √2023 - 121 - 1024 - 441
max_d = √437
max_d = 20.904544960367
Since max_d = 20.904544960367 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 322 - 222
max_d = √2023 - 121 - 1024 - 484
max_d = √394
max_d = 19.849433241279
Since max_d = 19.849433241279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 322 - 232
max_d = √2023 - 121 - 1024 - 529
max_d = √349
max_d = 18.681541692269
Since max_d = 18.681541692269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 322 - 242
max_d = √2023 - 121 - 1024 - 576
max_d = √302
max_d = 17.378147196983
Since max_d = 17.378147196983 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 322 - 252
max_d = √2023 - 121 - 1024 - 625
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 322 - 262
max_d = √2023 - 121 - 1024 - 676
max_d = √202
max_d = 14.212670403552
Since max_d = 14.212670403552 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 322 - 272
max_d = √2023 - 121 - 1024 - 729
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 322 - 282
max_d = √2023 - 121 - 1024 - 784
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 322 - 292
max_d = √2023 - 121 - 1024 - 841
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 332)
max_c = Floor(√2023 - 121 - 1089)
max_c = Floor(√813)
max_c = Floor(28.513154858767)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 332)/2 = 406.5
When min_c = 21, then it is c2 = 441 ≥ 406.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 332 - 212
max_d = √2023 - 121 - 1089 - 441
max_d = √372
max_d = 19.287301521986
Since max_d = 19.287301521986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 332 - 222
max_d = √2023 - 121 - 1089 - 484
max_d = √329
max_d = 18.138357147217
Since max_d = 18.138357147217 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 332 - 232
max_d = √2023 - 121 - 1089 - 529
max_d = √284
max_d = 16.852299546353
Since max_d = 16.852299546353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 332 - 242
max_d = √2023 - 121 - 1089 - 576
max_d = √237
max_d = 15.394804318341
Since max_d = 15.394804318341 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 332 - 252
max_d = √2023 - 121 - 1089 - 625
max_d = √188
max_d = 13.711309200802
Since max_d = 13.711309200802 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 332 - 262
max_d = √2023 - 121 - 1089 - 676
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 332 - 272
max_d = √2023 - 121 - 1089 - 729
max_d = √84
max_d = 9.1651513899117
Since max_d = 9.1651513899117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 332 - 282
max_d = √2023 - 121 - 1089 - 784
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 342)
max_c = Floor(√2023 - 121 - 1156)
max_c = Floor(√746)
max_c = Floor(27.313000567495)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 342)/2 = 373
When min_c = 20, then it is c2 = 400 ≥ 373, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 342 - 202
max_d = √2023 - 121 - 1156 - 400
max_d = √346
max_d = 18.601075237738
Since max_d = 18.601075237738 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 342 - 212
max_d = √2023 - 121 - 1156 - 441
max_d = √305
max_d = 17.464249196573
Since max_d = 17.464249196573 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 342 - 222
max_d = √2023 - 121 - 1156 - 484
max_d = √262
max_d = 16.186414056239
Since max_d = 16.186414056239 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 342 - 232
max_d = √2023 - 121 - 1156 - 529
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 342 - 242
max_d = √2023 - 121 - 1156 - 576
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 342 - 252
max_d = √2023 - 121 - 1156 - 625
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (11, 34, 25, 11) is an integer solution proven below
112 + 342 + 252 + 112 → 121 + 1156 + 625 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 342 - 262
max_d = √2023 - 121 - 1156 - 676
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 342 - 272
max_d = √2023 - 121 - 1156 - 729
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 352)
max_c = Floor(√2023 - 121 - 1225)
max_c = Floor(√677)
max_c = Floor(26.019223662515)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 352)/2 = 338.5
When min_c = 19, then it is c2 = 361 ≥ 338.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 352 - 192
max_d = √2023 - 121 - 1225 - 361
max_d = √316
max_d = 17.776388834631
Since max_d = 17.776388834631 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 352 - 202
max_d = √2023 - 121 - 1225 - 400
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 352 - 212
max_d = √2023 - 121 - 1225 - 441
max_d = √236
max_d = 15.362291495737
Since max_d = 15.362291495737 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 352 - 222
max_d = √2023 - 121 - 1225 - 484
max_d = √193
max_d = 13.89244398945
Since max_d = 13.89244398945 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 352 - 232
max_d = √2023 - 121 - 1225 - 529
max_d = √148
max_d = 12.165525060596
Since max_d = 12.165525060596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 352 - 242
max_d = √2023 - 121 - 1225 - 576
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 352 - 252
max_d = √2023 - 121 - 1225 - 625
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 352 - 262
max_d = √2023 - 121 - 1225 - 676
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (11, 35, 26, 1) is an integer solution proven below
112 + 352 + 262 + 12 → 121 + 1225 + 676 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 362)
max_c = Floor(√2023 - 121 - 1296)
max_c = Floor(√606)
max_c = Floor(24.617067250182)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 362)/2 = 303
When min_c = 18, then it is c2 = 324 ≥ 303, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 362 - 182
max_d = √2023 - 121 - 1296 - 324
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 362 - 192
max_d = √2023 - 121 - 1296 - 361
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 362 - 202
max_d = √2023 - 121 - 1296 - 400
max_d = √206
max_d = 14.352700094407
Since max_d = 14.352700094407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 362 - 212
max_d = √2023 - 121 - 1296 - 441
max_d = √165
max_d = 12.845232578665
Since max_d = 12.845232578665 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 362 - 222
max_d = √2023 - 121 - 1296 - 484
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 362 - 232
max_d = √2023 - 121 - 1296 - 529
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 362 - 242
max_d = √2023 - 121 - 1296 - 576
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 372)
max_c = Floor(√2023 - 121 - 1369)
max_c = Floor(√533)
max_c = Floor(23.08679276123)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 372)/2 = 266.5
When min_c = 17, then it is c2 = 289 ≥ 266.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 372 - 172
max_d = √2023 - 121 - 1369 - 289
max_d = √244
max_d = 15.620499351813
Since max_d = 15.620499351813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 372 - 182
max_d = √2023 - 121 - 1369 - 324
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 372 - 192
max_d = √2023 - 121 - 1369 - 361
max_d = √172
max_d = 13.114877048604
Since max_d = 13.114877048604 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 372 - 202
max_d = √2023 - 121 - 1369 - 400
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 372 - 212
max_d = √2023 - 121 - 1369 - 441
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 372 - 222
max_d = √2023 - 121 - 1369 - 484
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (11, 37, 22, 7) is an integer solution proven below
112 + 372 + 222 + 72 → 121 + 1369 + 484 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 372 - 232
max_d = √2023 - 121 - 1369 - 529
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (11, 37, 23, 2) is an integer solution proven below
112 + 372 + 232 + 22 → 121 + 1369 + 529 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 382)
max_c = Floor(√2023 - 121 - 1444)
max_c = Floor(√458)
max_c = Floor(21.400934559033)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 382)/2 = 229
When min_c = 16, then it is c2 = 256 ≥ 229, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 382 - 162
max_d = √2023 - 121 - 1444 - 256
max_d = √202
max_d = 14.212670403552
Since max_d = 14.212670403552 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 382 - 172
max_d = √2023 - 121 - 1444 - 289
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (11, 38, 17, 13) is an integer solution proven below
112 + 382 + 172 + 132 → 121 + 1444 + 289 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 382 - 182
max_d = √2023 - 121 - 1444 - 324
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 382 - 192
max_d = √2023 - 121 - 1444 - 361
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 382 - 202
max_d = √2023 - 121 - 1444 - 400
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 382 - 212
max_d = √2023 - 121 - 1444 - 441
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 392)
max_c = Floor(√2023 - 121 - 1521)
max_c = Floor(√381)
max_c = Floor(19.519221295943)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 392)/2 = 190.5
When min_c = 14, then it is c2 = 196 ≥ 190.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 392 - 142
max_d = √2023 - 121 - 1521 - 196
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 392 - 152
max_d = √2023 - 121 - 1521 - 225
max_d = √156
max_d = 12.489995996797
Since max_d = 12.489995996797 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 392 - 162
max_d = √2023 - 121 - 1521 - 256
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 392 - 172
max_d = √2023 - 121 - 1521 - 289
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 392 - 182
max_d = √2023 - 121 - 1521 - 324
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 392 - 192
max_d = √2023 - 121 - 1521 - 361
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 402)
max_c = Floor(√2023 - 121 - 1600)
max_c = Floor(√302)
max_c = Floor(17.378147196983)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 402)/2 = 151
When min_c = 13, then it is c2 = 169 ≥ 151, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 402 - 132
max_d = √2023 - 121 - 1600 - 169
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 402 - 142
max_d = √2023 - 121 - 1600 - 196
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 402 - 152
max_d = √2023 - 121 - 1600 - 225
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 402 - 162
max_d = √2023 - 121 - 1600 - 256
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 402 - 172
max_d = √2023 - 121 - 1600 - 289
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 412)
max_c = Floor(√2023 - 121 - 1681)
max_c = Floor(√221)
max_c = Floor(14.866068747319)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 412)/2 = 110.5
When min_c = 11, then it is c2 = 121 ≥ 110.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 412 - 112
max_d = √2023 - 121 - 1681 - 121
max_d = √100
max_d = 10
Since max_d = 10, then (a, b, c, d) = (11, 41, 11, 10) is an integer solution proven below
112 + 412 + 112 + 102 → 121 + 1681 + 121 + 100 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 412 - 122
max_d = √2023 - 121 - 1681 - 144
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 412 - 132
max_d = √2023 - 121 - 1681 - 169
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 412 - 142
max_d = √2023 - 121 - 1681 - 196
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (11, 41, 14, 5) is an integer solution proven below
112 + 412 + 142 + 52 → 121 + 1681 + 196 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 422)
max_c = Floor(√2023 - 121 - 1764)
max_c = Floor(√138)
max_c = Floor(11.747340124471)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 422)/2 = 69
When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 422 - 92
max_d = √2023 - 121 - 1764 - 81
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 422 - 102
max_d = √2023 - 121 - 1764 - 100
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 422 - 112
max_d = √2023 - 121 - 1764 - 121
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 112 - 432)
max_c = Floor(√2023 - 121 - 1849)
max_c = Floor(√53)
max_c = Floor(7.2801098892805)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 112 - 432)/2 = 26.5
When min_c = 6, then it is c2 = 36 ≥ 26.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 432 - 62
max_d = √2023 - 121 - 1849 - 36
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 112 - 432 - 72
max_d = √2023 - 121 - 1849 - 49
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (11, 43, 7, 2) is an integer solution proven below
112 + 432 + 72 + 22 → 121 + 1849 + 49 + 4 = 2023
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 122)
max_b = Floor(√2023 - 144)
max_b = Floor(√1879)
max_b = Floor(43.347433603386)
max_b = 43
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 122)/3 = 626.33333333333
When min_b = 26, then it is b2 = 676 ≥ 626.33333333333, so min_b = 26
(26, 43)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 262)
max_c = Floor(√2023 - 144 - 676)
max_c = Floor(√1203)
max_c = Floor(34.684290392049)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 262)/2 = 601.5
When min_c = 25, then it is c2 = 625 ≥ 601.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 262 - 252
max_d = √2023 - 144 - 676 - 625
max_d = √578
max_d = 24.041630560343
Since max_d = 24.041630560343 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 262 - 262
max_d = √2023 - 144 - 676 - 676
max_d = √527
max_d = 22.956480566498
Since max_d = 22.956480566498 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 262 - 272
max_d = √2023 - 144 - 676 - 729
max_d = √474
max_d = 21.771541057077
Since max_d = 21.771541057077 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 262 - 282
max_d = √2023 - 144 - 676 - 784
max_d = √419
max_d = 20.469489490459
Since max_d = 20.469489490459 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 262 - 292
max_d = √2023 - 144 - 676 - 841
max_d = √362
max_d = 19.02629759044
Since max_d = 19.02629759044 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 262 - 302
max_d = √2023 - 144 - 676 - 900
max_d = √303
max_d = 17.406895185529
Since max_d = 17.406895185529 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 262 - 312
max_d = √2023 - 144 - 676 - 961
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 262 - 322
max_d = √2023 - 144 - 676 - 1024
max_d = √179
max_d = 13.37908816026
Since max_d = 13.37908816026 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 262 - 332
max_d = √2023 - 144 - 676 - 1089
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 262 - 342
max_d = √2023 - 144 - 676 - 1156
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 272)
max_c = Floor(√2023 - 144 - 729)
max_c = Floor(√1150)
max_c = Floor(33.911649915626)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 272)/2 = 575
When min_c = 24, then it is c2 = 576 ≥ 575, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 272 - 242
max_d = √2023 - 144 - 729 - 576
max_d = √574
max_d = 23.958297101422
Since max_d = 23.958297101422 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 272 - 252
max_d = √2023 - 144 - 729 - 625
max_d = √525
max_d = 22.912878474779
Since max_d = 22.912878474779 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 272 - 262
max_d = √2023 - 144 - 729 - 676
max_d = √474
max_d = 21.771541057077
Since max_d = 21.771541057077 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 272 - 272
max_d = √2023 - 144 - 729 - 729
max_d = √421
max_d = 20.518284528683
Since max_d = 20.518284528683 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 272 - 282
max_d = √2023 - 144 - 729 - 784
max_d = √366
max_d = 19.131126469709
Since max_d = 19.131126469709 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 272 - 292
max_d = √2023 - 144 - 729 - 841
max_d = √309
max_d = 17.578395831247
Since max_d = 17.578395831247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 272 - 302
max_d = √2023 - 144 - 729 - 900
max_d = √250
max_d = 15.811388300842
Since max_d = 15.811388300842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 272 - 312
max_d = √2023 - 144 - 729 - 961
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 272 - 322
max_d = √2023 - 144 - 729 - 1024
max_d = √126
max_d = 11.224972160322
Since max_d = 11.224972160322 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 272 - 332
max_d = √2023 - 144 - 729 - 1089
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 282)
max_c = Floor(√2023 - 144 - 784)
max_c = Floor(√1095)
max_c = Floor(33.090784215549)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 282)/2 = 547.5
When min_c = 24, then it is c2 = 576 ≥ 547.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 282 - 242
max_d = √2023 - 144 - 784 - 576
max_d = √519
max_d = 22.781571499789
Since max_d = 22.781571499789 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 282 - 252
max_d = √2023 - 144 - 784 - 625
max_d = √470
max_d = 21.679483388679
Since max_d = 21.679483388679 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 282 - 262
max_d = √2023 - 144 - 784 - 676
max_d = √419
max_d = 20.469489490459
Since max_d = 20.469489490459 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 282 - 272
max_d = √2023 - 144 - 784 - 729
max_d = √366
max_d = 19.131126469709
Since max_d = 19.131126469709 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 282 - 282
max_d = √2023 - 144 - 784 - 784
max_d = √311
max_d = 17.635192088548
Since max_d = 17.635192088548 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 282 - 292
max_d = √2023 - 144 - 784 - 841
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 282 - 302
max_d = √2023 - 144 - 784 - 900
max_d = √195
max_d = 13.964240043769
Since max_d = 13.964240043769 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 282 - 312
max_d = √2023 - 144 - 784 - 961
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 282 - 322
max_d = √2023 - 144 - 784 - 1024
max_d = √71
max_d = 8.4261497731764
Since max_d = 8.4261497731764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 282 - 332
max_d = √2023 - 144 - 784 - 1089
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 292)
max_c = Floor(√2023 - 144 - 841)
max_c = Floor(√1038)
max_c = Floor(32.218007387174)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 292)/2 = 519
When min_c = 23, then it is c2 = 529 ≥ 519, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 292 - 232
max_d = √2023 - 144 - 841 - 529
max_d = √509
max_d = 22.561028345357
Since max_d = 22.561028345357 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 292 - 242
max_d = √2023 - 144 - 841 - 576
max_d = √462
max_d = 21.494185260205
Since max_d = 21.494185260205 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 292 - 252
max_d = √2023 - 144 - 841 - 625
max_d = √413
max_d = 20.322401432902
Since max_d = 20.322401432902 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 292 - 262
max_d = √2023 - 144 - 841 - 676
max_d = √362
max_d = 19.02629759044
Since max_d = 19.02629759044 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 292 - 272
max_d = √2023 - 144 - 841 - 729
max_d = √309
max_d = 17.578395831247
Since max_d = 17.578395831247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 292 - 282
max_d = √2023 - 144 - 841 - 784
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 292 - 292
max_d = √2023 - 144 - 841 - 841
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 292 - 302
max_d = √2023 - 144 - 841 - 900
max_d = √138
max_d = 11.747340124471
Since max_d = 11.747340124471 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 292 - 312
max_d = √2023 - 144 - 841 - 961
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 292 - 322
max_d = √2023 - 144 - 841 - 1024
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 302)
max_c = Floor(√2023 - 144 - 900)
max_c = Floor(√979)
max_c = Floor(31.288975694324)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 302)/2 = 489.5
When min_c = 23, then it is c2 = 529 ≥ 489.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 302 - 232
max_d = √2023 - 144 - 900 - 529
max_d = √450
max_d = 21.213203435596
Since max_d = 21.213203435596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 302 - 242
max_d = √2023 - 144 - 900 - 576
max_d = √403
max_d = 20.074859899885
Since max_d = 20.074859899885 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 302 - 252
max_d = √2023 - 144 - 900 - 625
max_d = √354
max_d = 18.814887722227
Since max_d = 18.814887722227 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 302 - 262
max_d = √2023 - 144 - 900 - 676
max_d = √303
max_d = 17.406895185529
Since max_d = 17.406895185529 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 302 - 272
max_d = √2023 - 144 - 900 - 729
max_d = √250
max_d = 15.811388300842
Since max_d = 15.811388300842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 302 - 282
max_d = √2023 - 144 - 900 - 784
max_d = √195
max_d = 13.964240043769
Since max_d = 13.964240043769 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 302 - 292
max_d = √2023 - 144 - 900 - 841
max_d = √138
max_d = 11.747340124471
Since max_d = 11.747340124471 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 302 - 302
max_d = √2023 - 144 - 900 - 900
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 302 - 312
max_d = √2023 - 144 - 900 - 961
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 312)
max_c = Floor(√2023 - 144 - 961)
max_c = Floor(√918)
max_c = Floor(30.298514815086)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 312)/2 = 459
When min_c = 22, then it is c2 = 484 ≥ 459, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 312 - 222
max_d = √2023 - 144 - 961 - 484
max_d = √434
max_d = 20.832666656
Since max_d = 20.832666656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 312 - 232
max_d = √2023 - 144 - 961 - 529
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 312 - 242
max_d = √2023 - 144 - 961 - 576
max_d = √342
max_d = 18.493242008907
Since max_d = 18.493242008907 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 312 - 252
max_d = √2023 - 144 - 961 - 625
max_d = √293
max_d = 17.117242768624
Since max_d = 17.117242768624 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 312 - 262
max_d = √2023 - 144 - 961 - 676
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 312 - 272
max_d = √2023 - 144 - 961 - 729
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 312 - 282
max_d = √2023 - 144 - 961 - 784
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 312 - 292
max_d = √2023 - 144 - 961 - 841
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 312 - 302
max_d = √2023 - 144 - 961 - 900
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 322)
max_c = Floor(√2023 - 144 - 1024)
max_c = Floor(√855)
max_c = Floor(29.240383034427)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 322)/2 = 427.5
When min_c = 21, then it is c2 = 441 ≥ 427.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 322 - 212
max_d = √2023 - 144 - 1024 - 441
max_d = √414
max_d = 20.346989949376
Since max_d = 20.346989949376 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 322 - 222
max_d = √2023 - 144 - 1024 - 484
max_d = √371
max_d = 19.261360284258
Since max_d = 19.261360284258 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 322 - 232
max_d = √2023 - 144 - 1024 - 529
max_d = √326
max_d = 18.055470085268
Since max_d = 18.055470085268 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 322 - 242
max_d = √2023 - 144 - 1024 - 576
max_d = √279
max_d = 16.70329308849
Since max_d = 16.70329308849 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 322 - 252
max_d = √2023 - 144 - 1024 - 625
max_d = √230
max_d = 15.165750888103
Since max_d = 15.165750888103 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 322 - 262
max_d = √2023 - 144 - 1024 - 676
max_d = √179
max_d = 13.37908816026
Since max_d = 13.37908816026 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 322 - 272
max_d = √2023 - 144 - 1024 - 729
max_d = √126
max_d = 11.224972160322
Since max_d = 11.224972160322 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 322 - 282
max_d = √2023 - 144 - 1024 - 784
max_d = √71
max_d = 8.4261497731764
Since max_d = 8.4261497731764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 322 - 292
max_d = √2023 - 144 - 1024 - 841
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 332)
max_c = Floor(√2023 - 144 - 1089)
max_c = Floor(√790)
max_c = Floor(28.10693864511)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 332)/2 = 395
When min_c = 20, then it is c2 = 400 ≥ 395, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 332 - 202
max_d = √2023 - 144 - 1089 - 400
max_d = √390
max_d = 19.748417658131
Since max_d = 19.748417658131 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 332 - 212
max_d = √2023 - 144 - 1089 - 441
max_d = √349
max_d = 18.681541692269
Since max_d = 18.681541692269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 332 - 222
max_d = √2023 - 144 - 1089 - 484
max_d = √306
max_d = 17.492855684536
Since max_d = 17.492855684536 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 332 - 232
max_d = √2023 - 144 - 1089 - 529
max_d = √261
max_d = 16.155494421404
Since max_d = 16.155494421404 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 332 - 242
max_d = √2023 - 144 - 1089 - 576
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 332 - 252
max_d = √2023 - 144 - 1089 - 625
max_d = √165
max_d = 12.845232578665
Since max_d = 12.845232578665 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 332 - 262
max_d = √2023 - 144 - 1089 - 676
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 332 - 272
max_d = √2023 - 144 - 1089 - 729
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 332 - 282
max_d = √2023 - 144 - 1089 - 784
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 342)
max_c = Floor(√2023 - 144 - 1156)
max_c = Floor(√723)
max_c = Floor(26.888659319498)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 342)/2 = 361.5
When min_c = 20, then it is c2 = 400 ≥ 361.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 342 - 202
max_d = √2023 - 144 - 1156 - 400
max_d = √323
max_d = 17.972200755611
Since max_d = 17.972200755611 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 342 - 212
max_d = √2023 - 144 - 1156 - 441
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 342 - 222
max_d = √2023 - 144 - 1156 - 484
max_d = √239
max_d = 15.45962483374
Since max_d = 15.45962483374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 342 - 232
max_d = √2023 - 144 - 1156 - 529
max_d = √194
max_d = 13.928388277184
Since max_d = 13.928388277184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 342 - 242
max_d = √2023 - 144 - 1156 - 576
max_d = √147
max_d = 12.124355652982
Since max_d = 12.124355652982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 342 - 252
max_d = √2023 - 144 - 1156 - 625
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 342 - 262
max_d = √2023 - 144 - 1156 - 676
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 352)
max_c = Floor(√2023 - 144 - 1225)
max_c = Floor(√654)
max_c = Floor(25.573423705089)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 352)/2 = 327
When min_c = 19, then it is c2 = 361 ≥ 327, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 352 - 192
max_d = √2023 - 144 - 1225 - 361
max_d = √293
max_d = 17.117242768624
Since max_d = 17.117242768624 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 352 - 202
max_d = √2023 - 144 - 1225 - 400
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 352 - 212
max_d = √2023 - 144 - 1225 - 441
max_d = √213
max_d = 14.594519519326
Since max_d = 14.594519519326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 352 - 222
max_d = √2023 - 144 - 1225 - 484
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 352 - 232
max_d = √2023 - 144 - 1225 - 529
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 352 - 242
max_d = √2023 - 144 - 1225 - 576
max_d = √78
max_d = 8.8317608663278
Since max_d = 8.8317608663278 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 352 - 252
max_d = √2023 - 144 - 1225 - 625
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 362)
max_c = Floor(√2023 - 144 - 1296)
max_c = Floor(√583)
max_c = Floor(24.145392935299)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 362)/2 = 291.5
When min_c = 18, then it is c2 = 324 ≥ 291.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 362 - 182
max_d = √2023 - 144 - 1296 - 324
max_d = √259
max_d = 16.093476939431
Since max_d = 16.093476939431 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 362 - 192
max_d = √2023 - 144 - 1296 - 361
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 362 - 202
max_d = √2023 - 144 - 1296 - 400
max_d = √183
max_d = 13.527749258469
Since max_d = 13.527749258469 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 362 - 212
max_d = √2023 - 144 - 1296 - 441
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 362 - 222
max_d = √2023 - 144 - 1296 - 484
max_d = √99
max_d = 9.9498743710662
Since max_d = 9.9498743710662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 362 - 232
max_d = √2023 - 144 - 1296 - 529
max_d = √54
max_d = 7.3484692283495
Since max_d = 7.3484692283495 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 362 - 242
max_d = √2023 - 144 - 1296 - 576
max_d = √7
max_d = 2.6457513110646
Since max_d = 2.6457513110646 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 372)
max_c = Floor(√2023 - 144 - 1369)
max_c = Floor(√510)
max_c = Floor(22.583179581272)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 372)/2 = 255
When min_c = 16, then it is c2 = 256 ≥ 255, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 372 - 162
max_d = √2023 - 144 - 1369 - 256
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 372 - 172
max_d = √2023 - 144 - 1369 - 289
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 372 - 182
max_d = √2023 - 144 - 1369 - 324
max_d = √186
max_d = 13.638181696986
Since max_d = 13.638181696986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 372 - 192
max_d = √2023 - 144 - 1369 - 361
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 372 - 202
max_d = √2023 - 144 - 1369 - 400
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 372 - 212
max_d = √2023 - 144 - 1369 - 441
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 372 - 222
max_d = √2023 - 144 - 1369 - 484
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 382)
max_c = Floor(√2023 - 144 - 1444)
max_c = Floor(√435)
max_c = Floor(20.856653614614)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 382)/2 = 217.5
When min_c = 15, then it is c2 = 225 ≥ 217.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 382 - 152
max_d = √2023 - 144 - 1444 - 225
max_d = √210
max_d = 14.491376746189
Since max_d = 14.491376746189 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 382 - 162
max_d = √2023 - 144 - 1444 - 256
max_d = √179
max_d = 13.37908816026
Since max_d = 13.37908816026 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 382 - 172
max_d = √2023 - 144 - 1444 - 289
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 382 - 182
max_d = √2023 - 144 - 1444 - 324
max_d = √111
max_d = 10.535653752853
Since max_d = 10.535653752853 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 382 - 192
max_d = √2023 - 144 - 1444 - 361
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 382 - 202
max_d = √2023 - 144 - 1444 - 400
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 392)
max_c = Floor(√2023 - 144 - 1521)
max_c = Floor(√358)
max_c = Floor(18.920887928425)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 392)/2 = 179
When min_c = 14, then it is c2 = 196 ≥ 179, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 392 - 142
max_d = √2023 - 144 - 1521 - 196
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 392 - 152
max_d = √2023 - 144 - 1521 - 225
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 392 - 162
max_d = √2023 - 144 - 1521 - 256
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 392 - 172
max_d = √2023 - 144 - 1521 - 289
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 392 - 182
max_d = √2023 - 144 - 1521 - 324
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 402)
max_c = Floor(√2023 - 144 - 1600)
max_c = Floor(√279)
max_c = Floor(16.70329308849)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 402)/2 = 139.5
When min_c = 12, then it is c2 = 144 ≥ 139.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 402 - 122
max_d = √2023 - 144 - 1600 - 144
max_d = √135
max_d = 11.618950038622
Since max_d = 11.618950038622 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 402 - 132
max_d = √2023 - 144 - 1600 - 169
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 402 - 142
max_d = √2023 - 144 - 1600 - 196
max_d = √83
max_d = 9.1104335791443
Since max_d = 9.1104335791443 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 402 - 152
max_d = √2023 - 144 - 1600 - 225
max_d = √54
max_d = 7.3484692283495
Since max_d = 7.3484692283495 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 402 - 162
max_d = √2023 - 144 - 1600 - 256
max_d = √23
max_d = 4.7958315233127
Since max_d = 4.7958315233127 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 412)
max_c = Floor(√2023 - 144 - 1681)
max_c = Floor(√198)
max_c = Floor(14.07124727947)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 412)/2 = 99
When min_c = 10, then it is c2 = 100 ≥ 99, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 412 - 102
max_d = √2023 - 144 - 1681 - 100
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 412 - 112
max_d = √2023 - 144 - 1681 - 121
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 412 - 122
max_d = √2023 - 144 - 1681 - 144
max_d = √54
max_d = 7.3484692283495
Since max_d = 7.3484692283495 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 412 - 132
max_d = √2023 - 144 - 1681 - 169
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 412 - 142
max_d = √2023 - 144 - 1681 - 196
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 422)
max_c = Floor(√2023 - 144 - 1764)
max_c = Floor(√115)
max_c = Floor(10.723805294764)
max_c = 10
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 422)/2 = 57.5
When min_c = 8, then it is c2 = 64 ≥ 57.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 422 - 82
max_d = √2023 - 144 - 1764 - 64
max_d = √51
max_d = 7.1414284285429
Since max_d = 7.1414284285429 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 422 - 92
max_d = √2023 - 144 - 1764 - 81
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 422 - 102
max_d = √2023 - 144 - 1764 - 100
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 122 - 432)
max_c = Floor(√2023 - 144 - 1849)
max_c = Floor(√30)
max_c = Floor(5.4772255750517)
max_c = 5
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 122 - 432)/2 = 15
When min_c = 4, then it is c2 = 16 ≥ 15, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 432 - 42
max_d = √2023 - 144 - 1849 - 16
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 122 - 432 - 52
max_d = √2023 - 144 - 1849 - 25
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 132)
max_b = Floor(√2023 - 169)
max_b = Floor(√1854)
max_b = Floor(43.058100283222)
max_b = 43
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 132)/3 = 618
When min_b = 25, then it is b2 = 625 ≥ 618, so min_b = 25
(25, 43)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 252)
max_c = Floor(√2023 - 169 - 625)
max_c = Floor(√1229)
max_c = Floor(35.057096285916)
max_c = 35
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 252)/2 = 614.5
When min_c = 25, then it is c2 = 625 ≥ 614.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 252 - 252
max_d = √2023 - 169 - 625 - 625
max_d = √604
max_d = 24.576411454889
Since max_d = 24.576411454889 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 252 - 262
max_d = √2023 - 169 - 625 - 676
max_d = √553
max_d = 23.51595203261
Since max_d = 23.51595203261 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 252 - 272
max_d = √2023 - 169 - 625 - 729
max_d = √500
max_d = 22.360679774998
Since max_d = 22.360679774998 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 252 - 282
max_d = √2023 - 169 - 625 - 784
max_d = √445
max_d = 21.095023109729
Since max_d = 21.095023109729 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 252 - 292
max_d = √2023 - 169 - 625 - 841
max_d = √388
max_d = 19.697715603592
Since max_d = 19.697715603592 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 252 - 302
max_d = √2023 - 169 - 625 - 900
max_d = √329
max_d = 18.138357147217
Since max_d = 18.138357147217 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 252 - 312
max_d = √2023 - 169 - 625 - 961
max_d = √268
max_d = 16.370705543745
Since max_d = 16.370705543745 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 252 - 322
max_d = √2023 - 169 - 625 - 1024
max_d = √205
max_d = 14.317821063276
Since max_d = 14.317821063276 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 252 - 332
max_d = √2023 - 169 - 625 - 1089
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 252 - 342
max_d = √2023 - 169 - 625 - 1156
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 252 - 352
max_d = √2023 - 169 - 625 - 1225
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (13, 25, 35, 2) is an integer solution proven below
132 + 252 + 352 + 22 → 169 + 625 + 1225 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 262)
max_c = Floor(√2023 - 169 - 676)
max_c = Floor(√1178)
max_c = Floor(34.322004603461)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 262)/2 = 589
When min_c = 25, then it is c2 = 625 ≥ 589, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 262 - 252
max_d = √2023 - 169 - 676 - 625
max_d = √553
max_d = 23.51595203261
Since max_d = 23.51595203261 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 262 - 262
max_d = √2023 - 169 - 676 - 676
max_d = √502
max_d = 22.405356502408
Since max_d = 22.405356502408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 262 - 272
max_d = √2023 - 169 - 676 - 729
max_d = √449
max_d = 21.189620100417
Since max_d = 21.189620100417 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 262 - 282
max_d = √2023 - 169 - 676 - 784
max_d = √394
max_d = 19.849433241279
Since max_d = 19.849433241279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 262 - 292
max_d = √2023 - 169 - 676 - 841
max_d = √337
max_d = 18.357559750686
Since max_d = 18.357559750686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 262 - 302
max_d = √2023 - 169 - 676 - 900
max_d = √278
max_d = 16.673332000533
Since max_d = 16.673332000533 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 262 - 312
max_d = √2023 - 169 - 676 - 961
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 262 - 322
max_d = √2023 - 169 - 676 - 1024
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 262 - 332
max_d = √2023 - 169 - 676 - 1089
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 262 - 342
max_d = √2023 - 169 - 676 - 1156
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 272)
max_c = Floor(√2023 - 169 - 729)
max_c = Floor(√1125)
max_c = Floor(33.541019662497)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 272)/2 = 562.5
When min_c = 24, then it is c2 = 576 ≥ 562.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 272 - 242
max_d = √2023 - 169 - 729 - 576
max_d = √549
max_d = 23.43074902772
Since max_d = 23.43074902772 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 272 - 252
max_d = √2023 - 169 - 729 - 625
max_d = √500
max_d = 22.360679774998
Since max_d = 22.360679774998 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 272 - 262
max_d = √2023 - 169 - 729 - 676
max_d = √449
max_d = 21.189620100417
Since max_d = 21.189620100417 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 272 - 272
max_d = √2023 - 169 - 729 - 729
max_d = √396
max_d = 19.899748742132
Since max_d = 19.899748742132 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 272 - 282
max_d = √2023 - 169 - 729 - 784
max_d = √341
max_d = 18.466185312619
Since max_d = 18.466185312619 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 272 - 292
max_d = √2023 - 169 - 729 - 841
max_d = √284
max_d = 16.852299546353
Since max_d = 16.852299546353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 272 - 302
max_d = √2023 - 169 - 729 - 900
max_d = √225
max_d = 15
Since max_d = 15, then (a, b, c, d) = (13, 27, 30, 15) is an integer solution proven below
132 + 272 + 302 + 152 → 169 + 729 + 900 + 225 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 272 - 312
max_d = √2023 - 169 - 729 - 961
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 272 - 322
max_d = √2023 - 169 - 729 - 1024
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 272 - 332
max_d = √2023 - 169 - 729 - 1089
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (13, 27, 33, 6) is an integer solution proven below
132 + 272 + 332 + 62 → 169 + 729 + 1089 + 36 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 282)
max_c = Floor(√2023 - 169 - 784)
max_c = Floor(√1070)
max_c = Floor(32.710854467592)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 282)/2 = 535
When min_c = 24, then it is c2 = 576 ≥ 535, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 282 - 242
max_d = √2023 - 169 - 784 - 576
max_d = √494
max_d = 22.226110770893
Since max_d = 22.226110770893 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 282 - 252
max_d = √2023 - 169 - 784 - 625
max_d = √445
max_d = 21.095023109729
Since max_d = 21.095023109729 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 282 - 262
max_d = √2023 - 169 - 784 - 676
max_d = √394
max_d = 19.849433241279
Since max_d = 19.849433241279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 282 - 272
max_d = √2023 - 169 - 784 - 729
max_d = √341
max_d = 18.466185312619
Since max_d = 18.466185312619 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 282 - 282
max_d = √2023 - 169 - 784 - 784
max_d = √286
max_d = 16.911534525288
Since max_d = 16.911534525288 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 282 - 292
max_d = √2023 - 169 - 784 - 841
max_d = √229
max_d = 15.132745950422
Since max_d = 15.132745950422 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 282 - 302
max_d = √2023 - 169 - 784 - 900
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 282 - 312
max_d = √2023 - 169 - 784 - 961
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 282 - 322
max_d = √2023 - 169 - 784 - 1024
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 292)
max_c = Floor(√2023 - 169 - 841)
max_c = Floor(√1013)
max_c = Floor(31.827660925679)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 292)/2 = 506.5
When min_c = 23, then it is c2 = 529 ≥ 506.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 292 - 232
max_d = √2023 - 169 - 841 - 529
max_d = √484
max_d = 22
Since max_d = 22, then (a, b, c, d) = (13, 29, 23, 22) is an integer solution proven below
132 + 292 + 232 + 222 → 169 + 841 + 529 + 484 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 292 - 242
max_d = √2023 - 169 - 841 - 576
max_d = √437
max_d = 20.904544960367
Since max_d = 20.904544960367 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 292 - 252
max_d = √2023 - 169 - 841 - 625
max_d = √388
max_d = 19.697715603592
Since max_d = 19.697715603592 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 292 - 262
max_d = √2023 - 169 - 841 - 676
max_d = √337
max_d = 18.357559750686
Since max_d = 18.357559750686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 292 - 272
max_d = √2023 - 169 - 841 - 729
max_d = √284
max_d = 16.852299546353
Since max_d = 16.852299546353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 292 - 282
max_d = √2023 - 169 - 841 - 784
max_d = √229
max_d = 15.132745950422
Since max_d = 15.132745950422 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 292 - 292
max_d = √2023 - 169 - 841 - 841
max_d = √172
max_d = 13.114877048604
Since max_d = 13.114877048604 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 292 - 302
max_d = √2023 - 169 - 841 - 900
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 292 - 312
max_d = √2023 - 169 - 841 - 961
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 302)
max_c = Floor(√2023 - 169 - 900)
max_c = Floor(√954)
max_c = Floor(30.886890422961)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 302)/2 = 477
When min_c = 22, then it is c2 = 484 ≥ 477, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 302 - 222
max_d = √2023 - 169 - 900 - 484
max_d = √470
max_d = 21.679483388679
Since max_d = 21.679483388679 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 302 - 232
max_d = √2023 - 169 - 900 - 529
max_d = √425
max_d = 20.615528128088
Since max_d = 20.615528128088 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 302 - 242
max_d = √2023 - 169 - 900 - 576
max_d = √378
max_d = 19.442222095224
Since max_d = 19.442222095224 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 302 - 252
max_d = √2023 - 169 - 900 - 625
max_d = √329
max_d = 18.138357147217
Since max_d = 18.138357147217 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 302 - 262
max_d = √2023 - 169 - 900 - 676
max_d = √278
max_d = 16.673332000533
Since max_d = 16.673332000533 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 302 - 272
max_d = √2023 - 169 - 900 - 729
max_d = √225
max_d = 15
Since max_d = 15, then (a, b, c, d) = (13, 30, 27, 15) is an integer solution proven below
132 + 302 + 272 + 152 → 169 + 900 + 729 + 225 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 302 - 282
max_d = √2023 - 169 - 900 - 784
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 302 - 292
max_d = √2023 - 169 - 900 - 841
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 302 - 302
max_d = √2023 - 169 - 900 - 900
max_d = √54
max_d = 7.3484692283495
Since max_d = 7.3484692283495 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 312)
max_c = Floor(√2023 - 169 - 961)
max_c = Floor(√893)
max_c = Floor(29.883105594968)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 312)/2 = 446.5
When min_c = 22, then it is c2 = 484 ≥ 446.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 312 - 222
max_d = √2023 - 169 - 961 - 484
max_d = √409
max_d = 20.223748416157
Since max_d = 20.223748416157 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 312 - 232
max_d = √2023 - 169 - 961 - 529
max_d = √364
max_d = 19.078784028339
Since max_d = 19.078784028339 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 312 - 242
max_d = √2023 - 169 - 961 - 576
max_d = √317
max_d = 17.804493814765
Since max_d = 17.804493814765 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 312 - 252
max_d = √2023 - 169 - 961 - 625
max_d = √268
max_d = 16.370705543745
Since max_d = 16.370705543745 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 312 - 262
max_d = √2023 - 169 - 961 - 676
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 312 - 272
max_d = √2023 - 169 - 961 - 729
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 312 - 282
max_d = √2023 - 169 - 961 - 784
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 312 - 292
max_d = √2023 - 169 - 961 - 841
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 322)
max_c = Floor(√2023 - 169 - 1024)
max_c = Floor(√830)
max_c = Floor(28.809720581776)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 322)/2 = 415
When min_c = 21, then it is c2 = 441 ≥ 415, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 322 - 212
max_d = √2023 - 169 - 1024 - 441
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 322 - 222
max_d = √2023 - 169 - 1024 - 484
max_d = √346
max_d = 18.601075237738
Since max_d = 18.601075237738 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 322 - 232
max_d = √2023 - 169 - 1024 - 529
max_d = √301
max_d = 17.349351572897
Since max_d = 17.349351572897 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 322 - 242
max_d = √2023 - 169 - 1024 - 576
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 322 - 252
max_d = √2023 - 169 - 1024 - 625
max_d = √205
max_d = 14.317821063276
Since max_d = 14.317821063276 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 322 - 262
max_d = √2023 - 169 - 1024 - 676
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 322 - 272
max_d = √2023 - 169 - 1024 - 729
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 322 - 282
max_d = √2023 - 169 - 1024 - 784
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 332)
max_c = Floor(√2023 - 169 - 1089)
max_c = Floor(√765)
max_c = Floor(27.658633371879)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 332)/2 = 382.5
When min_c = 20, then it is c2 = 400 ≥ 382.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 332 - 202
max_d = √2023 - 169 - 1089 - 400
max_d = √365
max_d = 19.104973174543
Since max_d = 19.104973174543 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 332 - 212
max_d = √2023 - 169 - 1089 - 441
max_d = √324
max_d = 18
Since max_d = 18, then (a, b, c, d) = (13, 33, 21, 18) is an integer solution proven below
132 + 332 + 212 + 182 → 169 + 1089 + 441 + 324 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 332 - 222
max_d = √2023 - 169 - 1089 - 484
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 332 - 232
max_d = √2023 - 169 - 1089 - 529
max_d = √236
max_d = 15.362291495737
Since max_d = 15.362291495737 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 332 - 242
max_d = √2023 - 169 - 1089 - 576
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 332 - 252
max_d = √2023 - 169 - 1089 - 625
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 332 - 262
max_d = √2023 - 169 - 1089 - 676
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 332 - 272
max_d = √2023 - 169 - 1089 - 729
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (13, 33, 27, 6) is an integer solution proven below
132 + 332 + 272 + 62 → 169 + 1089 + 729 + 36 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 342)
max_c = Floor(√2023 - 169 - 1156)
max_c = Floor(√698)
max_c = Floor(26.419689627246)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 342)/2 = 349
When min_c = 19, then it is c2 = 361 ≥ 349, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 342 - 192
max_d = √2023 - 169 - 1156 - 361
max_d = √337
max_d = 18.357559750686
Since max_d = 18.357559750686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 342 - 202
max_d = √2023 - 169 - 1156 - 400
max_d = √298
max_d = 17.262676501632
Since max_d = 17.262676501632 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 342 - 212
max_d = √2023 - 169 - 1156 - 441
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 342 - 222
max_d = √2023 - 169 - 1156 - 484
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 342 - 232
max_d = √2023 - 169 - 1156 - 529
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (13, 34, 23, 13) is an integer solution proven below
132 + 342 + 232 + 132 → 169 + 1156 + 529 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 342 - 242
max_d = √2023 - 169 - 1156 - 576
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 342 - 252
max_d = √2023 - 169 - 1156 - 625
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 342 - 262
max_d = √2023 - 169 - 1156 - 676
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 352)
max_c = Floor(√2023 - 169 - 1225)
max_c = Floor(√629)
max_c = Floor(25.079872407969)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 352)/2 = 314.5
When min_c = 18, then it is c2 = 324 ≥ 314.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 352 - 182
max_d = √2023 - 169 - 1225 - 324
max_d = √305
max_d = 17.464249196573
Since max_d = 17.464249196573 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 352 - 192
max_d = √2023 - 169 - 1225 - 361
max_d = √268
max_d = 16.370705543745
Since max_d = 16.370705543745 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 352 - 202
max_d = √2023 - 169 - 1225 - 400
max_d = √229
max_d = 15.132745950422
Since max_d = 15.132745950422 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 352 - 212
max_d = √2023 - 169 - 1225 - 441
max_d = √188
max_d = 13.711309200802
Since max_d = 13.711309200802 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 352 - 222
max_d = √2023 - 169 - 1225 - 484
max_d = √145
max_d = 12.041594578792
Since max_d = 12.041594578792 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 352 - 232
max_d = √2023 - 169 - 1225 - 529
max_d = √100
max_d = 10
Since max_d = 10, then (a, b, c, d) = (13, 35, 23, 10) is an integer solution proven below
132 + 352 + 232 + 102 → 169 + 1225 + 529 + 100 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 352 - 242
max_d = √2023 - 169 - 1225 - 576
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 352 - 252
max_d = √2023 - 169 - 1225 - 625
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (13, 35, 25, 2) is an integer solution proven below
132 + 352 + 252 + 22 → 169 + 1225 + 625 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 362)
max_c = Floor(√2023 - 169 - 1296)
max_c = Floor(√558)
max_c = Floor(23.622023622035)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 362)/2 = 279
When min_c = 17, then it is c2 = 289 ≥ 279, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 362 - 172
max_d = √2023 - 169 - 1296 - 289
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 362 - 182
max_d = √2023 - 169 - 1296 - 324
max_d = √234
max_d = 15.297058540778
Since max_d = 15.297058540778 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 362 - 192
max_d = √2023 - 169 - 1296 - 361
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 362 - 202
max_d = √2023 - 169 - 1296 - 400
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 362 - 212
max_d = √2023 - 169 - 1296 - 441
max_d = √117
max_d = 10.816653826392
Since max_d = 10.816653826392 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 362 - 222
max_d = √2023 - 169 - 1296 - 484
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 362 - 232
max_d = √2023 - 169 - 1296 - 529
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 372)
max_c = Floor(√2023 - 169 - 1369)
max_c = Floor(√485)
max_c = Floor(22.022715545545)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 372)/2 = 242.5
When min_c = 16, then it is c2 = 256 ≥ 242.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 372 - 162
max_d = √2023 - 169 - 1369 - 256
max_d = √229
max_d = 15.132745950422
Since max_d = 15.132745950422 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 372 - 172
max_d = √2023 - 169 - 1369 - 289
max_d = √196
max_d = 14
Since max_d = 14, then (a, b, c, d) = (13, 37, 17, 14) is an integer solution proven below
132 + 372 + 172 + 142 → 169 + 1369 + 289 + 196 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 372 - 182
max_d = √2023 - 169 - 1369 - 324
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 372 - 192
max_d = √2023 - 169 - 1369 - 361
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 372 - 202
max_d = √2023 - 169 - 1369 - 400
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 372 - 212
max_d = √2023 - 169 - 1369 - 441
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 372 - 222
max_d = √2023 - 169 - 1369 - 484
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (13, 37, 22, 1) is an integer solution proven below
132 + 372 + 222 + 12 → 169 + 1369 + 484 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 382)
max_c = Floor(√2023 - 169 - 1444)
max_c = Floor(√410)
max_c = Floor(20.248456731317)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 382)/2 = 205
When min_c = 15, then it is c2 = 225 ≥ 205, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 382 - 152
max_d = √2023 - 169 - 1444 - 225
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 382 - 162
max_d = √2023 - 169 - 1444 - 256
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 382 - 172
max_d = √2023 - 169 - 1444 - 289
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (13, 38, 17, 11) is an integer solution proven below
132 + 382 + 172 + 112 → 169 + 1444 + 289 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 382 - 182
max_d = √2023 - 169 - 1444 - 324
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 382 - 192
max_d = √2023 - 169 - 1444 - 361
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (13, 38, 19, 7) is an integer solution proven below
132 + 382 + 192 + 72 → 169 + 1444 + 361 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 382 - 202
max_d = √2023 - 169 - 1444 - 400
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 392)
max_c = Floor(√2023 - 169 - 1521)
max_c = Floor(√333)
max_c = Floor(18.248287590895)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 392)/2 = 166.5
When min_c = 13, then it is c2 = 169 ≥ 166.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 392 - 132
max_d = √2023 - 169 - 1521 - 169
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 392 - 142
max_d = √2023 - 169 - 1521 - 196
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 392 - 152
max_d = √2023 - 169 - 1521 - 225
max_d = √108
max_d = 10.392304845413
Since max_d = 10.392304845413 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 392 - 162
max_d = √2023 - 169 - 1521 - 256
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 392 - 172
max_d = √2023 - 169 - 1521 - 289
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 392 - 182
max_d = √2023 - 169 - 1521 - 324
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (13, 39, 18, 3) is an integer solution proven below
132 + 392 + 182 + 32 → 169 + 1521 + 324 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 402)
max_c = Floor(√2023 - 169 - 1600)
max_c = Floor(√254)
max_c = Floor(15.937377450509)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 402)/2 = 127
When min_c = 12, then it is c2 = 144 ≥ 127, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 402 - 122
max_d = √2023 - 169 - 1600 - 144
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 402 - 132
max_d = √2023 - 169 - 1600 - 169
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 402 - 142
max_d = √2023 - 169 - 1600 - 196
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 402 - 152
max_d = √2023 - 169 - 1600 - 225
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 412)
max_c = Floor(√2023 - 169 - 1681)
max_c = Floor(√173)
max_c = Floor(13.152946437966)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 412)/2 = 86.5
When min_c = 10, then it is c2 = 100 ≥ 86.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 412 - 102
max_d = √2023 - 169 - 1681 - 100
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 412 - 112
max_d = √2023 - 169 - 1681 - 121
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 412 - 122
max_d = √2023 - 169 - 1681 - 144
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 412 - 132
max_d = √2023 - 169 - 1681 - 169
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (13, 41, 13, 2) is an integer solution proven below
132 + 412 + 132 + 22 → 169 + 1681 + 169 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 422)
max_c = Floor(√2023 - 169 - 1764)
max_c = Floor(√90)
max_c = Floor(9.4868329805051)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 422)/2 = 45
When min_c = 7, then it is c2 = 49 ≥ 45, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 422 - 72
max_d = √2023 - 169 - 1764 - 49
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 422 - 82
max_d = √2023 - 169 - 1764 - 64
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 422 - 92
max_d = √2023 - 169 - 1764 - 81
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (13, 42, 9, 3) is an integer solution proven below
132 + 422 + 92 + 32 → 169 + 1764 + 81 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 132 - 432)
max_c = Floor(√2023 - 169 - 1849)
max_c = Floor(√5)
max_c = Floor(2.2360679774998)
max_c = 2
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 132 - 432)/2 = 2.5
When min_c = 2, then it is c2 = 4 ≥ 2.5, so min_c = 2
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 132 - 432 - 22
max_d = √2023 - 169 - 1849 - 4
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (13, 43, 2, 1) is an integer solution proven below
132 + 432 + 22 + 12 → 169 + 1849 + 4 + 1 = 2023
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 142)
max_b = Floor(√2023 - 196)
max_b = Floor(√1827)
max_b = Floor(42.743420546325)
max_b = 42
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 142)/3 = 609
When min_b = 25, then it is b2 = 625 ≥ 609, so min_b = 25
(25, 42)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 252)
max_c = Floor(√2023 - 196 - 625)
max_c = Floor(√1202)
max_c = Floor(34.669871646719)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 252)/2 = 601
When min_c = 25, then it is c2 = 625 ≥ 601, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 252 - 252
max_d = √2023 - 196 - 625 - 625
max_d = √577
max_d = 24.020824298929
Since max_d = 24.020824298929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 252 - 262
max_d = √2023 - 196 - 625 - 676
max_d = √526
max_d = 22.934689882359
Since max_d = 22.934689882359 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 252 - 272
max_d = √2023 - 196 - 625 - 729
max_d = √473
max_d = 21.748563170932
Since max_d = 21.748563170932 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 252 - 282
max_d = √2023 - 196 - 625 - 784
max_d = √418
max_d = 20.445048300261
Since max_d = 20.445048300261 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 252 - 292
max_d = √2023 - 196 - 625 - 841
max_d = √361
max_d = 19
Since max_d = 19, then (a, b, c, d) = (14, 25, 29, 19) is an integer solution proven below
142 + 252 + 292 + 192 → 196 + 625 + 841 + 361 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 252 - 302
max_d = √2023 - 196 - 625 - 900
max_d = √302
max_d = 17.378147196983
Since max_d = 17.378147196983 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 252 - 312
max_d = √2023 - 196 - 625 - 961
max_d = √241
max_d = 15.52417469626
Since max_d = 15.52417469626 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 252 - 322
max_d = √2023 - 196 - 625 - 1024
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 252 - 332
max_d = √2023 - 196 - 625 - 1089
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 252 - 342
max_d = √2023 - 196 - 625 - 1156
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 262)
max_c = Floor(√2023 - 196 - 676)
max_c = Floor(√1151)
max_c = Floor(33.926390907375)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 262)/2 = 575.5
When min_c = 24, then it is c2 = 576 ≥ 575.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 262 - 242
max_d = √2023 - 196 - 676 - 576
max_d = √575
max_d = 23.979157616564
Since max_d = 23.979157616564 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 262 - 252
max_d = √2023 - 196 - 676 - 625
max_d = √526
max_d = 22.934689882359
Since max_d = 22.934689882359 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 262 - 262
max_d = √2023 - 196 - 676 - 676
max_d = √475
max_d = 21.794494717703
Since max_d = 21.794494717703 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 262 - 272
max_d = √2023 - 196 - 676 - 729
max_d = √422
max_d = 20.542638584174
Since max_d = 20.542638584174 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 262 - 282
max_d = √2023 - 196 - 676 - 784
max_d = √367
max_d = 19.157244060668
Since max_d = 19.157244060668 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 262 - 292
max_d = √2023 - 196 - 676 - 841
max_d = √310
max_d = 17.606816861659
Since max_d = 17.606816861659 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 262 - 302
max_d = √2023 - 196 - 676 - 900
max_d = √251
max_d = 15.842979517755
Since max_d = 15.842979517755 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 262 - 312
max_d = √2023 - 196 - 676 - 961
max_d = √190
max_d = 13.78404875209
Since max_d = 13.78404875209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 262 - 322
max_d = √2023 - 196 - 676 - 1024
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 262 - 332
max_d = √2023 - 196 - 676 - 1089
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 272)
max_c = Floor(√2023 - 196 - 729)
max_c = Floor(√1098)
max_c = Floor(33.136083051562)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 272)/2 = 549
When min_c = 24, then it is c2 = 576 ≥ 549, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 272 - 242
max_d = √2023 - 196 - 729 - 576
max_d = √522
max_d = 22.847319317592
Since max_d = 22.847319317592 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 272 - 252
max_d = √2023 - 196 - 729 - 625
max_d = √473
max_d = 21.748563170932
Since max_d = 21.748563170932 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 272 - 262
max_d = √2023 - 196 - 729 - 676
max_d = √422
max_d = 20.542638584174
Since max_d = 20.542638584174 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 272 - 272
max_d = √2023 - 196 - 729 - 729
max_d = √369
max_d = 19.209372712299
Since max_d = 19.209372712299 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 272 - 282
max_d = √2023 - 196 - 729 - 784
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 272 - 292
max_d = √2023 - 196 - 729 - 841
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 272 - 302
max_d = √2023 - 196 - 729 - 900
max_d = √198
max_d = 14.07124727947
Since max_d = 14.07124727947 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 272 - 312
max_d = √2023 - 196 - 729 - 961
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 272 - 322
max_d = √2023 - 196 - 729 - 1024
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 272 - 332
max_d = √2023 - 196 - 729 - 1089
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (14, 27, 33, 3) is an integer solution proven below
142 + 272 + 332 + 32 → 196 + 729 + 1089 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 282)
max_c = Floor(√2023 - 196 - 784)
max_c = Floor(√1043)
max_c = Floor(32.29551052391)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 282)/2 = 521.5
When min_c = 23, then it is c2 = 529 ≥ 521.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 282 - 232
max_d = √2023 - 196 - 784 - 529
max_d = √514
max_d = 22.671568097509
Since max_d = 22.671568097509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 282 - 242
max_d = √2023 - 196 - 784 - 576
max_d = √467
max_d = 21.610182784974
Since max_d = 21.610182784974 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 282 - 252
max_d = √2023 - 196 - 784 - 625
max_d = √418
max_d = 20.445048300261
Since max_d = 20.445048300261 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 282 - 262
max_d = √2023 - 196 - 784 - 676
max_d = √367
max_d = 19.157244060668
Since max_d = 19.157244060668 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 282 - 272
max_d = √2023 - 196 - 784 - 729
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 282 - 282
max_d = √2023 - 196 - 784 - 784
max_d = √259
max_d = 16.093476939431
Since max_d = 16.093476939431 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 282 - 292
max_d = √2023 - 196 - 784 - 841
max_d = √202
max_d = 14.212670403552
Since max_d = 14.212670403552 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 282 - 302
max_d = √2023 - 196 - 784 - 900
max_d = √143
max_d = 11.958260743101
Since max_d = 11.958260743101 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 282 - 312
max_d = √2023 - 196 - 784 - 961
max_d = √82
max_d = 9.0553851381374
Since max_d = 9.0553851381374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 282 - 322
max_d = √2023 - 196 - 784 - 1024
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 292)
max_c = Floor(√2023 - 196 - 841)
max_c = Floor(√986)
max_c = Floor(31.400636936215)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 292)/2 = 493
When min_c = 23, then it is c2 = 529 ≥ 493, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 292 - 232
max_d = √2023 - 196 - 841 - 529
max_d = √457
max_d = 21.377558326432
Since max_d = 21.377558326432 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 292 - 242
max_d = √2023 - 196 - 841 - 576
max_d = √410
max_d = 20.248456731317
Since max_d = 20.248456731317 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 292 - 252
max_d = √2023 - 196 - 841 - 625
max_d = √361
max_d = 19
Since max_d = 19, then (a, b, c, d) = (14, 29, 25, 19) is an integer solution proven below
142 + 292 + 252 + 192 → 196 + 841 + 625 + 361 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 292 - 262
max_d = √2023 - 196 - 841 - 676
max_d = √310
max_d = 17.606816861659
Since max_d = 17.606816861659 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 292 - 272
max_d = √2023 - 196 - 841 - 729
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 292 - 282
max_d = √2023 - 196 - 841 - 784
max_d = √202
max_d = 14.212670403552
Since max_d = 14.212670403552 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 292 - 292
max_d = √2023 - 196 - 841 - 841
max_d = √145
max_d = 12.041594578792
Since max_d = 12.041594578792 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 292 - 302
max_d = √2023 - 196 - 841 - 900
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 292 - 312
max_d = √2023 - 196 - 841 - 961
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (14, 29, 31, 5) is an integer solution proven below
142 + 292 + 312 + 52 → 196 + 841 + 961 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 302)
max_c = Floor(√2023 - 196 - 900)
max_c = Floor(√927)
max_c = Floor(30.446674695277)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 302)/2 = 463.5
When min_c = 22, then it is c2 = 484 ≥ 463.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 302 - 222
max_d = √2023 - 196 - 900 - 484
max_d = √443
max_d = 21.047565179849
Since max_d = 21.047565179849 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 302 - 232
max_d = √2023 - 196 - 900 - 529
max_d = √398
max_d = 19.94993734326
Since max_d = 19.94993734326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 302 - 242
max_d = √2023 - 196 - 900 - 576
max_d = √351
max_d = 18.734993995195
Since max_d = 18.734993995195 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 302 - 252
max_d = √2023 - 196 - 900 - 625
max_d = √302
max_d = 17.378147196983
Since max_d = 17.378147196983 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 302 - 262
max_d = √2023 - 196 - 900 - 676
max_d = √251
max_d = 15.842979517755
Since max_d = 15.842979517755 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 302 - 272
max_d = √2023 - 196 - 900 - 729
max_d = √198
max_d = 14.07124727947
Since max_d = 14.07124727947 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 302 - 282
max_d = √2023 - 196 - 900 - 784
max_d = √143
max_d = 11.958260743101
Since max_d = 11.958260743101 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 302 - 292
max_d = √2023 - 196 - 900 - 841
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 302 - 302
max_d = √2023 - 196 - 900 - 900
max_d = √27
max_d = 5.1961524227066
Since max_d = 5.1961524227066 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 312)
max_c = Floor(√2023 - 196 - 961)
max_c = Floor(√866)
max_c = Floor(29.427877939124)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 312)/2 = 433
When min_c = 21, then it is c2 = 441 ≥ 433, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 312 - 212
max_d = √2023 - 196 - 961 - 441
max_d = √425
max_d = 20.615528128088
Since max_d = 20.615528128088 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 312 - 222
max_d = √2023 - 196 - 961 - 484
max_d = √382
max_d = 19.544820285692
Since max_d = 19.544820285692 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 312 - 232
max_d = √2023 - 196 - 961 - 529
max_d = √337
max_d = 18.357559750686
Since max_d = 18.357559750686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 312 - 242
max_d = √2023 - 196 - 961 - 576
max_d = √290
max_d = 17.029386365926
Since max_d = 17.029386365926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 312 - 252
max_d = √2023 - 196 - 961 - 625
max_d = √241
max_d = 15.52417469626
Since max_d = 15.52417469626 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 312 - 262
max_d = √2023 - 196 - 961 - 676
max_d = √190
max_d = 13.78404875209
Since max_d = 13.78404875209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 312 - 272
max_d = √2023 - 196 - 961 - 729
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 312 - 282
max_d = √2023 - 196 - 961 - 784
max_d = √82
max_d = 9.0553851381374
Since max_d = 9.0553851381374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 312 - 292
max_d = √2023 - 196 - 961 - 841
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (14, 31, 29, 5) is an integer solution proven below
142 + 312 + 292 + 52 → 196 + 961 + 841 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 322)
max_c = Floor(√2023 - 196 - 1024)
max_c = Floor(√803)
max_c = Floor(28.33725463061)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 322)/2 = 401.5
When min_c = 21, then it is c2 = 441 ≥ 401.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 322 - 212
max_d = √2023 - 196 - 1024 - 441
max_d = √362
max_d = 19.02629759044
Since max_d = 19.02629759044 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 322 - 222
max_d = √2023 - 196 - 1024 - 484
max_d = √319
max_d = 17.860571099492
Since max_d = 17.860571099492 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 322 - 232
max_d = √2023 - 196 - 1024 - 529
max_d = √274
max_d = 16.552945357247
Since max_d = 16.552945357247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 322 - 242
max_d = √2023 - 196 - 1024 - 576
max_d = √227
max_d = 15.066519173319
Since max_d = 15.066519173319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 322 - 252
max_d = √2023 - 196 - 1024 - 625
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 322 - 262
max_d = √2023 - 196 - 1024 - 676
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 322 - 272
max_d = √2023 - 196 - 1024 - 729
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 322 - 282
max_d = √2023 - 196 - 1024 - 784
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 332)
max_c = Floor(√2023 - 196 - 1089)
max_c = Floor(√738)
max_c = Floor(27.166155414412)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 332)/2 = 369
When min_c = 20, then it is c2 = 400 ≥ 369, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 332 - 202
max_d = √2023 - 196 - 1089 - 400
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 332 - 212
max_d = √2023 - 196 - 1089 - 441
max_d = √297
max_d = 17.233687939614
Since max_d = 17.233687939614 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 332 - 222
max_d = √2023 - 196 - 1089 - 484
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 332 - 232
max_d = √2023 - 196 - 1089 - 529
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 332 - 242
max_d = √2023 - 196 - 1089 - 576
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 332 - 252
max_d = √2023 - 196 - 1089 - 625
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 332 - 262
max_d = √2023 - 196 - 1089 - 676
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 332 - 272
max_d = √2023 - 196 - 1089 - 729
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (14, 33, 27, 3) is an integer solution proven below
142 + 332 + 272 + 32 → 196 + 1089 + 729 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 342)
max_c = Floor(√2023 - 196 - 1156)
max_c = Floor(√671)
max_c = Floor(25.903667693977)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 342)/2 = 335.5
When min_c = 19, then it is c2 = 361 ≥ 335.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 342 - 192
max_d = √2023 - 196 - 1156 - 361
max_d = √310
max_d = 17.606816861659
Since max_d = 17.606816861659 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 342 - 202
max_d = √2023 - 196 - 1156 - 400
max_d = √271
max_d = 16.462077633154
Since max_d = 16.462077633154 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 342 - 212
max_d = √2023 - 196 - 1156 - 441
max_d = √230
max_d = 15.165750888103
Since max_d = 15.165750888103 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 342 - 222
max_d = √2023 - 196 - 1156 - 484
max_d = √187
max_d = 13.674794331177
Since max_d = 13.674794331177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 342 - 232
max_d = √2023 - 196 - 1156 - 529
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 342 - 242
max_d = √2023 - 196 - 1156 - 576
max_d = √95
max_d = 9.746794344809
Since max_d = 9.746794344809 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 342 - 252
max_d = √2023 - 196 - 1156 - 625
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 352)
max_c = Floor(√2023 - 196 - 1225)
max_c = Floor(√602)
max_c = Floor(24.535688292771)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 352)/2 = 301
When min_c = 18, then it is c2 = 324 ≥ 301, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 352 - 182
max_d = √2023 - 196 - 1225 - 324
max_d = √278
max_d = 16.673332000533
Since max_d = 16.673332000533 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 352 - 192
max_d = √2023 - 196 - 1225 - 361
max_d = √241
max_d = 15.52417469626
Since max_d = 15.52417469626 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 352 - 202
max_d = √2023 - 196 - 1225 - 400
max_d = √202
max_d = 14.212670403552
Since max_d = 14.212670403552 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 352 - 212
max_d = √2023 - 196 - 1225 - 441
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 352 - 222
max_d = √2023 - 196 - 1225 - 484
max_d = √118
max_d = 10.8627804912
Since max_d = 10.8627804912 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 352 - 232
max_d = √2023 - 196 - 1225 - 529
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 352 - 242
max_d = √2023 - 196 - 1225 - 576
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 362)
max_c = Floor(√2023 - 196 - 1296)
max_c = Floor(√531)
max_c = Floor(23.043437243606)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 362)/2 = 265.5
When min_c = 17, then it is c2 = 289 ≥ 265.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 362 - 172
max_d = √2023 - 196 - 1296 - 289
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 362 - 182
max_d = √2023 - 196 - 1296 - 324
max_d = √207
max_d = 14.387494569938
Since max_d = 14.387494569938 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 362 - 192
max_d = √2023 - 196 - 1296 - 361
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 362 - 202
max_d = √2023 - 196 - 1296 - 400
max_d = √131
max_d = 11.44552314226
Since max_d = 11.44552314226 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 362 - 212
max_d = √2023 - 196 - 1296 - 441
max_d = √90
max_d = 9.4868329805051
Since max_d = 9.4868329805051 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 362 - 222
max_d = √2023 - 196 - 1296 - 484
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 362 - 232
max_d = √2023 - 196 - 1296 - 529
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 372)
max_c = Floor(√2023 - 196 - 1369)
max_c = Floor(√458)
max_c = Floor(21.400934559033)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 372)/2 = 229
When min_c = 16, then it is c2 = 256 ≥ 229, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 372 - 162
max_d = √2023 - 196 - 1369 - 256
max_d = √202
max_d = 14.212670403552
Since max_d = 14.212670403552 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 372 - 172
max_d = √2023 - 196 - 1369 - 289
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (14, 37, 17, 13) is an integer solution proven below
142 + 372 + 172 + 132 → 196 + 1369 + 289 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 372 - 182
max_d = √2023 - 196 - 1369 - 324
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 372 - 192
max_d = √2023 - 196 - 1369 - 361
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 372 - 202
max_d = √2023 - 196 - 1369 - 400
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 372 - 212
max_d = √2023 - 196 - 1369 - 441
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 382)
max_c = Floor(√2023 - 196 - 1444)
max_c = Floor(√383)
max_c = Floor(19.570385790781)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 382)/2 = 191.5
When min_c = 14, then it is c2 = 196 ≥ 191.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 382 - 142
max_d = √2023 - 196 - 1444 - 196
max_d = √187
max_d = 13.674794331177
Since max_d = 13.674794331177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 382 - 152
max_d = √2023 - 196 - 1444 - 225
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 382 - 162
max_d = √2023 - 196 - 1444 - 256
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 382 - 172
max_d = √2023 - 196 - 1444 - 289
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 382 - 182
max_d = √2023 - 196 - 1444 - 324
max_d = √59
max_d = 7.6811457478686
Since max_d = 7.6811457478686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 382 - 192
max_d = √2023 - 196 - 1444 - 361
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 392)
max_c = Floor(√2023 - 196 - 1521)
max_c = Floor(√306)
max_c = Floor(17.492855684536)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 392)/2 = 153
When min_c = 13, then it is c2 = 169 ≥ 153, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 392 - 132
max_d = √2023 - 196 - 1521 - 169
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 392 - 142
max_d = √2023 - 196 - 1521 - 196
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 392 - 152
max_d = √2023 - 196 - 1521 - 225
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (14, 39, 15, 9) is an integer solution proven below
142 + 392 + 152 + 92 → 196 + 1521 + 225 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 392 - 162
max_d = √2023 - 196 - 1521 - 256
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 392 - 172
max_d = √2023 - 196 - 1521 - 289
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 402)
max_c = Floor(√2023 - 196 - 1600)
max_c = Floor(√227)
max_c = Floor(15.066519173319)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 402)/2 = 113.5
When min_c = 11, then it is c2 = 121 ≥ 113.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 402 - 112
max_d = √2023 - 196 - 1600 - 121
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 402 - 122
max_d = √2023 - 196 - 1600 - 144
max_d = √83
max_d = 9.1104335791443
Since max_d = 9.1104335791443 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 402 - 132
max_d = √2023 - 196 - 1600 - 169
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 402 - 142
max_d = √2023 - 196 - 1600 - 196
max_d = √31
max_d = 5.56776436283
Since max_d = 5.56776436283 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 402 - 152
max_d = √2023 - 196 - 1600 - 225
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 412)
max_c = Floor(√2023 - 196 - 1681)
max_c = Floor(√146)
max_c = Floor(12.083045973595)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 412)/2 = 73
When min_c = 9, then it is c2 = 81 ≥ 73, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 412 - 92
max_d = √2023 - 196 - 1681 - 81
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 412 - 102
max_d = √2023 - 196 - 1681 - 100
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 412 - 112
max_d = √2023 - 196 - 1681 - 121
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (14, 41, 11, 5) is an integer solution proven below
142 + 412 + 112 + 52 → 196 + 1681 + 121 + 25 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 412 - 122
max_d = √2023 - 196 - 1681 - 144
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 142 - 422)
max_c = Floor(√2023 - 196 - 1764)
max_c = Floor(√63)
max_c = Floor(7.9372539331938)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 142 - 422)/2 = 31.5
When min_c = 6, then it is c2 = 36 ≥ 31.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 422 - 62
max_d = √2023 - 196 - 1764 - 36
max_d = √27
max_d = 5.1961524227066
Since max_d = 5.1961524227066 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 142 - 422 - 72
max_d = √2023 - 196 - 1764 - 49
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 152)
max_b = Floor(√2023 - 225)
max_b = Floor(√1798)
max_b = Floor(42.402830094228)
max_b = 42
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 152)/3 = 599.33333333333
When min_b = 25, then it is b2 = 625 ≥ 599.33333333333, so min_b = 25
(25, 42)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 252)
max_c = Floor(√2023 - 225 - 625)
max_c = Floor(√1173)
max_c = Floor(34.249087579087)
max_c = 34
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 252)/2 = 586.5
When min_c = 25, then it is c2 = 625 ≥ 586.5, so min_c = 25
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 252 - 252
max_d = √2023 - 225 - 625 - 625
max_d = √548
max_d = 23.409399821439
Since max_d = 23.409399821439 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 252 - 262
max_d = √2023 - 225 - 625 - 676
max_d = √497
max_d = 22.293496809608
Since max_d = 22.293496809608 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 252 - 272
max_d = √2023 - 225 - 625 - 729
max_d = √444
max_d = 21.071307505705
Since max_d = 21.071307505705 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 252 - 282
max_d = √2023 - 225 - 625 - 784
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 252 - 292
max_d = √2023 - 225 - 625 - 841
max_d = √332
max_d = 18.220867158289
Since max_d = 18.220867158289 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 252 - 302
max_d = √2023 - 225 - 625 - 900
max_d = √273
max_d = 16.522711641858
Since max_d = 16.522711641858 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 252 - 312
max_d = √2023 - 225 - 625 - 961
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 252 - 322
max_d = √2023 - 225 - 625 - 1024
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 252 - 332
max_d = √2023 - 225 - 625 - 1089
max_d = √84
max_d = 9.1651513899117
Since max_d = 9.1651513899117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 252 - 342
max_d = √2023 - 225 - 625 - 1156
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 262)
max_c = Floor(√2023 - 225 - 676)
max_c = Floor(√1122)
max_c = Floor(33.496268448888)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 262)/2 = 561
When min_c = 24, then it is c2 = 576 ≥ 561, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 262 - 242
max_d = √2023 - 225 - 676 - 576
max_d = √546
max_d = 23.366642891096
Since max_d = 23.366642891096 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 262 - 252
max_d = √2023 - 225 - 676 - 625
max_d = √497
max_d = 22.293496809608
Since max_d = 22.293496809608 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 262 - 262
max_d = √2023 - 225 - 676 - 676
max_d = √446
max_d = 21.118712081943
Since max_d = 21.118712081943 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 262 - 272
max_d = √2023 - 225 - 676 - 729
max_d = √393
max_d = 19.824227601599
Since max_d = 19.824227601599 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 262 - 282
max_d = √2023 - 225 - 676 - 784
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 262 - 292
max_d = √2023 - 225 - 676 - 841
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 262 - 302
max_d = √2023 - 225 - 676 - 900
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 262 - 312
max_d = √2023 - 225 - 676 - 961
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 262 - 322
max_d = √2023 - 225 - 676 - 1024
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 262 - 332
max_d = √2023 - 225 - 676 - 1089
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 272)
max_c = Floor(√2023 - 225 - 729)
max_c = Floor(√1069)
max_c = Floor(32.695565448544)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 272)/2 = 534.5
When min_c = 24, then it is c2 = 576 ≥ 534.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 272 - 242
max_d = √2023 - 225 - 729 - 576
max_d = √493
max_d = 22.203603311175
Since max_d = 22.203603311175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 272 - 252
max_d = √2023 - 225 - 729 - 625
max_d = √444
max_d = 21.071307505705
Since max_d = 21.071307505705 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 272 - 262
max_d = √2023 - 225 - 729 - 676
max_d = √393
max_d = 19.824227601599
Since max_d = 19.824227601599 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 272 - 272
max_d = √2023 - 225 - 729 - 729
max_d = √340
max_d = 18.439088914586
Since max_d = 18.439088914586 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 272 - 282
max_d = √2023 - 225 - 729 - 784
max_d = √285
max_d = 16.881943016134
Since max_d = 16.881943016134 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 272 - 292
max_d = √2023 - 225 - 729 - 841
max_d = √228
max_d = 15.099668870541
Since max_d = 15.099668870541 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 272 - 302
max_d = √2023 - 225 - 729 - 900
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (15, 27, 30, 13) is an integer solution proven below
152 + 272 + 302 + 132 → 225 + 729 + 900 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 272 - 312
max_d = √2023 - 225 - 729 - 961
max_d = √108
max_d = 10.392304845413
Since max_d = 10.392304845413 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 272 - 322
max_d = √2023 - 225 - 729 - 1024
max_d = √45
max_d = 6.7082039324994
Since max_d = 6.7082039324994 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 282)
max_c = Floor(√2023 - 225 - 784)
max_c = Floor(√1014)
max_c = Floor(31.843366656181)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 282)/2 = 507
When min_c = 23, then it is c2 = 529 ≥ 507, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 282 - 232
max_d = √2023 - 225 - 784 - 529
max_d = √485
max_d = 22.022715545545
Since max_d = 22.022715545545 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 282 - 242
max_d = √2023 - 225 - 784 - 576
max_d = √438
max_d = 20.928449536456
Since max_d = 20.928449536456 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 282 - 252
max_d = √2023 - 225 - 784 - 625
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 282 - 262
max_d = √2023 - 225 - 784 - 676
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 282 - 272
max_d = √2023 - 225 - 784 - 729
max_d = √285
max_d = 16.881943016134
Since max_d = 16.881943016134 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 282 - 282
max_d = √2023 - 225 - 784 - 784
max_d = √230
max_d = 15.165750888103
Since max_d = 15.165750888103 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 282 - 292
max_d = √2023 - 225 - 784 - 841
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 282 - 302
max_d = √2023 - 225 - 784 - 900
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 282 - 312
max_d = √2023 - 225 - 784 - 961
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 292)
max_c = Floor(√2023 - 225 - 841)
max_c = Floor(√957)
max_c = Floor(30.935416596516)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 292)/2 = 478.5
When min_c = 22, then it is c2 = 484 ≥ 478.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 292 - 222
max_d = √2023 - 225 - 841 - 484
max_d = √473
max_d = 21.748563170932
Since max_d = 21.748563170932 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 292 - 232
max_d = √2023 - 225 - 841 - 529
max_d = √428
max_d = 20.688160865577
Since max_d = 20.688160865577 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 292 - 242
max_d = √2023 - 225 - 841 - 576
max_d = √381
max_d = 19.519221295943
Since max_d = 19.519221295943 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 292 - 252
max_d = √2023 - 225 - 841 - 625
max_d = √332
max_d = 18.220867158289
Since max_d = 18.220867158289 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 292 - 262
max_d = √2023 - 225 - 841 - 676
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 292 - 272
max_d = √2023 - 225 - 841 - 729
max_d = √228
max_d = 15.099668870541
Since max_d = 15.099668870541 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 292 - 282
max_d = √2023 - 225 - 841 - 784
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 292 - 292
max_d = √2023 - 225 - 841 - 841
max_d = √116
max_d = 10.770329614269
Since max_d = 10.770329614269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 292 - 302
max_d = √2023 - 225 - 841 - 900
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 302)
max_c = Floor(√2023 - 225 - 900)
max_c = Floor(√898)
max_c = Floor(29.966648127543)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 302)/2 = 449
When min_c = 22, then it is c2 = 484 ≥ 449, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 302 - 222
max_d = √2023 - 225 - 900 - 484
max_d = √414
max_d = 20.346989949376
Since max_d = 20.346989949376 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 302 - 232
max_d = √2023 - 225 - 900 - 529
max_d = √369
max_d = 19.209372712299
Since max_d = 19.209372712299 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 302 - 242
max_d = √2023 - 225 - 900 - 576
max_d = √322
max_d = 17.944358444926
Since max_d = 17.944358444926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 302 - 252
max_d = √2023 - 225 - 900 - 625
max_d = √273
max_d = 16.522711641858
Since max_d = 16.522711641858 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 302 - 262
max_d = √2023 - 225 - 900 - 676
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 302 - 272
max_d = √2023 - 225 - 900 - 729
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (15, 30, 27, 13) is an integer solution proven below
152 + 302 + 272 + 132 → 225 + 900 + 729 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 302 - 282
max_d = √2023 - 225 - 900 - 784
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 302 - 292
max_d = √2023 - 225 - 900 - 841
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 312)
max_c = Floor(√2023 - 225 - 961)
max_c = Floor(√837)
max_c = Floor(28.930952282979)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 312)/2 = 418.5
When min_c = 21, then it is c2 = 441 ≥ 418.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 312 - 212
max_d = √2023 - 225 - 961 - 441
max_d = √396
max_d = 19.899748742132
Since max_d = 19.899748742132 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 312 - 222
max_d = √2023 - 225 - 961 - 484
max_d = √353
max_d = 18.788294228056
Since max_d = 18.788294228056 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 312 - 232
max_d = √2023 - 225 - 961 - 529
max_d = √308
max_d = 17.549928774784
Since max_d = 17.549928774784 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 312 - 242
max_d = √2023 - 225 - 961 - 576
max_d = √261
max_d = 16.155494421404
Since max_d = 16.155494421404 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 312 - 252
max_d = √2023 - 225 - 961 - 625
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 312 - 262
max_d = √2023 - 225 - 961 - 676
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 312 - 272
max_d = √2023 - 225 - 961 - 729
max_d = √108
max_d = 10.392304845413
Since max_d = 10.392304845413 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 312 - 282
max_d = √2023 - 225 - 961 - 784
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 322)
max_c = Floor(√2023 - 225 - 1024)
max_c = Floor(√774)
max_c = Floor(27.820855486487)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 322)/2 = 387
When min_c = 20, then it is c2 = 400 ≥ 387, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 322 - 202
max_d = √2023 - 225 - 1024 - 400
max_d = √374
max_d = 19.339079605814
Since max_d = 19.339079605814 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 322 - 212
max_d = √2023 - 225 - 1024 - 441
max_d = √333
max_d = 18.248287590895
Since max_d = 18.248287590895 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 322 - 222
max_d = √2023 - 225 - 1024 - 484
max_d = √290
max_d = 17.029386365926
Since max_d = 17.029386365926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 322 - 232
max_d = √2023 - 225 - 1024 - 529
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 322 - 242
max_d = √2023 - 225 - 1024 - 576
max_d = √198
max_d = 14.07124727947
Since max_d = 14.07124727947 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 322 - 252
max_d = √2023 - 225 - 1024 - 625
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 322 - 262
max_d = √2023 - 225 - 1024 - 676
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 322 - 272
max_d = √2023 - 225 - 1024 - 729
max_d = √45
max_d = 6.7082039324994
Since max_d = 6.7082039324994 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 332)
max_c = Floor(√2023 - 225 - 1089)
max_c = Floor(√709)
max_c = Floor(26.627053911389)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 332)/2 = 354.5
When min_c = 19, then it is c2 = 361 ≥ 354.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 332 - 192
max_d = √2023 - 225 - 1089 - 361
max_d = √348
max_d = 18.654758106178
Since max_d = 18.654758106178 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 332 - 202
max_d = √2023 - 225 - 1089 - 400
max_d = √309
max_d = 17.578395831247
Since max_d = 17.578395831247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 332 - 212
max_d = √2023 - 225 - 1089 - 441
max_d = √268
max_d = 16.370705543745
Since max_d = 16.370705543745 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 332 - 222
max_d = √2023 - 225 - 1089 - 484
max_d = √225
max_d = 15
Since max_d = 15, then (a, b, c, d) = (15, 33, 22, 15) is an integer solution proven below
152 + 332 + 222 + 152 → 225 + 1089 + 484 + 225 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 332 - 232
max_d = √2023 - 225 - 1089 - 529
max_d = √180
max_d = 13.416407864999
Since max_d = 13.416407864999 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 332 - 242
max_d = √2023 - 225 - 1089 - 576
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 332 - 252
max_d = √2023 - 225 - 1089 - 625
max_d = √84
max_d = 9.1651513899117
Since max_d = 9.1651513899117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 332 - 262
max_d = √2023 - 225 - 1089 - 676
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 342)
max_c = Floor(√2023 - 225 - 1156)
max_c = Floor(√642)
max_c = Floor(25.33771891864)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 342)/2 = 321
When min_c = 18, then it is c2 = 324 ≥ 321, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 342 - 182
max_d = √2023 - 225 - 1156 - 324
max_d = √318
max_d = 17.832554500127
Since max_d = 17.832554500127 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 342 - 192
max_d = √2023 - 225 - 1156 - 361
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 342 - 202
max_d = √2023 - 225 - 1156 - 400
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 342 - 212
max_d = √2023 - 225 - 1156 - 441
max_d = √201
max_d = 14.177446878758
Since max_d = 14.177446878758 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 342 - 222
max_d = √2023 - 225 - 1156 - 484
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 342 - 232
max_d = √2023 - 225 - 1156 - 529
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 342 - 242
max_d = √2023 - 225 - 1156 - 576
max_d = √66
max_d = 8.124038404636
Since max_d = 8.124038404636 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 342 - 252
max_d = √2023 - 225 - 1156 - 625
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 352)
max_c = Floor(√2023 - 225 - 1225)
max_c = Floor(√573)
max_c = Floor(23.937418407172)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 352)/2 = 286.5
When min_c = 17, then it is c2 = 289 ≥ 286.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 352 - 172
max_d = √2023 - 225 - 1225 - 289
max_d = √284
max_d = 16.852299546353
Since max_d = 16.852299546353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 352 - 182
max_d = √2023 - 225 - 1225 - 324
max_d = √249
max_d = 15.779733838059
Since max_d = 15.779733838059 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 352 - 192
max_d = √2023 - 225 - 1225 - 361
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 352 - 202
max_d = √2023 - 225 - 1225 - 400
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 352 - 212
max_d = √2023 - 225 - 1225 - 441
max_d = √132
max_d = 11.489125293076
Since max_d = 11.489125293076 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 352 - 222
max_d = √2023 - 225 - 1225 - 484
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 352 - 232
max_d = √2023 - 225 - 1225 - 529
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 362)
max_c = Floor(√2023 - 225 - 1296)
max_c = Floor(√502)
max_c = Floor(22.405356502408)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 362)/2 = 251
When min_c = 16, then it is c2 = 256 ≥ 251, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 362 - 162
max_d = √2023 - 225 - 1296 - 256
max_d = √246
max_d = 15.684387141358
Since max_d = 15.684387141358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 362 - 172
max_d = √2023 - 225 - 1296 - 289
max_d = √213
max_d = 14.594519519326
Since max_d = 14.594519519326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 362 - 182
max_d = √2023 - 225 - 1296 - 324
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 362 - 192
max_d = √2023 - 225 - 1296 - 361
max_d = √141
max_d = 11.874342087038
Since max_d = 11.874342087038 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 362 - 202
max_d = √2023 - 225 - 1296 - 400
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 362 - 212
max_d = √2023 - 225 - 1296 - 441
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 362 - 222
max_d = √2023 - 225 - 1296 - 484
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 372)
max_c = Floor(√2023 - 225 - 1369)
max_c = Floor(√429)
max_c = Floor(20.712315177208)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 372)/2 = 214.5
When min_c = 15, then it is c2 = 225 ≥ 214.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 372 - 152
max_d = √2023 - 225 - 1369 - 225
max_d = √204
max_d = 14.282856857086
Since max_d = 14.282856857086 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 372 - 162
max_d = √2023 - 225 - 1369 - 256
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 372 - 172
max_d = √2023 - 225 - 1369 - 289
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 372 - 182
max_d = √2023 - 225 - 1369 - 324
max_d = √105
max_d = 10.24695076596
Since max_d = 10.24695076596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 372 - 192
max_d = √2023 - 225 - 1369 - 361
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 372 - 202
max_d = √2023 - 225 - 1369 - 400
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 382)
max_c = Floor(√2023 - 225 - 1444)
max_c = Floor(√354)
max_c = Floor(18.814887722227)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 382)/2 = 177
When min_c = 14, then it is c2 = 196 ≥ 177, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 382 - 142
max_d = √2023 - 225 - 1444 - 196
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 382 - 152
max_d = √2023 - 225 - 1444 - 225
max_d = √129
max_d = 11.357816691601
Since max_d = 11.357816691601 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 382 - 162
max_d = √2023 - 225 - 1444 - 256
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 382 - 172
max_d = √2023 - 225 - 1444 - 289
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 382 - 182
max_d = √2023 - 225 - 1444 - 324
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 392)
max_c = Floor(√2023 - 225 - 1521)
max_c = Floor(√277)
max_c = Floor(16.643316977093)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 392)/2 = 138.5
When min_c = 12, then it is c2 = 144 ≥ 138.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 392 - 122
max_d = √2023 - 225 - 1521 - 144
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 392 - 132
max_d = √2023 - 225 - 1521 - 169
max_d = √108
max_d = 10.392304845413
Since max_d = 10.392304845413 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 392 - 142
max_d = √2023 - 225 - 1521 - 196
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (15, 39, 14, 9) is an integer solution proven below
152 + 392 + 142 + 92 → 225 + 1521 + 196 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 392 - 152
max_d = √2023 - 225 - 1521 - 225
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 392 - 162
max_d = √2023 - 225 - 1521 - 256
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 402)
max_c = Floor(√2023 - 225 - 1600)
max_c = Floor(√198)
max_c = Floor(14.07124727947)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 402)/2 = 99
When min_c = 10, then it is c2 = 100 ≥ 99, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 402 - 102
max_d = √2023 - 225 - 1600 - 100
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 402 - 112
max_d = √2023 - 225 - 1600 - 121
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 402 - 122
max_d = √2023 - 225 - 1600 - 144
max_d = √54
max_d = 7.3484692283495
Since max_d = 7.3484692283495 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 402 - 132
max_d = √2023 - 225 - 1600 - 169
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 402 - 142
max_d = √2023 - 225 - 1600 - 196
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 412)
max_c = Floor(√2023 - 225 - 1681)
max_c = Floor(√117)
max_c = Floor(10.816653826392)
max_c = 10
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 412)/2 = 58.5
When min_c = 8, then it is c2 = 64 ≥ 58.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 412 - 82
max_d = √2023 - 225 - 1681 - 64
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 412 - 92
max_d = √2023 - 225 - 1681 - 81
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (15, 41, 9, 6) is an integer solution proven below
152 + 412 + 92 + 62 → 225 + 1681 + 81 + 36 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 412 - 102
max_d = √2023 - 225 - 1681 - 100
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 152 - 422)
max_c = Floor(√2023 - 225 - 1764)
max_c = Floor(√34)
max_c = Floor(5.8309518948453)
max_c = 5
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 152 - 422)/2 = 17
When min_c = 5, then it is c2 = 25 ≥ 17, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 152 - 422 - 52
max_d = √2023 - 225 - 1764 - 25
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (15, 42, 5, 3) is an integer solution proven below
152 + 422 + 52 + 32 → 225 + 1764 + 25 + 9 = 2023
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 162)
max_b = Floor(√2023 - 256)
max_b = Floor(√1767)
max_b = Floor(42.035699113967)
max_b = 42
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 162)/3 = 589
When min_b = 25, then it is b2 = 625 ≥ 589, so min_b = 25
(25, 42)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 252)
max_c = Floor(√2023 - 256 - 625)
max_c = Floor(√1142)
max_c = Floor(33.793490497432)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 252)/2 = 571
When min_c = 24, then it is c2 = 576 ≥ 571, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 252 - 242
max_d = √2023 - 256 - 625 - 576
max_d = √566
max_d = 23.790754506741
Since max_d = 23.790754506741 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 252 - 252
max_d = √2023 - 256 - 625 - 625
max_d = √517
max_d = 22.737634001804
Since max_d = 22.737634001804 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 252 - 262
max_d = √2023 - 256 - 625 - 676
max_d = √466
max_d = 21.587033144923
Since max_d = 21.587033144923 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 252 - 272
max_d = √2023 - 256 - 625 - 729
max_d = √413
max_d = 20.322401432902
Since max_d = 20.322401432902 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 252 - 282
max_d = √2023 - 256 - 625 - 784
max_d = √358
max_d = 18.920887928425
Since max_d = 18.920887928425 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 252 - 292
max_d = √2023 - 256 - 625 - 841
max_d = √301
max_d = 17.349351572897
Since max_d = 17.349351572897 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 252 - 302
max_d = √2023 - 256 - 625 - 900
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 252 - 312
max_d = √2023 - 256 - 625 - 961
max_d = √181
max_d = 13.453624047074
Since max_d = 13.453624047074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 252 - 322
max_d = √2023 - 256 - 625 - 1024
max_d = √118
max_d = 10.8627804912
Since max_d = 10.8627804912 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 252 - 332
max_d = √2023 - 256 - 625 - 1089
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 262)
max_c = Floor(√2023 - 256 - 676)
max_c = Floor(√1091)
max_c = Floor(33.030289129827)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 262)/2 = 545.5
When min_c = 24, then it is c2 = 576 ≥ 545.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 262 - 242
max_d = √2023 - 256 - 676 - 576
max_d = √515
max_d = 22.69361143582
Since max_d = 22.69361143582 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 262 - 252
max_d = √2023 - 256 - 676 - 625
max_d = √466
max_d = 21.587033144923
Since max_d = 21.587033144923 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 262 - 262
max_d = √2023 - 256 - 676 - 676
max_d = √415
max_d = 20.371548787463
Since max_d = 20.371548787463 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 262 - 272
max_d = √2023 - 256 - 676 - 729
max_d = √362
max_d = 19.02629759044
Since max_d = 19.02629759044 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 262 - 282
max_d = √2023 - 256 - 676 - 784
max_d = √307
max_d = 17.521415467935
Since max_d = 17.521415467935 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 262 - 292
max_d = √2023 - 256 - 676 - 841
max_d = √250
max_d = 15.811388300842
Since max_d = 15.811388300842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 262 - 302
max_d = √2023 - 256 - 676 - 900
max_d = √191
max_d = 13.820274961085
Since max_d = 13.820274961085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 262 - 312
max_d = √2023 - 256 - 676 - 961
max_d = √130
max_d = 11.401754250991
Since max_d = 11.401754250991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 262 - 322
max_d = √2023 - 256 - 676 - 1024
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 262 - 332
max_d = √2023 - 256 - 676 - 1089
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 272)
max_c = Floor(√2023 - 256 - 729)
max_c = Floor(√1038)
max_c = Floor(32.218007387174)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 272)/2 = 519
When min_c = 23, then it is c2 = 529 ≥ 519, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 272 - 232
max_d = √2023 - 256 - 729 - 529
max_d = √509
max_d = 22.561028345357
Since max_d = 22.561028345357 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 272 - 242
max_d = √2023 - 256 - 729 - 576
max_d = √462
max_d = 21.494185260205
Since max_d = 21.494185260205 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 272 - 252
max_d = √2023 - 256 - 729 - 625
max_d = √413
max_d = 20.322401432902
Since max_d = 20.322401432902 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 272 - 262
max_d = √2023 - 256 - 729 - 676
max_d = √362
max_d = 19.02629759044
Since max_d = 19.02629759044 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 272 - 272
max_d = √2023 - 256 - 729 - 729
max_d = √309
max_d = 17.578395831247
Since max_d = 17.578395831247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 272 - 282
max_d = √2023 - 256 - 729 - 784
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 272 - 292
max_d = √2023 - 256 - 729 - 841
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 272 - 302
max_d = √2023 - 256 - 729 - 900
max_d = √138
max_d = 11.747340124471
Since max_d = 11.747340124471 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 272 - 312
max_d = √2023 - 256 - 729 - 961
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 272 - 322
max_d = √2023 - 256 - 729 - 1024
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 282)
max_c = Floor(√2023 - 256 - 784)
max_c = Floor(√983)
max_c = Floor(31.352830813182)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 282)/2 = 491.5
When min_c = 23, then it is c2 = 529 ≥ 491.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 282 - 232
max_d = √2023 - 256 - 784 - 529
max_d = √454
max_d = 21.307275752663
Since max_d = 21.307275752663 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 282 - 242
max_d = √2023 - 256 - 784 - 576
max_d = √407
max_d = 20.174241001832
Since max_d = 20.174241001832 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 282 - 252
max_d = √2023 - 256 - 784 - 625
max_d = √358
max_d = 18.920887928425
Since max_d = 18.920887928425 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 282 - 262
max_d = √2023 - 256 - 784 - 676
max_d = √307
max_d = 17.521415467935
Since max_d = 17.521415467935 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 282 - 272
max_d = √2023 - 256 - 784 - 729
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 282 - 282
max_d = √2023 - 256 - 784 - 784
max_d = √199
max_d = 14.106735979666
Since max_d = 14.106735979666 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 282 - 292
max_d = √2023 - 256 - 784 - 841
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 282 - 302
max_d = √2023 - 256 - 784 - 900
max_d = √83
max_d = 9.1104335791443
Since max_d = 9.1104335791443 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 282 - 312
max_d = √2023 - 256 - 784 - 961
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 292)
max_c = Floor(√2023 - 256 - 841)
max_c = Floor(√926)
max_c = Floor(30.430248109406)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 292)/2 = 463
When min_c = 22, then it is c2 = 484 ≥ 463, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 292 - 222
max_d = √2023 - 256 - 841 - 484
max_d = √442
max_d = 21.023796041629
Since max_d = 21.023796041629 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 292 - 232
max_d = √2023 - 256 - 841 - 529
max_d = √397
max_d = 19.924858845171
Since max_d = 19.924858845171 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 292 - 242
max_d = √2023 - 256 - 841 - 576
max_d = √350
max_d = 18.70828693387
Since max_d = 18.70828693387 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 292 - 252
max_d = √2023 - 256 - 841 - 625
max_d = √301
max_d = 17.349351572897
Since max_d = 17.349351572897 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 292 - 262
max_d = √2023 - 256 - 841 - 676
max_d = √250
max_d = 15.811388300842
Since max_d = 15.811388300842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 292 - 272
max_d = √2023 - 256 - 841 - 729
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 292 - 282
max_d = √2023 - 256 - 841 - 784
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 292 - 292
max_d = √2023 - 256 - 841 - 841
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 292 - 302
max_d = √2023 - 256 - 841 - 900
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 302)
max_c = Floor(√2023 - 256 - 900)
max_c = Floor(√867)
max_c = Floor(29.444863728671)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 302)/2 = 433.5
When min_c = 21, then it is c2 = 441 ≥ 433.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 302 - 212
max_d = √2023 - 256 - 900 - 441
max_d = √426
max_d = 20.63976744055
Since max_d = 20.63976744055 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 302 - 222
max_d = √2023 - 256 - 900 - 484
max_d = √383
max_d = 19.570385790781
Since max_d = 19.570385790781 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 302 - 232
max_d = √2023 - 256 - 900 - 529
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 302 - 242
max_d = √2023 - 256 - 900 - 576
max_d = √291
max_d = 17.058722109232
Since max_d = 17.058722109232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 302 - 252
max_d = √2023 - 256 - 900 - 625
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 302 - 262
max_d = √2023 - 256 - 900 - 676
max_d = √191
max_d = 13.820274961085
Since max_d = 13.820274961085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 302 - 272
max_d = √2023 - 256 - 900 - 729
max_d = √138
max_d = 11.747340124471
Since max_d = 11.747340124471 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 302 - 282
max_d = √2023 - 256 - 900 - 784
max_d = √83
max_d = 9.1104335791443
Since max_d = 9.1104335791443 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 302 - 292
max_d = √2023 - 256 - 900 - 841
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 312)
max_c = Floor(√2023 - 256 - 961)
max_c = Floor(√806)
max_c = Floor(28.390139133157)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 312)/2 = 403
When min_c = 21, then it is c2 = 441 ≥ 403, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 312 - 212
max_d = √2023 - 256 - 961 - 441
max_d = √365
max_d = 19.104973174543
Since max_d = 19.104973174543 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 312 - 222
max_d = √2023 - 256 - 961 - 484
max_d = √322
max_d = 17.944358444926
Since max_d = 17.944358444926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 312 - 232
max_d = √2023 - 256 - 961 - 529
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 312 - 242
max_d = √2023 - 256 - 961 - 576
max_d = √230
max_d = 15.165750888103
Since max_d = 15.165750888103 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 312 - 252
max_d = √2023 - 256 - 961 - 625
max_d = √181
max_d = 13.453624047074
Since max_d = 13.453624047074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 312 - 262
max_d = √2023 - 256 - 961 - 676
max_d = √130
max_d = 11.401754250991
Since max_d = 11.401754250991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 312 - 272
max_d = √2023 - 256 - 961 - 729
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 312 - 282
max_d = √2023 - 256 - 961 - 784
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 322)
max_c = Floor(√2023 - 256 - 1024)
max_c = Floor(√743)
max_c = Floor(27.258026340878)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 322)/2 = 371.5
When min_c = 20, then it is c2 = 400 ≥ 371.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 322 - 202
max_d = √2023 - 256 - 1024 - 400
max_d = √343
max_d = 18.520259177452
Since max_d = 18.520259177452 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 322 - 212
max_d = √2023 - 256 - 1024 - 441
max_d = √302
max_d = 17.378147196983
Since max_d = 17.378147196983 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 322 - 222
max_d = √2023 - 256 - 1024 - 484
max_d = √259
max_d = 16.093476939431
Since max_d = 16.093476939431 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 322 - 232
max_d = √2023 - 256 - 1024 - 529
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 322 - 242
max_d = √2023 - 256 - 1024 - 576
max_d = √167
max_d = 12.92284798332
Since max_d = 12.92284798332 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 322 - 252
max_d = √2023 - 256 - 1024 - 625
max_d = √118
max_d = 10.8627804912
Since max_d = 10.8627804912 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 322 - 262
max_d = √2023 - 256 - 1024 - 676
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 322 - 272
max_d = √2023 - 256 - 1024 - 729
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 332)
max_c = Floor(√2023 - 256 - 1089)
max_c = Floor(√678)
max_c = Floor(26.038433132583)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 332)/2 = 339
When min_c = 19, then it is c2 = 361 ≥ 339, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 332 - 192
max_d = √2023 - 256 - 1089 - 361
max_d = √317
max_d = 17.804493814765
Since max_d = 17.804493814765 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 332 - 202
max_d = √2023 - 256 - 1089 - 400
max_d = √278
max_d = 16.673332000533
Since max_d = 16.673332000533 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 332 - 212
max_d = √2023 - 256 - 1089 - 441
max_d = √237
max_d = 15.394804318341
Since max_d = 15.394804318341 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 332 - 222
max_d = √2023 - 256 - 1089 - 484
max_d = √194
max_d = 13.928388277184
Since max_d = 13.928388277184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 332 - 232
max_d = √2023 - 256 - 1089 - 529
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 332 - 242
max_d = √2023 - 256 - 1089 - 576
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 332 - 252
max_d = √2023 - 256 - 1089 - 625
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 332 - 262
max_d = √2023 - 256 - 1089 - 676
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 342)
max_c = Floor(√2023 - 256 - 1156)
max_c = Floor(√611)
max_c = Floor(24.718414188617)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 342)/2 = 305.5
When min_c = 18, then it is c2 = 324 ≥ 305.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 342 - 182
max_d = √2023 - 256 - 1156 - 324
max_d = √287
max_d = 16.941074346097
Since max_d = 16.941074346097 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 342 - 192
max_d = √2023 - 256 - 1156 - 361
max_d = √250
max_d = 15.811388300842
Since max_d = 15.811388300842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 342 - 202
max_d = √2023 - 256 - 1156 - 400
max_d = √211
max_d = 14.525839046334
Since max_d = 14.525839046334 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 342 - 212
max_d = √2023 - 256 - 1156 - 441
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 342 - 222
max_d = √2023 - 256 - 1156 - 484
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 342 - 232
max_d = √2023 - 256 - 1156 - 529
max_d = √82
max_d = 9.0553851381374
Since max_d = 9.0553851381374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 342 - 242
max_d = √2023 - 256 - 1156 - 576
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 352)
max_c = Floor(√2023 - 256 - 1225)
max_c = Floor(√542)
max_c = Floor(23.280893453646)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 352)/2 = 271
When min_c = 17, then it is c2 = 289 ≥ 271, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 352 - 172
max_d = √2023 - 256 - 1225 - 289
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 352 - 182
max_d = √2023 - 256 - 1225 - 324
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 352 - 192
max_d = √2023 - 256 - 1225 - 361
max_d = √181
max_d = 13.453624047074
Since max_d = 13.453624047074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 352 - 202
max_d = √2023 - 256 - 1225 - 400
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 352 - 212
max_d = √2023 - 256 - 1225 - 441
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 352 - 222
max_d = √2023 - 256 - 1225 - 484
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 352 - 232
max_d = √2023 - 256 - 1225 - 529
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 362)
max_c = Floor(√2023 - 256 - 1296)
max_c = Floor(√471)
max_c = Floor(21.702534414211)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 362)/2 = 235.5
When min_c = 16, then it is c2 = 256 ≥ 235.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 362 - 162
max_d = √2023 - 256 - 1296 - 256
max_d = √215
max_d = 14.662878298615
Since max_d = 14.662878298615 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 362 - 172
max_d = √2023 - 256 - 1296 - 289
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 362 - 182
max_d = √2023 - 256 - 1296 - 324
max_d = √147
max_d = 12.124355652982
Since max_d = 12.124355652982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 362 - 192
max_d = √2023 - 256 - 1296 - 361
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 362 - 202
max_d = √2023 - 256 - 1296 - 400
max_d = √71
max_d = 8.4261497731764
Since max_d = 8.4261497731764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 362 - 212
max_d = √2023 - 256 - 1296 - 441
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 372)
max_c = Floor(√2023 - 256 - 1369)
max_c = Floor(√398)
max_c = Floor(19.94993734326)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 372)/2 = 199
When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 372 - 152
max_d = √2023 - 256 - 1369 - 225
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 372 - 162
max_d = √2023 - 256 - 1369 - 256
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 372 - 172
max_d = √2023 - 256 - 1369 - 289
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 372 - 182
max_d = √2023 - 256 - 1369 - 324
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 372 - 192
max_d = √2023 - 256 - 1369 - 361
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 382)
max_c = Floor(√2023 - 256 - 1444)
max_c = Floor(√323)
max_c = Floor(17.972200755611)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 382)/2 = 161.5
When min_c = 13, then it is c2 = 169 ≥ 161.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 382 - 132
max_d = √2023 - 256 - 1444 - 169
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 382 - 142
max_d = √2023 - 256 - 1444 - 196
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 382 - 152
max_d = √2023 - 256 - 1444 - 225
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 382 - 162
max_d = √2023 - 256 - 1444 - 256
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 382 - 172
max_d = √2023 - 256 - 1444 - 289
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 392)
max_c = Floor(√2023 - 256 - 1521)
max_c = Floor(√246)
max_c = Floor(15.684387141358)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 392)/2 = 123
When min_c = 12, then it is c2 = 144 ≥ 123, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 392 - 122
max_d = √2023 - 256 - 1521 - 144
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 392 - 132
max_d = √2023 - 256 - 1521 - 169
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 392 - 142
max_d = √2023 - 256 - 1521 - 196
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 392 - 152
max_d = √2023 - 256 - 1521 - 225
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 402)
max_c = Floor(√2023 - 256 - 1600)
max_c = Floor(√167)
max_c = Floor(12.92284798332)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 402)/2 = 83.5
When min_c = 10, then it is c2 = 100 ≥ 83.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 402 - 102
max_d = √2023 - 256 - 1600 - 100
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 402 - 112
max_d = √2023 - 256 - 1600 - 121
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 402 - 122
max_d = √2023 - 256 - 1600 - 144
max_d = √23
max_d = 4.7958315233127
Since max_d = 4.7958315233127 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 412)
max_c = Floor(√2023 - 256 - 1681)
max_c = Floor(√86)
max_c = Floor(9.2736184954957)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 412)/2 = 43
When min_c = 7, then it is c2 = 49 ≥ 43, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 412 - 72
max_d = √2023 - 256 - 1681 - 49
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 412 - 82
max_d = √2023 - 256 - 1681 - 64
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 162 - 412 - 92
max_d = √2023 - 256 - 1681 - 81
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 162 - 422)
max_c = Floor(√2023 - 256 - 1764)
max_c = Floor(√3)
max_c = Floor(1.7320508075689)
max_c = 1
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 162 - 422)/2 = 1.5
When min_c = 2, then it is c2 = 4 ≥ 1.5, so min_c = 2
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 172)
max_b = Floor(√2023 - 289)
max_b = Floor(√1734)
max_b = Floor(41.641325627314)
max_b = 41
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 172)/3 = 578
When min_b = 25, then it is b2 = 625 ≥ 578, so min_b = 25
(25, 41)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 252)
max_c = Floor(√2023 - 289 - 625)
max_c = Floor(√1109)
max_c = Floor(33.301651610693)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 252)/2 = 554.5
When min_c = 24, then it is c2 = 576 ≥ 554.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 252 - 242
max_d = √2023 - 289 - 625 - 576
max_d = √533
max_d = 23.08679276123
Since max_d = 23.08679276123 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 252 - 252
max_d = √2023 - 289 - 625 - 625
max_d = √484
max_d = 22
Since max_d = 22, then (a, b, c, d) = (17, 25, 25, 22) is an integer solution proven below
172 + 252 + 252 + 222 → 289 + 625 + 625 + 484 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 252 - 262
max_d = √2023 - 289 - 625 - 676
max_d = √433
max_d = 20.808652046685
Since max_d = 20.808652046685 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 252 - 272
max_d = √2023 - 289 - 625 - 729
max_d = √380
max_d = 19.493588689618
Since max_d = 19.493588689618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 252 - 282
max_d = √2023 - 289 - 625 - 784
max_d = √325
max_d = 18.02775637732
Since max_d = 18.02775637732 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 252 - 292
max_d = √2023 - 289 - 625 - 841
max_d = √268
max_d = 16.370705543745
Since max_d = 16.370705543745 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 252 - 302
max_d = √2023 - 289 - 625 - 900
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 252 - 312
max_d = √2023 - 289 - 625 - 961
max_d = √148
max_d = 12.165525060596
Since max_d = 12.165525060596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 252 - 322
max_d = √2023 - 289 - 625 - 1024
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 252 - 332
max_d = √2023 - 289 - 625 - 1089
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 262)
max_c = Floor(√2023 - 289 - 676)
max_c = Floor(√1058)
max_c = Floor(32.526911934581)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 262)/2 = 529
When min_c = 23, then it is c2 = 529 ≥ 529, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 262 - 232
max_d = √2023 - 289 - 676 - 529
max_d = √529
max_d = 23
Since max_d = 23, then (a, b, c, d) = (17, 26, 23, 23) is an integer solution proven below
172 + 262 + 232 + 232 → 289 + 676 + 529 + 529 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 262 - 242
max_d = √2023 - 289 - 676 - 576
max_d = √482
max_d = 21.9544984001
Since max_d = 21.9544984001 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 262 - 252
max_d = √2023 - 289 - 676 - 625
max_d = √433
max_d = 20.808652046685
Since max_d = 20.808652046685 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 262 - 262
max_d = √2023 - 289 - 676 - 676
max_d = √382
max_d = 19.544820285692
Since max_d = 19.544820285692 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 262 - 272
max_d = √2023 - 289 - 676 - 729
max_d = √329
max_d = 18.138357147217
Since max_d = 18.138357147217 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 262 - 282
max_d = √2023 - 289 - 676 - 784
max_d = √274
max_d = 16.552945357247
Since max_d = 16.552945357247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 262 - 292
max_d = √2023 - 289 - 676 - 841
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 262 - 302
max_d = √2023 - 289 - 676 - 900
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 262 - 312
max_d = √2023 - 289 - 676 - 961
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 262 - 322
max_d = √2023 - 289 - 676 - 1024
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 272)
max_c = Floor(√2023 - 289 - 729)
max_c = Floor(√1005)
max_c = Floor(31.701734968295)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 272)/2 = 502.5
When min_c = 23, then it is c2 = 529 ≥ 502.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 272 - 232
max_d = √2023 - 289 - 729 - 529
max_d = √476
max_d = 21.817424229271
Since max_d = 21.817424229271 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 272 - 242
max_d = √2023 - 289 - 729 - 576
max_d = √429
max_d = 20.712315177208
Since max_d = 20.712315177208 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 272 - 252
max_d = √2023 - 289 - 729 - 625
max_d = √380
max_d = 19.493588689618
Since max_d = 19.493588689618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 272 - 262
max_d = √2023 - 289 - 729 - 676
max_d = √329
max_d = 18.138357147217
Since max_d = 18.138357147217 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 272 - 272
max_d = √2023 - 289 - 729 - 729
max_d = √276
max_d = 16.613247725836
Since max_d = 16.613247725836 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 272 - 282
max_d = √2023 - 289 - 729 - 784
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 272 - 292
max_d = √2023 - 289 - 729 - 841
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 272 - 302
max_d = √2023 - 289 - 729 - 900
max_d = √105
max_d = 10.24695076596
Since max_d = 10.24695076596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 272 - 312
max_d = √2023 - 289 - 729 - 961
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 282)
max_c = Floor(√2023 - 289 - 784)
max_c = Floor(√950)
max_c = Floor(30.822070014845)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 282)/2 = 475
When min_c = 22, then it is c2 = 484 ≥ 475, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 282 - 222
max_d = √2023 - 289 - 784 - 484
max_d = √466
max_d = 21.587033144923
Since max_d = 21.587033144923 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 282 - 232
max_d = √2023 - 289 - 784 - 529
max_d = √421
max_d = 20.518284528683
Since max_d = 20.518284528683 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 282 - 242
max_d = √2023 - 289 - 784 - 576
max_d = √374
max_d = 19.339079605814
Since max_d = 19.339079605814 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 282 - 252
max_d = √2023 - 289 - 784 - 625
max_d = √325
max_d = 18.02775637732
Since max_d = 18.02775637732 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 282 - 262
max_d = √2023 - 289 - 784 - 676
max_d = √274
max_d = 16.552945357247
Since max_d = 16.552945357247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 282 - 272
max_d = √2023 - 289 - 784 - 729
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 282 - 282
max_d = √2023 - 289 - 784 - 784
max_d = √166
max_d = 12.884098726725
Since max_d = 12.884098726725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 282 - 292
max_d = √2023 - 289 - 784 - 841
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 282 - 302
max_d = √2023 - 289 - 784 - 900
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 292)
max_c = Floor(√2023 - 289 - 841)
max_c = Floor(√893)
max_c = Floor(29.883105594968)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 292)/2 = 446.5
When min_c = 22, then it is c2 = 484 ≥ 446.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 292 - 222
max_d = √2023 - 289 - 841 - 484
max_d = √409
max_d = 20.223748416157
Since max_d = 20.223748416157 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 292 - 232
max_d = √2023 - 289 - 841 - 529
max_d = √364
max_d = 19.078784028339
Since max_d = 19.078784028339 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 292 - 242
max_d = √2023 - 289 - 841 - 576
max_d = √317
max_d = 17.804493814765
Since max_d = 17.804493814765 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 292 - 252
max_d = √2023 - 289 - 841 - 625
max_d = √268
max_d = 16.370705543745
Since max_d = 16.370705543745 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 292 - 262
max_d = √2023 - 289 - 841 - 676
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 292 - 272
max_d = √2023 - 289 - 841 - 729
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 292 - 282
max_d = √2023 - 289 - 841 - 784
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 292 - 292
max_d = √2023 - 289 - 841 - 841
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 302)
max_c = Floor(√2023 - 289 - 900)
max_c = Floor(√834)
max_c = Floor(28.879058156387)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 302)/2 = 417
When min_c = 21, then it is c2 = 441 ≥ 417, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 302 - 212
max_d = √2023 - 289 - 900 - 441
max_d = √393
max_d = 19.824227601599
Since max_d = 19.824227601599 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 302 - 222
max_d = √2023 - 289 - 900 - 484
max_d = √350
max_d = 18.70828693387
Since max_d = 18.70828693387 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 302 - 232
max_d = √2023 - 289 - 900 - 529
max_d = √305
max_d = 17.464249196573
Since max_d = 17.464249196573 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 302 - 242
max_d = √2023 - 289 - 900 - 576
max_d = √258
max_d = 16.062378404209
Since max_d = 16.062378404209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 302 - 252
max_d = √2023 - 289 - 900 - 625
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 302 - 262
max_d = √2023 - 289 - 900 - 676
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 302 - 272
max_d = √2023 - 289 - 900 - 729
max_d = √105
max_d = 10.24695076596
Since max_d = 10.24695076596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 302 - 282
max_d = √2023 - 289 - 900 - 784
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 312)
max_c = Floor(√2023 - 289 - 961)
max_c = Floor(√773)
max_c = Floor(27.802877548916)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 312)/2 = 386.5
When min_c = 20, then it is c2 = 400 ≥ 386.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 312 - 202
max_d = √2023 - 289 - 961 - 400
max_d = √373
max_d = 19.313207915828
Since max_d = 19.313207915828 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 312 - 212
max_d = √2023 - 289 - 961 - 441
max_d = √332
max_d = 18.220867158289
Since max_d = 18.220867158289 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 312 - 222
max_d = √2023 - 289 - 961 - 484
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (17, 31, 22, 17) is an integer solution proven below
172 + 312 + 222 + 172 → 289 + 961 + 484 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 312 - 232
max_d = √2023 - 289 - 961 - 529
max_d = √244
max_d = 15.620499351813
Since max_d = 15.620499351813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 312 - 242
max_d = √2023 - 289 - 961 - 576
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 312 - 252
max_d = √2023 - 289 - 961 - 625
max_d = √148
max_d = 12.165525060596
Since max_d = 12.165525060596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 312 - 262
max_d = √2023 - 289 - 961 - 676
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 312 - 272
max_d = √2023 - 289 - 961 - 729
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 322)
max_c = Floor(√2023 - 289 - 1024)
max_c = Floor(√710)
max_c = Floor(26.645825188948)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 322)/2 = 355
When min_c = 19, then it is c2 = 361 ≥ 355, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 322 - 192
max_d = √2023 - 289 - 1024 - 361
max_d = √349
max_d = 18.681541692269
Since max_d = 18.681541692269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 322 - 202
max_d = √2023 - 289 - 1024 - 400
max_d = √310
max_d = 17.606816861659
Since max_d = 17.606816861659 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 322 - 212
max_d = √2023 - 289 - 1024 - 441
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 322 - 222
max_d = √2023 - 289 - 1024 - 484
max_d = √226
max_d = 15.033296378373
Since max_d = 15.033296378373 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 322 - 232
max_d = √2023 - 289 - 1024 - 529
max_d = √181
max_d = 13.453624047074
Since max_d = 13.453624047074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 322 - 242
max_d = √2023 - 289 - 1024 - 576
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 322 - 252
max_d = √2023 - 289 - 1024 - 625
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 322 - 262
max_d = √2023 - 289 - 1024 - 676
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 332)
max_c = Floor(√2023 - 289 - 1089)
max_c = Floor(√645)
max_c = Floor(25.396850198401)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 332)/2 = 322.5
When min_c = 18, then it is c2 = 324 ≥ 322.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 332 - 182
max_d = √2023 - 289 - 1089 - 324
max_d = √321
max_d = 17.916472867169
Since max_d = 17.916472867169 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 332 - 192
max_d = √2023 - 289 - 1089 - 361
max_d = √284
max_d = 16.852299546353
Since max_d = 16.852299546353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 332 - 202
max_d = √2023 - 289 - 1089 - 400
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 332 - 212
max_d = √2023 - 289 - 1089 - 441
max_d = √204
max_d = 14.282856857086
Since max_d = 14.282856857086 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 332 - 222
max_d = √2023 - 289 - 1089 - 484
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 332 - 232
max_d = √2023 - 289 - 1089 - 529
max_d = √116
max_d = 10.770329614269
Since max_d = 10.770329614269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 332 - 242
max_d = √2023 - 289 - 1089 - 576
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 332 - 252
max_d = √2023 - 289 - 1089 - 625
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 342)
max_c = Floor(√2023 - 289 - 1156)
max_c = Floor(√578)
max_c = Floor(24.041630560343)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 342)/2 = 289
When min_c = 17, then it is c2 = 289 ≥ 289, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 342 - 172
max_d = √2023 - 289 - 1156 - 289
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (17, 34, 17, 17) is an integer solution proven below
172 + 342 + 172 + 172 → 289 + 1156 + 289 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 342 - 182
max_d = √2023 - 289 - 1156 - 324
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 342 - 192
max_d = √2023 - 289 - 1156 - 361
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 342 - 202
max_d = √2023 - 289 - 1156 - 400
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 342 - 212
max_d = √2023 - 289 - 1156 - 441
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 342 - 222
max_d = √2023 - 289 - 1156 - 484
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 342 - 232
max_d = √2023 - 289 - 1156 - 529
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (17, 34, 23, 7) is an integer solution proven below
172 + 342 + 232 + 72 → 289 + 1156 + 529 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 342 - 242
max_d = √2023 - 289 - 1156 - 576
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 352)
max_c = Floor(√2023 - 289 - 1225)
max_c = Floor(√509)
max_c = Floor(22.561028345357)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 352)/2 = 254.5
When min_c = 16, then it is c2 = 256 ≥ 254.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 352 - 162
max_d = √2023 - 289 - 1225 - 256
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 352 - 172
max_d = √2023 - 289 - 1225 - 289
max_d = √220
max_d = 14.832396974191
Since max_d = 14.832396974191 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 352 - 182
max_d = √2023 - 289 - 1225 - 324
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 352 - 192
max_d = √2023 - 289 - 1225 - 361
max_d = √148
max_d = 12.165525060596
Since max_d = 12.165525060596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 352 - 202
max_d = √2023 - 289 - 1225 - 400
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 352 - 212
max_d = √2023 - 289 - 1225 - 441
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 352 - 222
max_d = √2023 - 289 - 1225 - 484
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (17, 35, 22, 5) is an integer solution proven below
172 + 352 + 222 + 52 → 289 + 1225 + 484 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 362)
max_c = Floor(√2023 - 289 - 1296)
max_c = Floor(√438)
max_c = Floor(20.928449536456)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 362)/2 = 219
When min_c = 15, then it is c2 = 225 ≥ 219, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 362 - 152
max_d = √2023 - 289 - 1296 - 225
max_d = √213
max_d = 14.594519519326
Since max_d = 14.594519519326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 362 - 162
max_d = √2023 - 289 - 1296 - 256
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 362 - 172
max_d = √2023 - 289 - 1296 - 289
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 362 - 182
max_d = √2023 - 289 - 1296 - 324
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 362 - 192
max_d = √2023 - 289 - 1296 - 361
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 362 - 202
max_d = √2023 - 289 - 1296 - 400
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 372)
max_c = Floor(√2023 - 289 - 1369)
max_c = Floor(√365)
max_c = Floor(19.104973174543)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 372)/2 = 182.5
When min_c = 14, then it is c2 = 196 ≥ 182.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 372 - 142
max_d = √2023 - 289 - 1369 - 196
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (17, 37, 14, 13) is an integer solution proven below
172 + 372 + 142 + 132 → 289 + 1369 + 196 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 372 - 152
max_d = √2023 - 289 - 1369 - 225
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 372 - 162
max_d = √2023 - 289 - 1369 - 256
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 372 - 172
max_d = √2023 - 289 - 1369 - 289
max_d = √76
max_d = 8.7177978870813
Since max_d = 8.7177978870813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 372 - 182
max_d = √2023 - 289 - 1369 - 324
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 372 - 192
max_d = √2023 - 289 - 1369 - 361
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (17, 37, 19, 2) is an integer solution proven below
172 + 372 + 192 + 22 → 289 + 1369 + 361 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 382)
max_c = Floor(√2023 - 289 - 1444)
max_c = Floor(√290)
max_c = Floor(17.029386365926)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 382)/2 = 145
When min_c = 13, then it is c2 = 169 ≥ 145, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 382 - 132
max_d = √2023 - 289 - 1444 - 169
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (17, 38, 13, 11) is an integer solution proven below
172 + 382 + 132 + 112 → 289 + 1444 + 169 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 382 - 142
max_d = √2023 - 289 - 1444 - 196
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 382 - 152
max_d = √2023 - 289 - 1444 - 225
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 382 - 162
max_d = √2023 - 289 - 1444 - 256
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 382 - 172
max_d = √2023 - 289 - 1444 - 289
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (17, 38, 17, 1) is an integer solution proven below
172 + 382 + 172 + 12 → 289 + 1444 + 289 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 392)
max_c = Floor(√2023 - 289 - 1521)
max_c = Floor(√213)
max_c = Floor(14.594519519326)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 392)/2 = 106.5
When min_c = 11, then it is c2 = 121 ≥ 106.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 392 - 112
max_d = √2023 - 289 - 1521 - 121
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 392 - 122
max_d = √2023 - 289 - 1521 - 144
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 392 - 132
max_d = √2023 - 289 - 1521 - 169
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 392 - 142
max_d = √2023 - 289 - 1521 - 196
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 402)
max_c = Floor(√2023 - 289 - 1600)
max_c = Floor(√134)
max_c = Floor(11.57583690279)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 402)/2 = 67
When min_c = 9, then it is c2 = 81 ≥ 67, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 402 - 92
max_d = √2023 - 289 - 1600 - 81
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 402 - 102
max_d = √2023 - 289 - 1600 - 100
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 402 - 112
max_d = √2023 - 289 - 1600 - 121
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 172 - 412)
max_c = Floor(√2023 - 289 - 1681)
max_c = Floor(√53)
max_c = Floor(7.2801098892805)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 172 - 412)/2 = 26.5
When min_c = 6, then it is c2 = 36 ≥ 26.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 412 - 62
max_d = √2023 - 289 - 1681 - 36
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 172 - 412 - 72
max_d = √2023 - 289 - 1681 - 49
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (17, 41, 7, 2) is an integer solution proven below
172 + 412 + 72 + 22 → 289 + 1681 + 49 + 4 = 2023
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 182)
max_b = Floor(√2023 - 324)
max_b = Floor(√1699)
max_b = Floor(41.21892769105)
max_b = 41
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 182)/3 = 566.33333333333
When min_b = 24, then it is b2 = 576 ≥ 566.33333333333, so min_b = 24
(24, 41)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 242)
max_c = Floor(√2023 - 324 - 576)
max_c = Floor(√1123)
max_c = Floor(33.511192160232)
max_c = 33
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 242)/2 = 561.5
When min_c = 24, then it is c2 = 576 ≥ 561.5, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 242 - 242
max_d = √2023 - 324 - 576 - 576
max_d = √547
max_d = 23.388031127053
Since max_d = 23.388031127053 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 242 - 252
max_d = √2023 - 324 - 576 - 625
max_d = √498
max_d = 22.315913604421
Since max_d = 22.315913604421 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 242 - 262
max_d = √2023 - 324 - 576 - 676
max_d = √447
max_d = 21.142374511866
Since max_d = 21.142374511866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 242 - 272
max_d = √2023 - 324 - 576 - 729
max_d = √394
max_d = 19.849433241279
Since max_d = 19.849433241279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 242 - 282
max_d = √2023 - 324 - 576 - 784
max_d = √339
max_d = 18.411952639522
Since max_d = 18.411952639522 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 242 - 292
max_d = √2023 - 324 - 576 - 841
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 242 - 302
max_d = √2023 - 324 - 576 - 900
max_d = √223
max_d = 14.933184523068
Since max_d = 14.933184523068 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 242 - 312
max_d = √2023 - 324 - 576 - 961
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 242 - 322
max_d = √2023 - 324 - 576 - 1024
max_d = √99
max_d = 9.9498743710662
Since max_d = 9.9498743710662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 242 - 332
max_d = √2023 - 324 - 576 - 1089
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 252)
max_c = Floor(√2023 - 324 - 625)
max_c = Floor(√1074)
max_c = Floor(32.771939216348)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 252)/2 = 537
When min_c = 24, then it is c2 = 576 ≥ 537, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 252 - 242
max_d = √2023 - 324 - 625 - 576
max_d = √498
max_d = 22.315913604421
Since max_d = 22.315913604421 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 252 - 252
max_d = √2023 - 324 - 625 - 625
max_d = √449
max_d = 21.189620100417
Since max_d = 21.189620100417 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 252 - 262
max_d = √2023 - 324 - 625 - 676
max_d = √398
max_d = 19.94993734326
Since max_d = 19.94993734326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 252 - 272
max_d = √2023 - 324 - 625 - 729
max_d = √345
max_d = 18.574175621007
Since max_d = 18.574175621007 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 252 - 282
max_d = √2023 - 324 - 625 - 784
max_d = √290
max_d = 17.029386365926
Since max_d = 17.029386365926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 252 - 292
max_d = √2023 - 324 - 625 - 841
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 252 - 302
max_d = √2023 - 324 - 625 - 900
max_d = √174
max_d = 13.190905958273
Since max_d = 13.190905958273 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 252 - 312
max_d = √2023 - 324 - 625 - 961
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 252 - 322
max_d = √2023 - 324 - 625 - 1024
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 262)
max_c = Floor(√2023 - 324 - 676)
max_c = Floor(√1023)
max_c = Floor(31.984371183439)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 262)/2 = 511.5
When min_c = 23, then it is c2 = 529 ≥ 511.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 262 - 232
max_d = √2023 - 324 - 676 - 529
max_d = √494
max_d = 22.226110770893
Since max_d = 22.226110770893 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 262 - 242
max_d = √2023 - 324 - 676 - 576
max_d = √447
max_d = 21.142374511866
Since max_d = 21.142374511866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 262 - 252
max_d = √2023 - 324 - 676 - 625
max_d = √398
max_d = 19.94993734326
Since max_d = 19.94993734326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 262 - 262
max_d = √2023 - 324 - 676 - 676
max_d = √347
max_d = 18.627936010197
Since max_d = 18.627936010197 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 262 - 272
max_d = √2023 - 324 - 676 - 729
max_d = √294
max_d = 17.146428199482
Since max_d = 17.146428199482 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 262 - 282
max_d = √2023 - 324 - 676 - 784
max_d = √239
max_d = 15.45962483374
Since max_d = 15.45962483374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 262 - 292
max_d = √2023 - 324 - 676 - 841
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 262 - 302
max_d = √2023 - 324 - 676 - 900
max_d = √123
max_d = 11.090536506409
Since max_d = 11.090536506409 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 262 - 312
max_d = √2023 - 324 - 676 - 961
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 272)
max_c = Floor(√2023 - 324 - 729)
max_c = Floor(√970)
max_c = Floor(31.144823004795)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 272)/2 = 485
When min_c = 23, then it is c2 = 529 ≥ 485, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 272 - 232
max_d = √2023 - 324 - 729 - 529
max_d = √441
max_d = 21
Since max_d = 21, then (a, b, c, d) = (18, 27, 23, 21) is an integer solution proven below
182 + 272 + 232 + 212 → 324 + 729 + 529 + 441 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 272 - 242
max_d = √2023 - 324 - 729 - 576
max_d = √394
max_d = 19.849433241279
Since max_d = 19.849433241279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 272 - 252
max_d = √2023 - 324 - 729 - 625
max_d = √345
max_d = 18.574175621007
Since max_d = 18.574175621007 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 272 - 262
max_d = √2023 - 324 - 729 - 676
max_d = √294
max_d = 17.146428199482
Since max_d = 17.146428199482 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 272 - 272
max_d = √2023 - 324 - 729 - 729
max_d = √241
max_d = 15.52417469626
Since max_d = 15.52417469626 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 272 - 282
max_d = √2023 - 324 - 729 - 784
max_d = √186
max_d = 13.638181696986
Since max_d = 13.638181696986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 272 - 292
max_d = √2023 - 324 - 729 - 841
max_d = √129
max_d = 11.357816691601
Since max_d = 11.357816691601 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 272 - 302
max_d = √2023 - 324 - 729 - 900
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 272 - 312
max_d = √2023 - 324 - 729 - 961
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (18, 27, 31, 3) is an integer solution proven below
182 + 272 + 312 + 32 → 324 + 729 + 961 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 282)
max_c = Floor(√2023 - 324 - 784)
max_c = Floor(√915)
max_c = Floor(30.248966924508)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 282)/2 = 457.5
When min_c = 22, then it is c2 = 484 ≥ 457.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 282 - 222
max_d = √2023 - 324 - 784 - 484
max_d = √431
max_d = 20.760539492027
Since max_d = 20.760539492027 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 282 - 232
max_d = √2023 - 324 - 784 - 529
max_d = √386
max_d = 19.646882704388
Since max_d = 19.646882704388 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 282 - 242
max_d = √2023 - 324 - 784 - 576
max_d = √339
max_d = 18.411952639522
Since max_d = 18.411952639522 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 282 - 252
max_d = √2023 - 324 - 784 - 625
max_d = √290
max_d = 17.029386365926
Since max_d = 17.029386365926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 282 - 262
max_d = √2023 - 324 - 784 - 676
max_d = √239
max_d = 15.45962483374
Since max_d = 15.45962483374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 282 - 272
max_d = √2023 - 324 - 784 - 729
max_d = √186
max_d = 13.638181696986
Since max_d = 13.638181696986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 282 - 282
max_d = √2023 - 324 - 784 - 784
max_d = √131
max_d = 11.44552314226
Since max_d = 11.44552314226 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 282 - 292
max_d = √2023 - 324 - 784 - 841
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 282 - 302
max_d = √2023 - 324 - 784 - 900
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 292)
max_c = Floor(√2023 - 324 - 841)
max_c = Floor(√858)
max_c = Floor(29.291637031754)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 292)/2 = 429
When min_c = 21, then it is c2 = 441 ≥ 429, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 292 - 212
max_d = √2023 - 324 - 841 - 441
max_d = √417
max_d = 20.420577856662
Since max_d = 20.420577856662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 292 - 222
max_d = √2023 - 324 - 841 - 484
max_d = √374
max_d = 19.339079605814
Since max_d = 19.339079605814 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 292 - 232
max_d = √2023 - 324 - 841 - 529
max_d = √329
max_d = 18.138357147217
Since max_d = 18.138357147217 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 292 - 242
max_d = √2023 - 324 - 841 - 576
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 292 - 252
max_d = √2023 - 324 - 841 - 625
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 292 - 262
max_d = √2023 - 324 - 841 - 676
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 292 - 272
max_d = √2023 - 324 - 841 - 729
max_d = √129
max_d = 11.357816691601
Since max_d = 11.357816691601 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 292 - 282
max_d = √2023 - 324 - 841 - 784
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 292 - 292
max_d = √2023 - 324 - 841 - 841
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 302)
max_c = Floor(√2023 - 324 - 900)
max_c = Floor(√799)
max_c = Floor(28.266588050205)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 302)/2 = 399.5
When min_c = 20, then it is c2 = 400 ≥ 399.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 302 - 202
max_d = √2023 - 324 - 900 - 400
max_d = √399
max_d = 19.974984355438
Since max_d = 19.974984355438 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 302 - 212
max_d = √2023 - 324 - 900 - 441
max_d = √358
max_d = 18.920887928425
Since max_d = 18.920887928425 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 302 - 222
max_d = √2023 - 324 - 900 - 484
max_d = √315
max_d = 17.748239349299
Since max_d = 17.748239349299 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 302 - 232
max_d = √2023 - 324 - 900 - 529
max_d = √270
max_d = 16.431676725155
Since max_d = 16.431676725155 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 302 - 242
max_d = √2023 - 324 - 900 - 576
max_d = √223
max_d = 14.933184523068
Since max_d = 14.933184523068 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 302 - 252
max_d = √2023 - 324 - 900 - 625
max_d = √174
max_d = 13.190905958273
Since max_d = 13.190905958273 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 302 - 262
max_d = √2023 - 324 - 900 - 676
max_d = √123
max_d = 11.090536506409
Since max_d = 11.090536506409 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 302 - 272
max_d = √2023 - 324 - 900 - 729
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 302 - 282
max_d = √2023 - 324 - 900 - 784
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 312)
max_c = Floor(√2023 - 324 - 961)
max_c = Floor(√738)
max_c = Floor(27.166155414412)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 312)/2 = 369
When min_c = 20, then it is c2 = 400 ≥ 369, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 312 - 202
max_d = √2023 - 324 - 961 - 400
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 312 - 212
max_d = √2023 - 324 - 961 - 441
max_d = √297
max_d = 17.233687939614
Since max_d = 17.233687939614 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 312 - 222
max_d = √2023 - 324 - 961 - 484
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 312 - 232
max_d = √2023 - 324 - 961 - 529
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 312 - 242
max_d = √2023 - 324 - 961 - 576
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 312 - 252
max_d = √2023 - 324 - 961 - 625
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 312 - 262
max_d = √2023 - 324 - 961 - 676
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 312 - 272
max_d = √2023 - 324 - 961 - 729
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (18, 31, 27, 3) is an integer solution proven below
182 + 312 + 272 + 32 → 324 + 961 + 729 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 322)
max_c = Floor(√2023 - 324 - 1024)
max_c = Floor(√675)
max_c = Floor(25.980762113533)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 322)/2 = 337.5
When min_c = 19, then it is c2 = 361 ≥ 337.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 322 - 192
max_d = √2023 - 324 - 1024 - 361
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 322 - 202
max_d = √2023 - 324 - 1024 - 400
max_d = √275
max_d = 16.583123951777
Since max_d = 16.583123951777 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 322 - 212
max_d = √2023 - 324 - 1024 - 441
max_d = √234
max_d = 15.297058540778
Since max_d = 15.297058540778 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 322 - 222
max_d = √2023 - 324 - 1024 - 484
max_d = √191
max_d = 13.820274961085
Since max_d = 13.820274961085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 322 - 232
max_d = √2023 - 324 - 1024 - 529
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 322 - 242
max_d = √2023 - 324 - 1024 - 576
max_d = √99
max_d = 9.9498743710662
Since max_d = 9.9498743710662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 322 - 252
max_d = √2023 - 324 - 1024 - 625
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 332)
max_c = Floor(√2023 - 324 - 1089)
max_c = Floor(√610)
max_c = Floor(24.698178070457)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 332)/2 = 305
When min_c = 18, then it is c2 = 324 ≥ 305, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 332 - 182
max_d = √2023 - 324 - 1089 - 324
max_d = √286
max_d = 16.911534525288
Since max_d = 16.911534525288 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 332 - 192
max_d = √2023 - 324 - 1089 - 361
max_d = √249
max_d = 15.779733838059
Since max_d = 15.779733838059 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 332 - 202
max_d = √2023 - 324 - 1089 - 400
max_d = √210
max_d = 14.491376746189
Since max_d = 14.491376746189 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 332 - 212
max_d = √2023 - 324 - 1089 - 441
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (18, 33, 21, 13) is an integer solution proven below
182 + 332 + 212 + 132 → 324 + 1089 + 441 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 332 - 222
max_d = √2023 - 324 - 1089 - 484
max_d = √126
max_d = 11.224972160322
Since max_d = 11.224972160322 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 332 - 232
max_d = √2023 - 324 - 1089 - 529
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (18, 33, 23, 9) is an integer solution proven below
182 + 332 + 232 + 92 → 324 + 1089 + 529 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 332 - 242
max_d = √2023 - 324 - 1089 - 576
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 342)
max_c = Floor(√2023 - 324 - 1156)
max_c = Floor(√543)
max_c = Floor(23.302360395462)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 342)/2 = 271.5
When min_c = 17, then it is c2 = 289 ≥ 271.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 342 - 172
max_d = √2023 - 324 - 1156 - 289
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 342 - 182
max_d = √2023 - 324 - 1156 - 324
max_d = √219
max_d = 14.798648586949
Since max_d = 14.798648586949 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 342 - 192
max_d = √2023 - 324 - 1156 - 361
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 342 - 202
max_d = √2023 - 324 - 1156 - 400
max_d = √143
max_d = 11.958260743101
Since max_d = 11.958260743101 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 342 - 212
max_d = √2023 - 324 - 1156 - 441
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 342 - 222
max_d = √2023 - 324 - 1156 - 484
max_d = √59
max_d = 7.6811457478686
Since max_d = 7.6811457478686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 342 - 232
max_d = √2023 - 324 - 1156 - 529
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 352)
max_c = Floor(√2023 - 324 - 1225)
max_c = Floor(√474)
max_c = Floor(21.771541057077)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 352)/2 = 237
When min_c = 16, then it is c2 = 256 ≥ 237, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 352 - 162
max_d = √2023 - 324 - 1225 - 256
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 352 - 172
max_d = √2023 - 324 - 1225 - 289
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 352 - 182
max_d = √2023 - 324 - 1225 - 324
max_d = √150
max_d = 12.247448713916
Since max_d = 12.247448713916 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 352 - 192
max_d = √2023 - 324 - 1225 - 361
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 352 - 202
max_d = √2023 - 324 - 1225 - 400
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 352 - 212
max_d = √2023 - 324 - 1225 - 441
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 362)
max_c = Floor(√2023 - 324 - 1296)
max_c = Floor(√403)
max_c = Floor(20.074859899885)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 362)/2 = 201.5
When min_c = 15, then it is c2 = 225 ≥ 201.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 362 - 152
max_d = √2023 - 324 - 1296 - 225
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 362 - 162
max_d = √2023 - 324 - 1296 - 256
max_d = √147
max_d = 12.124355652982
Since max_d = 12.124355652982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 362 - 172
max_d = √2023 - 324 - 1296 - 289
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 362 - 182
max_d = √2023 - 324 - 1296 - 324
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 362 - 192
max_d = √2023 - 324 - 1296 - 361
max_d = √42
max_d = 6.4807406984079
Since max_d = 6.4807406984079 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 362 - 202
max_d = √2023 - 324 - 1296 - 400
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 372)
max_c = Floor(√2023 - 324 - 1369)
max_c = Floor(√330)
max_c = Floor(18.165902124585)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 372)/2 = 165
When min_c = 13, then it is c2 = 169 ≥ 165, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 372 - 132
max_d = √2023 - 324 - 1369 - 169
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 372 - 142
max_d = √2023 - 324 - 1369 - 196
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 372 - 152
max_d = √2023 - 324 - 1369 - 225
max_d = √105
max_d = 10.24695076596
Since max_d = 10.24695076596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 372 - 162
max_d = √2023 - 324 - 1369 - 256
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 372 - 172
max_d = √2023 - 324 - 1369 - 289
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 372 - 182
max_d = √2023 - 324 - 1369 - 324
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 382)
max_c = Floor(√2023 - 324 - 1444)
max_c = Floor(√255)
max_c = Floor(15.968719422671)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 382)/2 = 127.5
When min_c = 12, then it is c2 = 144 ≥ 127.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 382 - 122
max_d = √2023 - 324 - 1444 - 144
max_d = √111
max_d = 10.535653752853
Since max_d = 10.535653752853 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 382 - 132
max_d = √2023 - 324 - 1444 - 169
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 382 - 142
max_d = √2023 - 324 - 1444 - 196
max_d = √59
max_d = 7.6811457478686
Since max_d = 7.6811457478686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 382 - 152
max_d = √2023 - 324 - 1444 - 225
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 392)
max_c = Floor(√2023 - 324 - 1521)
max_c = Floor(√178)
max_c = Floor(13.341664064126)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 392)/2 = 89
When min_c = 10, then it is c2 = 100 ≥ 89, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 392 - 102
max_d = √2023 - 324 - 1521 - 100
max_d = √78
max_d = 8.8317608663278
Since max_d = 8.8317608663278 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 392 - 112
max_d = √2023 - 324 - 1521 - 121
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 392 - 122
max_d = √2023 - 324 - 1521 - 144
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 392 - 132
max_d = √2023 - 324 - 1521 - 169
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (18, 39, 13, 3) is an integer solution proven below
182 + 392 + 132 + 32 → 324 + 1521 + 169 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 402)
max_c = Floor(√2023 - 324 - 1600)
max_c = Floor(√99)
max_c = Floor(9.9498743710662)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 402)/2 = 49.5
When min_c = 8, then it is c2 = 64 ≥ 49.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 402 - 82
max_d = √2023 - 324 - 1600 - 64
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 402 - 92
max_d = √2023 - 324 - 1600 - 81
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 182 - 412)
max_c = Floor(√2023 - 324 - 1681)
max_c = Floor(√18)
max_c = Floor(4.2426406871193)
max_c = 4
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 182 - 412)/2 = 9
When min_c = 3, then it is c2 = 9 ≥ 9, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 412 - 32
max_d = √2023 - 324 - 1681 - 9
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (18, 41, 3, 3) is an integer solution proven below
182 + 412 + 32 + 32 → 324 + 1681 + 9 + 9 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 182 - 412 - 42
max_d = √2023 - 324 - 1681 - 16
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 192)
max_b = Floor(√2023 - 361)
max_b = Floor(√1662)
max_b = Floor(40.767634221279)
max_b = 40
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 192)/3 = 554
When min_b = 24, then it is b2 = 576 ≥ 554, so min_b = 24
(24, 40)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 242)
max_c = Floor(√2023 - 361 - 576)
max_c = Floor(√1086)
max_c = Floor(32.954514106568)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 242)/2 = 543
When min_c = 24, then it is c2 = 576 ≥ 543, so min_c = 24
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 242 - 242
max_d = √2023 - 361 - 576 - 576
max_d = √510
max_d = 22.583179581272
Since max_d = 22.583179581272 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 242 - 252
max_d = √2023 - 361 - 576 - 625
max_d = √461
max_d = 21.470910553584
Since max_d = 21.470910553584 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 242 - 262
max_d = √2023 - 361 - 576 - 676
max_d = √410
max_d = 20.248456731317
Since max_d = 20.248456731317 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 242 - 272
max_d = √2023 - 361 - 576 - 729
max_d = √357
max_d = 18.894443627691
Since max_d = 18.894443627691 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 242 - 282
max_d = √2023 - 361 - 576 - 784
max_d = √302
max_d = 17.378147196983
Since max_d = 17.378147196983 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 242 - 292
max_d = √2023 - 361 - 576 - 841
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 242 - 302
max_d = √2023 - 361 - 576 - 900
max_d = √186
max_d = 13.638181696986
Since max_d = 13.638181696986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 242 - 312
max_d = √2023 - 361 - 576 - 961
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 242 - 322
max_d = √2023 - 361 - 576 - 1024
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 252)
max_c = Floor(√2023 - 361 - 625)
max_c = Floor(√1037)
max_c = Floor(32.202484376209)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 252)/2 = 518.5
When min_c = 23, then it is c2 = 529 ≥ 518.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 252 - 232
max_d = √2023 - 361 - 625 - 529
max_d = √508
max_d = 22.538855339169
Since max_d = 22.538855339169 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 252 - 242
max_d = √2023 - 361 - 625 - 576
max_d = √461
max_d = 21.470910553584
Since max_d = 21.470910553584 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 252 - 252
max_d = √2023 - 361 - 625 - 625
max_d = √412
max_d = 20.297783130184
Since max_d = 20.297783130184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 252 - 262
max_d = √2023 - 361 - 625 - 676
max_d = √361
max_d = 19
Since max_d = 19, then (a, b, c, d) = (19, 25, 26, 19) is an integer solution proven below
192 + 252 + 262 + 192 → 361 + 625 + 676 + 361 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 252 - 272
max_d = √2023 - 361 - 625 - 729
max_d = √308
max_d = 17.549928774784
Since max_d = 17.549928774784 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 252 - 282
max_d = √2023 - 361 - 625 - 784
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 252 - 292
max_d = √2023 - 361 - 625 - 841
max_d = √196
max_d = 14
Since max_d = 14, then (a, b, c, d) = (19, 25, 29, 14) is an integer solution proven below
192 + 252 + 292 + 142 → 361 + 625 + 841 + 196 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 252 - 302
max_d = √2023 - 361 - 625 - 900
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 252 - 312
max_d = √2023 - 361 - 625 - 961
max_d = √76
max_d = 8.7177978870813
Since max_d = 8.7177978870813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 252 - 322
max_d = √2023 - 361 - 625 - 1024
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 262)
max_c = Floor(√2023 - 361 - 676)
max_c = Floor(√986)
max_c = Floor(31.400636936215)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 262)/2 = 493
When min_c = 23, then it is c2 = 529 ≥ 493, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 262 - 232
max_d = √2023 - 361 - 676 - 529
max_d = √457
max_d = 21.377558326432
Since max_d = 21.377558326432 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 262 - 242
max_d = √2023 - 361 - 676 - 576
max_d = √410
max_d = 20.248456731317
Since max_d = 20.248456731317 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 262 - 252
max_d = √2023 - 361 - 676 - 625
max_d = √361
max_d = 19
Since max_d = 19, then (a, b, c, d) = (19, 26, 25, 19) is an integer solution proven below
192 + 262 + 252 + 192 → 361 + 676 + 625 + 361 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 262 - 262
max_d = √2023 - 361 - 676 - 676
max_d = √310
max_d = 17.606816861659
Since max_d = 17.606816861659 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 262 - 272
max_d = √2023 - 361 - 676 - 729
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 262 - 282
max_d = √2023 - 361 - 676 - 784
max_d = √202
max_d = 14.212670403552
Since max_d = 14.212670403552 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 262 - 292
max_d = √2023 - 361 - 676 - 841
max_d = √145
max_d = 12.041594578792
Since max_d = 12.041594578792 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 262 - 302
max_d = √2023 - 361 - 676 - 900
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 262 - 312
max_d = √2023 - 361 - 676 - 961
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (19, 26, 31, 5) is an integer solution proven below
192 + 262 + 312 + 52 → 361 + 676 + 961 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 272)
max_c = Floor(√2023 - 361 - 729)
max_c = Floor(√933)
max_c = Floor(30.545048698603)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 272)/2 = 466.5
When min_c = 22, then it is c2 = 484 ≥ 466.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 272 - 222
max_d = √2023 - 361 - 729 - 484
max_d = √449
max_d = 21.189620100417
Since max_d = 21.189620100417 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 272 - 232
max_d = √2023 - 361 - 729 - 529
max_d = √404
max_d = 20.099751242242
Since max_d = 20.099751242242 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 272 - 242
max_d = √2023 - 361 - 729 - 576
max_d = √357
max_d = 18.894443627691
Since max_d = 18.894443627691 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 272 - 252
max_d = √2023 - 361 - 729 - 625
max_d = √308
max_d = 17.549928774784
Since max_d = 17.549928774784 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 272 - 262
max_d = √2023 - 361 - 729 - 676
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 272 - 272
max_d = √2023 - 361 - 729 - 729
max_d = √204
max_d = 14.282856857086
Since max_d = 14.282856857086 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 272 - 282
max_d = √2023 - 361 - 729 - 784
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 272 - 292
max_d = √2023 - 361 - 729 - 841
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 272 - 302
max_d = √2023 - 361 - 729 - 900
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 282)
max_c = Floor(√2023 - 361 - 784)
max_c = Floor(√878)
max_c = Floor(29.631064780058)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 282)/2 = 439
When min_c = 21, then it is c2 = 441 ≥ 439, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 282 - 212
max_d = √2023 - 361 - 784 - 441
max_d = √437
max_d = 20.904544960367
Since max_d = 20.904544960367 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 282 - 222
max_d = √2023 - 361 - 784 - 484
max_d = √394
max_d = 19.849433241279
Since max_d = 19.849433241279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 282 - 232
max_d = √2023 - 361 - 784 - 529
max_d = √349
max_d = 18.681541692269
Since max_d = 18.681541692269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 282 - 242
max_d = √2023 - 361 - 784 - 576
max_d = √302
max_d = 17.378147196983
Since max_d = 17.378147196983 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 282 - 252
max_d = √2023 - 361 - 784 - 625
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 282 - 262
max_d = √2023 - 361 - 784 - 676
max_d = √202
max_d = 14.212670403552
Since max_d = 14.212670403552 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 282 - 272
max_d = √2023 - 361 - 784 - 729
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 282 - 282
max_d = √2023 - 361 - 784 - 784
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 282 - 292
max_d = √2023 - 361 - 784 - 841
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 292)
max_c = Floor(√2023 - 361 - 841)
max_c = Floor(√821)
max_c = Floor(28.653097563789)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 292)/2 = 410.5
When min_c = 21, then it is c2 = 441 ≥ 410.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 292 - 212
max_d = √2023 - 361 - 841 - 441
max_d = √380
max_d = 19.493588689618
Since max_d = 19.493588689618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 292 - 222
max_d = √2023 - 361 - 841 - 484
max_d = √337
max_d = 18.357559750686
Since max_d = 18.357559750686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 292 - 232
max_d = √2023 - 361 - 841 - 529
max_d = √292
max_d = 17.088007490635
Since max_d = 17.088007490635 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 292 - 242
max_d = √2023 - 361 - 841 - 576
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 292 - 252
max_d = √2023 - 361 - 841 - 625
max_d = √196
max_d = 14
Since max_d = 14, then (a, b, c, d) = (19, 29, 25, 14) is an integer solution proven below
192 + 292 + 252 + 142 → 361 + 841 + 625 + 196 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 292 - 262
max_d = √2023 - 361 - 841 - 676
max_d = √145
max_d = 12.041594578792
Since max_d = 12.041594578792 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 292 - 272
max_d = √2023 - 361 - 841 - 729
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 292 - 282
max_d = √2023 - 361 - 841 - 784
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 302)
max_c = Floor(√2023 - 361 - 900)
max_c = Floor(√762)
max_c = Floor(27.604347483685)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 302)/2 = 381
When min_c = 20, then it is c2 = 400 ≥ 381, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 302 - 202
max_d = √2023 - 361 - 900 - 400
max_d = √362
max_d = 19.02629759044
Since max_d = 19.02629759044 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 302 - 212
max_d = √2023 - 361 - 900 - 441
max_d = √321
max_d = 17.916472867169
Since max_d = 17.916472867169 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 302 - 222
max_d = √2023 - 361 - 900 - 484
max_d = √278
max_d = 16.673332000533
Since max_d = 16.673332000533 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 302 - 232
max_d = √2023 - 361 - 900 - 529
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 302 - 242
max_d = √2023 - 361 - 900 - 576
max_d = √186
max_d = 13.638181696986
Since max_d = 13.638181696986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 302 - 252
max_d = √2023 - 361 - 900 - 625
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 302 - 262
max_d = √2023 - 361 - 900 - 676
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 302 - 272
max_d = √2023 - 361 - 900 - 729
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 312)
max_c = Floor(√2023 - 361 - 961)
max_c = Floor(√701)
max_c = Floor(26.476404589747)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 312)/2 = 350.5
When min_c = 19, then it is c2 = 361 ≥ 350.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 312 - 192
max_d = √2023 - 361 - 961 - 361
max_d = √340
max_d = 18.439088914586
Since max_d = 18.439088914586 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 312 - 202
max_d = √2023 - 361 - 961 - 400
max_d = √301
max_d = 17.349351572897
Since max_d = 17.349351572897 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 312 - 212
max_d = √2023 - 361 - 961 - 441
max_d = √260
max_d = 16.124515496597
Since max_d = 16.124515496597 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 312 - 222
max_d = √2023 - 361 - 961 - 484
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 312 - 232
max_d = √2023 - 361 - 961 - 529
max_d = √172
max_d = 13.114877048604
Since max_d = 13.114877048604 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 312 - 242
max_d = √2023 - 361 - 961 - 576
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 312 - 252
max_d = √2023 - 361 - 961 - 625
max_d = √76
max_d = 8.7177978870813
Since max_d = 8.7177978870813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 312 - 262
max_d = √2023 - 361 - 961 - 676
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (19, 31, 26, 5) is an integer solution proven below
192 + 312 + 262 + 52 → 361 + 961 + 676 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 322)
max_c = Floor(√2023 - 361 - 1024)
max_c = Floor(√638)
max_c = Floor(25.25866188063)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 322)/2 = 319
When min_c = 18, then it is c2 = 324 ≥ 319, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 322 - 182
max_d = √2023 - 361 - 1024 - 324
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 322 - 192
max_d = √2023 - 361 - 1024 - 361
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 322 - 202
max_d = √2023 - 361 - 1024 - 400
max_d = √238
max_d = 15.427248620542
Since max_d = 15.427248620542 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 322 - 212
max_d = √2023 - 361 - 1024 - 441
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 322 - 222
max_d = √2023 - 361 - 1024 - 484
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 322 - 232
max_d = √2023 - 361 - 1024 - 529
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 322 - 242
max_d = √2023 - 361 - 1024 - 576
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 322 - 252
max_d = √2023 - 361 - 1024 - 625
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 332)
max_c = Floor(√2023 - 361 - 1089)
max_c = Floor(√573)
max_c = Floor(23.937418407172)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 332)/2 = 286.5
When min_c = 17, then it is c2 = 289 ≥ 286.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 332 - 172
max_d = √2023 - 361 - 1089 - 289
max_d = √284
max_d = 16.852299546353
Since max_d = 16.852299546353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 332 - 182
max_d = √2023 - 361 - 1089 - 324
max_d = √249
max_d = 15.779733838059
Since max_d = 15.779733838059 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 332 - 192
max_d = √2023 - 361 - 1089 - 361
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 332 - 202
max_d = √2023 - 361 - 1089 - 400
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 332 - 212
max_d = √2023 - 361 - 1089 - 441
max_d = √132
max_d = 11.489125293076
Since max_d = 11.489125293076 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 332 - 222
max_d = √2023 - 361 - 1089 - 484
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 332 - 232
max_d = √2023 - 361 - 1089 - 529
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 342)
max_c = Floor(√2023 - 361 - 1156)
max_c = Floor(√506)
max_c = Floor(22.494443758404)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 342)/2 = 253
When min_c = 16, then it is c2 = 256 ≥ 253, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 342 - 162
max_d = √2023 - 361 - 1156 - 256
max_d = √250
max_d = 15.811388300842
Since max_d = 15.811388300842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 342 - 172
max_d = √2023 - 361 - 1156 - 289
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 342 - 182
max_d = √2023 - 361 - 1156 - 324
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 342 - 192
max_d = √2023 - 361 - 1156 - 361
max_d = √145
max_d = 12.041594578792
Since max_d = 12.041594578792 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 342 - 202
max_d = √2023 - 361 - 1156 - 400
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 342 - 212
max_d = √2023 - 361 - 1156 - 441
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 342 - 222
max_d = √2023 - 361 - 1156 - 484
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 352)
max_c = Floor(√2023 - 361 - 1225)
max_c = Floor(√437)
max_c = Floor(20.904544960367)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 352)/2 = 218.5
When min_c = 15, then it is c2 = 225 ≥ 218.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 352 - 152
max_d = √2023 - 361 - 1225 - 225
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 352 - 162
max_d = √2023 - 361 - 1225 - 256
max_d = √181
max_d = 13.453624047074
Since max_d = 13.453624047074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 352 - 172
max_d = √2023 - 361 - 1225 - 289
max_d = √148
max_d = 12.165525060596
Since max_d = 12.165525060596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 352 - 182
max_d = √2023 - 361 - 1225 - 324
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 352 - 192
max_d = √2023 - 361 - 1225 - 361
max_d = √76
max_d = 8.7177978870813
Since max_d = 8.7177978870813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 352 - 202
max_d = √2023 - 361 - 1225 - 400
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 362)
max_c = Floor(√2023 - 361 - 1296)
max_c = Floor(√366)
max_c = Floor(19.131126469709)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 362)/2 = 183
When min_c = 14, then it is c2 = 196 ≥ 183, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 362 - 142
max_d = √2023 - 361 - 1296 - 196
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 362 - 152
max_d = √2023 - 361 - 1296 - 225
max_d = √141
max_d = 11.874342087038
Since max_d = 11.874342087038 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 362 - 162
max_d = √2023 - 361 - 1296 - 256
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 362 - 172
max_d = √2023 - 361 - 1296 - 289
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 362 - 182
max_d = √2023 - 361 - 1296 - 324
max_d = √42
max_d = 6.4807406984079
Since max_d = 6.4807406984079 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 362 - 192
max_d = √2023 - 361 - 1296 - 361
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 372)
max_c = Floor(√2023 - 361 - 1369)
max_c = Floor(√293)
max_c = Floor(17.117242768624)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 372)/2 = 146.5
When min_c = 13, then it is c2 = 169 ≥ 146.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 372 - 132
max_d = √2023 - 361 - 1369 - 169
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 372 - 142
max_d = √2023 - 361 - 1369 - 196
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 372 - 152
max_d = √2023 - 361 - 1369 - 225
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 372 - 162
max_d = √2023 - 361 - 1369 - 256
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 372 - 172
max_d = √2023 - 361 - 1369 - 289
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (19, 37, 17, 2) is an integer solution proven below
192 + 372 + 172 + 22 → 361 + 1369 + 289 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 382)
max_c = Floor(√2023 - 361 - 1444)
max_c = Floor(√218)
max_c = Floor(14.764823060233)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 382)/2 = 109
When min_c = 11, then it is c2 = 121 ≥ 109, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 382 - 112
max_d = √2023 - 361 - 1444 - 121
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 382 - 122
max_d = √2023 - 361 - 1444 - 144
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 382 - 132
max_d = √2023 - 361 - 1444 - 169
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (19, 38, 13, 7) is an integer solution proven below
192 + 382 + 132 + 72 → 361 + 1444 + 169 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 382 - 142
max_d = √2023 - 361 - 1444 - 196
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 392)
max_c = Floor(√2023 - 361 - 1521)
max_c = Floor(√141)
max_c = Floor(11.874342087038)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 392)/2 = 70.5
When min_c = 9, then it is c2 = 81 ≥ 70.5, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 392 - 92
max_d = √2023 - 361 - 1521 - 81
max_d = √60
max_d = 7.7459666924148
Since max_d = 7.7459666924148 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 392 - 102
max_d = √2023 - 361 - 1521 - 100
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 392 - 112
max_d = √2023 - 361 - 1521 - 121
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 192 - 402)
max_c = Floor(√2023 - 361 - 1600)
max_c = Floor(√62)
max_c = Floor(7.8740078740118)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 192 - 402)/2 = 31
When min_c = 6, then it is c2 = 36 ≥ 31, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 402 - 62
max_d = √2023 - 361 - 1600 - 36
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 192 - 402 - 72
max_d = √2023 - 361 - 1600 - 49
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 202)
max_b = Floor(√2023 - 400)
max_b = Floor(√1623)
max_b = Floor(40.286474156967)
max_b = 40
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 202)/3 = 541
When min_b = 24, then it is b2 = 576 ≥ 541, so min_b = 24
(24, 40)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 242)
max_c = Floor(√2023 - 400 - 576)
max_c = Floor(√1047)
max_c = Floor(32.357379374727)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 242)/2 = 523.5
When min_c = 23, then it is c2 = 529 ≥ 523.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 242 - 232
max_d = √2023 - 400 - 576 - 529
max_d = √518
max_d = 22.759613353482
Since max_d = 22.759613353482 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 242 - 242
max_d = √2023 - 400 - 576 - 576
max_d = √471
max_d = 21.702534414211
Since max_d = 21.702534414211 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 242 - 252
max_d = √2023 - 400 - 576 - 625
max_d = √422
max_d = 20.542638584174
Since max_d = 20.542638584174 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 242 - 262
max_d = √2023 - 400 - 576 - 676
max_d = √371
max_d = 19.261360284258
Since max_d = 19.261360284258 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 242 - 272
max_d = √2023 - 400 - 576 - 729
max_d = √318
max_d = 17.832554500127
Since max_d = 17.832554500127 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 242 - 282
max_d = √2023 - 400 - 576 - 784
max_d = √263
max_d = 16.217274740227
Since max_d = 16.217274740227 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 242 - 292
max_d = √2023 - 400 - 576 - 841
max_d = √206
max_d = 14.352700094407
Since max_d = 14.352700094407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 242 - 302
max_d = √2023 - 400 - 576 - 900
max_d = √147
max_d = 12.124355652982
Since max_d = 12.124355652982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 242 - 312
max_d = √2023 - 400 - 576 - 961
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 242 - 322
max_d = √2023 - 400 - 576 - 1024
max_d = √23
max_d = 4.7958315233127
Since max_d = 4.7958315233127 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 252)
max_c = Floor(√2023 - 400 - 625)
max_c = Floor(√998)
max_c = Floor(31.591137997863)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 252)/2 = 499
When min_c = 23, then it is c2 = 529 ≥ 499, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 252 - 232
max_d = √2023 - 400 - 625 - 529
max_d = √469
max_d = 21.656407827708
Since max_d = 21.656407827708 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 252 - 242
max_d = √2023 - 400 - 625 - 576
max_d = √422
max_d = 20.542638584174
Since max_d = 20.542638584174 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 252 - 252
max_d = √2023 - 400 - 625 - 625
max_d = √373
max_d = 19.313207915828
Since max_d = 19.313207915828 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 252 - 262
max_d = √2023 - 400 - 625 - 676
max_d = √322
max_d = 17.944358444926
Since max_d = 17.944358444926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 252 - 272
max_d = √2023 - 400 - 625 - 729
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 252 - 282
max_d = √2023 - 400 - 625 - 784
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 252 - 292
max_d = √2023 - 400 - 625 - 841
max_d = √157
max_d = 12.529964086142
Since max_d = 12.529964086142 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 252 - 302
max_d = √2023 - 400 - 625 - 900
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 252 - 312
max_d = √2023 - 400 - 625 - 961
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 262)
max_c = Floor(√2023 - 400 - 676)
max_c = Floor(√947)
max_c = Floor(30.773365106858)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 262)/2 = 473.5
When min_c = 22, then it is c2 = 484 ≥ 473.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 262 - 222
max_d = √2023 - 400 - 676 - 484
max_d = √463
max_d = 21.51743479135
Since max_d = 21.51743479135 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 262 - 232
max_d = √2023 - 400 - 676 - 529
max_d = √418
max_d = 20.445048300261
Since max_d = 20.445048300261 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 262 - 242
max_d = √2023 - 400 - 676 - 576
max_d = √371
max_d = 19.261360284258
Since max_d = 19.261360284258 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 262 - 252
max_d = √2023 - 400 - 676 - 625
max_d = √322
max_d = 17.944358444926
Since max_d = 17.944358444926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 262 - 262
max_d = √2023 - 400 - 676 - 676
max_d = √271
max_d = 16.462077633154
Since max_d = 16.462077633154 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 262 - 272
max_d = √2023 - 400 - 676 - 729
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 262 - 282
max_d = √2023 - 400 - 676 - 784
max_d = √163
max_d = 12.767145334804
Since max_d = 12.767145334804 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 262 - 292
max_d = √2023 - 400 - 676 - 841
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 262 - 302
max_d = √2023 - 400 - 676 - 900
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 272)
max_c = Floor(√2023 - 400 - 729)
max_c = Floor(√894)
max_c = Floor(29.899832775452)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 272)/2 = 447
When min_c = 22, then it is c2 = 484 ≥ 447, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 272 - 222
max_d = √2023 - 400 - 729 - 484
max_d = √410
max_d = 20.248456731317
Since max_d = 20.248456731317 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 272 - 232
max_d = √2023 - 400 - 729 - 529
max_d = √365
max_d = 19.104973174543
Since max_d = 19.104973174543 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 272 - 242
max_d = √2023 - 400 - 729 - 576
max_d = √318
max_d = 17.832554500127
Since max_d = 17.832554500127 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 272 - 252
max_d = √2023 - 400 - 729 - 625
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 272 - 262
max_d = √2023 - 400 - 729 - 676
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 272 - 272
max_d = √2023 - 400 - 729 - 729
max_d = √165
max_d = 12.845232578665
Since max_d = 12.845232578665 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 272 - 282
max_d = √2023 - 400 - 729 - 784
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 272 - 292
max_d = √2023 - 400 - 729 - 841
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 282)
max_c = Floor(√2023 - 400 - 784)
max_c = Floor(√839)
max_c = Floor(28.96549671592)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 282)/2 = 419.5
When min_c = 21, then it is c2 = 441 ≥ 419.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 282 - 212
max_d = √2023 - 400 - 784 - 441
max_d = √398
max_d = 19.94993734326
Since max_d = 19.94993734326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 282 - 222
max_d = √2023 - 400 - 784 - 484
max_d = √355
max_d = 18.841443681417
Since max_d = 18.841443681417 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 282 - 232
max_d = √2023 - 400 - 784 - 529
max_d = √310
max_d = 17.606816861659
Since max_d = 17.606816861659 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 282 - 242
max_d = √2023 - 400 - 784 - 576
max_d = √263
max_d = 16.217274740227
Since max_d = 16.217274740227 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 282 - 252
max_d = √2023 - 400 - 784 - 625
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 282 - 262
max_d = √2023 - 400 - 784 - 676
max_d = √163
max_d = 12.767145334804
Since max_d = 12.767145334804 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 282 - 272
max_d = √2023 - 400 - 784 - 729
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 282 - 282
max_d = √2023 - 400 - 784 - 784
max_d = √55
max_d = 7.4161984870957
Since max_d = 7.4161984870957 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 292)
max_c = Floor(√2023 - 400 - 841)
max_c = Floor(√782)
max_c = Floor(27.964262908219)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 292)/2 = 391
When min_c = 20, then it is c2 = 400 ≥ 391, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 292 - 202
max_d = √2023 - 400 - 841 - 400
max_d = √382
max_d = 19.544820285692
Since max_d = 19.544820285692 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 292 - 212
max_d = √2023 - 400 - 841 - 441
max_d = √341
max_d = 18.466185312619
Since max_d = 18.466185312619 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 292 - 222
max_d = √2023 - 400 - 841 - 484
max_d = √298
max_d = 17.262676501632
Since max_d = 17.262676501632 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 292 - 232
max_d = √2023 - 400 - 841 - 529
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 292 - 242
max_d = √2023 - 400 - 841 - 576
max_d = √206
max_d = 14.352700094407
Since max_d = 14.352700094407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 292 - 252
max_d = √2023 - 400 - 841 - 625
max_d = √157
max_d = 12.529964086142
Since max_d = 12.529964086142 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 292 - 262
max_d = √2023 - 400 - 841 - 676
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 292 - 272
max_d = √2023 - 400 - 841 - 729
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 302)
max_c = Floor(√2023 - 400 - 900)
max_c = Floor(√723)
max_c = Floor(26.888659319498)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 302)/2 = 361.5
When min_c = 20, then it is c2 = 400 ≥ 361.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 302 - 202
max_d = √2023 - 400 - 900 - 400
max_d = √323
max_d = 17.972200755611
Since max_d = 17.972200755611 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 302 - 212
max_d = √2023 - 400 - 900 - 441
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 302 - 222
max_d = √2023 - 400 - 900 - 484
max_d = √239
max_d = 15.45962483374
Since max_d = 15.45962483374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 302 - 232
max_d = √2023 - 400 - 900 - 529
max_d = √194
max_d = 13.928388277184
Since max_d = 13.928388277184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 302 - 242
max_d = √2023 - 400 - 900 - 576
max_d = √147
max_d = 12.124355652982
Since max_d = 12.124355652982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 302 - 252
max_d = √2023 - 400 - 900 - 625
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 302 - 262
max_d = √2023 - 400 - 900 - 676
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 312)
max_c = Floor(√2023 - 400 - 961)
max_c = Floor(√662)
max_c = Floor(25.729360660537)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 312)/2 = 331
When min_c = 19, then it is c2 = 361 ≥ 331, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 312 - 192
max_d = √2023 - 400 - 961 - 361
max_d = √301
max_d = 17.349351572897
Since max_d = 17.349351572897 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 312 - 202
max_d = √2023 - 400 - 961 - 400
max_d = √262
max_d = 16.186414056239
Since max_d = 16.186414056239 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 312 - 212
max_d = √2023 - 400 - 961 - 441
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 312 - 222
max_d = √2023 - 400 - 961 - 484
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 312 - 232
max_d = √2023 - 400 - 961 - 529
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 312 - 242
max_d = √2023 - 400 - 961 - 576
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 312 - 252
max_d = √2023 - 400 - 961 - 625
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 322)
max_c = Floor(√2023 - 400 - 1024)
max_c = Floor(√599)
max_c = Floor(24.474476501041)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 322)/2 = 299.5
When min_c = 18, then it is c2 = 324 ≥ 299.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 322 - 182
max_d = √2023 - 400 - 1024 - 324
max_d = √275
max_d = 16.583123951777
Since max_d = 16.583123951777 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 322 - 192
max_d = √2023 - 400 - 1024 - 361
max_d = √238
max_d = 15.427248620542
Since max_d = 15.427248620542 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 322 - 202
max_d = √2023 - 400 - 1024 - 400
max_d = √199
max_d = 14.106735979666
Since max_d = 14.106735979666 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 322 - 212
max_d = √2023 - 400 - 1024 - 441
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 322 - 222
max_d = √2023 - 400 - 1024 - 484
max_d = √115
max_d = 10.723805294764
Since max_d = 10.723805294764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 322 - 232
max_d = √2023 - 400 - 1024 - 529
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 322 - 242
max_d = √2023 - 400 - 1024 - 576
max_d = √23
max_d = 4.7958315233127
Since max_d = 4.7958315233127 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 332)
max_c = Floor(√2023 - 400 - 1089)
max_c = Floor(√534)
max_c = Floor(23.108440016583)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 332)/2 = 267
When min_c = 17, then it is c2 = 289 ≥ 267, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 332 - 172
max_d = √2023 - 400 - 1089 - 289
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 332 - 182
max_d = √2023 - 400 - 1089 - 324
max_d = √210
max_d = 14.491376746189
Since max_d = 14.491376746189 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 332 - 192
max_d = √2023 - 400 - 1089 - 361
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 332 - 202
max_d = √2023 - 400 - 1089 - 400
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 332 - 212
max_d = √2023 - 400 - 1089 - 441
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 332 - 222
max_d = √2023 - 400 - 1089 - 484
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 332 - 232
max_d = √2023 - 400 - 1089 - 529
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 342)
max_c = Floor(√2023 - 400 - 1156)
max_c = Floor(√467)
max_c = Floor(21.610182784974)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 342)/2 = 233.5
When min_c = 16, then it is c2 = 256 ≥ 233.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 342 - 162
max_d = √2023 - 400 - 1156 - 256
max_d = √211
max_d = 14.525839046334
Since max_d = 14.525839046334 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 342 - 172
max_d = √2023 - 400 - 1156 - 289
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 342 - 182
max_d = √2023 - 400 - 1156 - 324
max_d = √143
max_d = 11.958260743101
Since max_d = 11.958260743101 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 342 - 192
max_d = √2023 - 400 - 1156 - 361
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 342 - 202
max_d = √2023 - 400 - 1156 - 400
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 342 - 212
max_d = √2023 - 400 - 1156 - 441
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 352)
max_c = Floor(√2023 - 400 - 1225)
max_c = Floor(√398)
max_c = Floor(19.94993734326)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 352)/2 = 199
When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 352 - 152
max_d = √2023 - 400 - 1225 - 225
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 352 - 162
max_d = √2023 - 400 - 1225 - 256
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 352 - 172
max_d = √2023 - 400 - 1225 - 289
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 352 - 182
max_d = √2023 - 400 - 1225 - 324
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 352 - 192
max_d = √2023 - 400 - 1225 - 361
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 362)
max_c = Floor(√2023 - 400 - 1296)
max_c = Floor(√327)
max_c = Floor(18.083141320025)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 362)/2 = 163.5
When min_c = 13, then it is c2 = 169 ≥ 163.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 362 - 132
max_d = √2023 - 400 - 1296 - 169
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 362 - 142
max_d = √2023 - 400 - 1296 - 196
max_d = √131
max_d = 11.44552314226
Since max_d = 11.44552314226 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 362 - 152
max_d = √2023 - 400 - 1296 - 225
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 362 - 162
max_d = √2023 - 400 - 1296 - 256
max_d = √71
max_d = 8.4261497731764
Since max_d = 8.4261497731764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 362 - 172
max_d = √2023 - 400 - 1296 - 289
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 362 - 182
max_d = √2023 - 400 - 1296 - 324
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 372)
max_c = Floor(√2023 - 400 - 1369)
max_c = Floor(√254)
max_c = Floor(15.937377450509)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 372)/2 = 127
When min_c = 12, then it is c2 = 144 ≥ 127, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 372 - 122
max_d = √2023 - 400 - 1369 - 144
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 372 - 132
max_d = √2023 - 400 - 1369 - 169
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 372 - 142
max_d = √2023 - 400 - 1369 - 196
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 372 - 152
max_d = √2023 - 400 - 1369 - 225
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 382)
max_c = Floor(√2023 - 400 - 1444)
max_c = Floor(√179)
max_c = Floor(13.37908816026)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 382)/2 = 89.5
When min_c = 10, then it is c2 = 100 ≥ 89.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 382 - 102
max_d = √2023 - 400 - 1444 - 100
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 382 - 112
max_d = √2023 - 400 - 1444 - 121
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 382 - 122
max_d = √2023 - 400 - 1444 - 144
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 382 - 132
max_d = √2023 - 400 - 1444 - 169
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 392)
max_c = Floor(√2023 - 400 - 1521)
max_c = Floor(√102)
max_c = Floor(10.099504938362)
max_c = 10
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 392)/2 = 51
When min_c = 8, then it is c2 = 64 ≥ 51, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 392 - 82
max_d = √2023 - 400 - 1521 - 64
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 392 - 92
max_d = √2023 - 400 - 1521 - 81
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 392 - 102
max_d = √2023 - 400 - 1521 - 100
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 202 - 402)
max_c = Floor(√2023 - 400 - 1600)
max_c = Floor(√23)
max_c = Floor(4.7958315233127)
max_c = 4
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 202 - 402)/2 = 11.5
When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 202 - 402 - 42
max_d = √2023 - 400 - 1600 - 16
max_d = √7
max_d = 2.6457513110646
Since max_d = 2.6457513110646 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 212)
max_b = Floor(√2023 - 441)
max_b = Floor(√1582)
max_b = Floor(39.774363602703)
max_b = 39
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 212)/3 = 527.33333333333
When min_b = 23, then it is b2 = 529 ≥ 527.33333333333, so min_b = 23
(23, 39)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 232)
max_c = Floor(√2023 - 441 - 529)
max_c = Floor(√1053)
max_c = Floor(32.449961479176)
max_c = 32
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 232)/2 = 526.5
When min_c = 23, then it is c2 = 529 ≥ 526.5, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 232 - 232
max_d = √2023 - 441 - 529 - 529
max_d = √524
max_d = 22.891046284519
Since max_d = 22.891046284519 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 232 - 242
max_d = √2023 - 441 - 529 - 576
max_d = √477
max_d = 21.840329667842
Since max_d = 21.840329667842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 232 - 252
max_d = √2023 - 441 - 529 - 625
max_d = √428
max_d = 20.688160865577
Since max_d = 20.688160865577 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 232 - 262
max_d = √2023 - 441 - 529 - 676
max_d = √377
max_d = 19.416487838948
Since max_d = 19.416487838948 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 232 - 272
max_d = √2023 - 441 - 529 - 729
max_d = √324
max_d = 18
Since max_d = 18, then (a, b, c, d) = (21, 23, 27, 18) is an integer solution proven below
212 + 232 + 272 + 182 → 441 + 529 + 729 + 324 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 232 - 282
max_d = √2023 - 441 - 529 - 784
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 232 - 292
max_d = √2023 - 441 - 529 - 841
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 232 - 302
max_d = √2023 - 441 - 529 - 900
max_d = √153
max_d = 12.369316876853
Since max_d = 12.369316876853 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 232 - 312
max_d = √2023 - 441 - 529 - 961
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 232 - 322
max_d = √2023 - 441 - 529 - 1024
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 242)
max_c = Floor(√2023 - 441 - 576)
max_c = Floor(√1006)
max_c = Floor(31.717503054307)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 242)/2 = 503
When min_c = 23, then it is c2 = 529 ≥ 503, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 242 - 232
max_d = √2023 - 441 - 576 - 529
max_d = √477
max_d = 21.840329667842
Since max_d = 21.840329667842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 242 - 242
max_d = √2023 - 441 - 576 - 576
max_d = √430
max_d = 20.736441353328
Since max_d = 20.736441353328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 242 - 252
max_d = √2023 - 441 - 576 - 625
max_d = √381
max_d = 19.519221295943
Since max_d = 19.519221295943 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 242 - 262
max_d = √2023 - 441 - 576 - 676
max_d = √330
max_d = 18.165902124585
Since max_d = 18.165902124585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 242 - 272
max_d = √2023 - 441 - 576 - 729
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 242 - 282
max_d = √2023 - 441 - 576 - 784
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 242 - 292
max_d = √2023 - 441 - 576 - 841
max_d = √165
max_d = 12.845232578665
Since max_d = 12.845232578665 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 242 - 302
max_d = √2023 - 441 - 576 - 900
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 242 - 312
max_d = √2023 - 441 - 576 - 961
max_d = √45
max_d = 6.7082039324994
Since max_d = 6.7082039324994 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 252)
max_c = Floor(√2023 - 441 - 625)
max_c = Floor(√957)
max_c = Floor(30.935416596516)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 252)/2 = 478.5
When min_c = 22, then it is c2 = 484 ≥ 478.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 252 - 222
max_d = √2023 - 441 - 625 - 484
max_d = √473
max_d = 21.748563170932
Since max_d = 21.748563170932 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 252 - 232
max_d = √2023 - 441 - 625 - 529
max_d = √428
max_d = 20.688160865577
Since max_d = 20.688160865577 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 252 - 242
max_d = √2023 - 441 - 625 - 576
max_d = √381
max_d = 19.519221295943
Since max_d = 19.519221295943 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 252 - 252
max_d = √2023 - 441 - 625 - 625
max_d = √332
max_d = 18.220867158289
Since max_d = 18.220867158289 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 252 - 262
max_d = √2023 - 441 - 625 - 676
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 252 - 272
max_d = √2023 - 441 - 625 - 729
max_d = √228
max_d = 15.099668870541
Since max_d = 15.099668870541 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 252 - 282
max_d = √2023 - 441 - 625 - 784
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 252 - 292
max_d = √2023 - 441 - 625 - 841
max_d = √116
max_d = 10.770329614269
Since max_d = 10.770329614269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 252 - 302
max_d = √2023 - 441 - 625 - 900
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 262)
max_c = Floor(√2023 - 441 - 676)
max_c = Floor(√906)
max_c = Floor(30.099833886585)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 262)/2 = 453
When min_c = 22, then it is c2 = 484 ≥ 453, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 262 - 222
max_d = √2023 - 441 - 676 - 484
max_d = √422
max_d = 20.542638584174
Since max_d = 20.542638584174 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 262 - 232
max_d = √2023 - 441 - 676 - 529
max_d = √377
max_d = 19.416487838948
Since max_d = 19.416487838948 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 262 - 242
max_d = √2023 - 441 - 676 - 576
max_d = √330
max_d = 18.165902124585
Since max_d = 18.165902124585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 262 - 252
max_d = √2023 - 441 - 676 - 625
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 262 - 262
max_d = √2023 - 441 - 676 - 676
max_d = √230
max_d = 15.165750888103
Since max_d = 15.165750888103 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 262 - 272
max_d = √2023 - 441 - 676 - 729
max_d = √177
max_d = 13.30413469565
Since max_d = 13.30413469565 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 262 - 282
max_d = √2023 - 441 - 676 - 784
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 262 - 292
max_d = √2023 - 441 - 676 - 841
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 262 - 302
max_d = √2023 - 441 - 676 - 900
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 272)
max_c = Floor(√2023 - 441 - 729)
max_c = Floor(√853)
max_c = Floor(29.20616373302)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 272)/2 = 426.5
When min_c = 21, then it is c2 = 441 ≥ 426.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 272 - 212
max_d = √2023 - 441 - 729 - 441
max_d = √412
max_d = 20.297783130184
Since max_d = 20.297783130184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 272 - 222
max_d = √2023 - 441 - 729 - 484
max_d = √369
max_d = 19.209372712299
Since max_d = 19.209372712299 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 272 - 232
max_d = √2023 - 441 - 729 - 529
max_d = √324
max_d = 18
Since max_d = 18, then (a, b, c, d) = (21, 27, 23, 18) is an integer solution proven below
212 + 272 + 232 + 182 → 441 + 729 + 529 + 324 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 272 - 242
max_d = √2023 - 441 - 729 - 576
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 272 - 252
max_d = √2023 - 441 - 729 - 625
max_d = √228
max_d = 15.099668870541
Since max_d = 15.099668870541 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 272 - 262
max_d = √2023 - 441 - 729 - 676
max_d = √177
max_d = 13.30413469565
Since max_d = 13.30413469565 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 272 - 272
max_d = √2023 - 441 - 729 - 729
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 272 - 282
max_d = √2023 - 441 - 729 - 784
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 272 - 292
max_d = √2023 - 441 - 729 - 841
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 282)
max_c = Floor(√2023 - 441 - 784)
max_c = Floor(√798)
max_c = Floor(28.248893783651)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 282)/2 = 399
When min_c = 20, then it is c2 = 400 ≥ 399, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 282 - 202
max_d = √2023 - 441 - 784 - 400
max_d = √398
max_d = 19.94993734326
Since max_d = 19.94993734326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 282 - 212
max_d = √2023 - 441 - 784 - 441
max_d = √357
max_d = 18.894443627691
Since max_d = 18.894443627691 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 282 - 222
max_d = √2023 - 441 - 784 - 484
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 282 - 232
max_d = √2023 - 441 - 784 - 529
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 282 - 242
max_d = √2023 - 441 - 784 - 576
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 282 - 252
max_d = √2023 - 441 - 784 - 625
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 282 - 262
max_d = √2023 - 441 - 784 - 676
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 282 - 272
max_d = √2023 - 441 - 784 - 729
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 282 - 282
max_d = √2023 - 441 - 784 - 784
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 292)
max_c = Floor(√2023 - 441 - 841)
max_c = Floor(√741)
max_c = Floor(27.221315177632)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 292)/2 = 370.5
When min_c = 20, then it is c2 = 400 ≥ 370.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 292 - 202
max_d = √2023 - 441 - 841 - 400
max_d = √341
max_d = 18.466185312619
Since max_d = 18.466185312619 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 292 - 212
max_d = √2023 - 441 - 841 - 441
max_d = √300
max_d = 17.320508075689
Since max_d = 17.320508075689 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 292 - 222
max_d = √2023 - 441 - 841 - 484
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 292 - 232
max_d = √2023 - 441 - 841 - 529
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 292 - 242
max_d = √2023 - 441 - 841 - 576
max_d = √165
max_d = 12.845232578665
Since max_d = 12.845232578665 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 292 - 252
max_d = √2023 - 441 - 841 - 625
max_d = √116
max_d = 10.770329614269
Since max_d = 10.770329614269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 292 - 262
max_d = √2023 - 441 - 841 - 676
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 292 - 272
max_d = √2023 - 441 - 841 - 729
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 302)
max_c = Floor(√2023 - 441 - 900)
max_c = Floor(√682)
max_c = Floor(26.115129714401)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 302)/2 = 341
When min_c = 19, then it is c2 = 361 ≥ 341, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 302 - 192
max_d = √2023 - 441 - 900 - 361
max_d = √321
max_d = 17.916472867169
Since max_d = 17.916472867169 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 302 - 202
max_d = √2023 - 441 - 900 - 400
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 302 - 212
max_d = √2023 - 441 - 900 - 441
max_d = √241
max_d = 15.52417469626
Since max_d = 15.52417469626 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 302 - 222
max_d = √2023 - 441 - 900 - 484
max_d = √198
max_d = 14.07124727947
Since max_d = 14.07124727947 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 302 - 232
max_d = √2023 - 441 - 900 - 529
max_d = √153
max_d = 12.369316876853
Since max_d = 12.369316876853 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 302 - 242
max_d = √2023 - 441 - 900 - 576
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 302 - 252
max_d = √2023 - 441 - 900 - 625
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 302 - 262
max_d = √2023 - 441 - 900 - 676
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 312)
max_c = Floor(√2023 - 441 - 961)
max_c = Floor(√621)
max_c = Floor(24.919871588754)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 312)/2 = 310.5
When min_c = 18, then it is c2 = 324 ≥ 310.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 312 - 182
max_d = √2023 - 441 - 961 - 324
max_d = √297
max_d = 17.233687939614
Since max_d = 17.233687939614 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 312 - 192
max_d = √2023 - 441 - 961 - 361
max_d = √260
max_d = 16.124515496597
Since max_d = 16.124515496597 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 312 - 202
max_d = √2023 - 441 - 961 - 400
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 312 - 212
max_d = √2023 - 441 - 961 - 441
max_d = √180
max_d = 13.416407864999
Since max_d = 13.416407864999 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 312 - 222
max_d = √2023 - 441 - 961 - 484
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 312 - 232
max_d = √2023 - 441 - 961 - 529
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 312 - 242
max_d = √2023 - 441 - 961 - 576
max_d = √45
max_d = 6.7082039324994
Since max_d = 6.7082039324994 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 322)
max_c = Floor(√2023 - 441 - 1024)
max_c = Floor(√558)
max_c = Floor(23.622023622035)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 322)/2 = 279
When min_c = 17, then it is c2 = 289 ≥ 279, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 322 - 172
max_d = √2023 - 441 - 1024 - 289
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 322 - 182
max_d = √2023 - 441 - 1024 - 324
max_d = √234
max_d = 15.297058540778
Since max_d = 15.297058540778 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 322 - 192
max_d = √2023 - 441 - 1024 - 361
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 322 - 202
max_d = √2023 - 441 - 1024 - 400
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 322 - 212
max_d = √2023 - 441 - 1024 - 441
max_d = √117
max_d = 10.816653826392
Since max_d = 10.816653826392 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 322 - 222
max_d = √2023 - 441 - 1024 - 484
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 322 - 232
max_d = √2023 - 441 - 1024 - 529
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 332)
max_c = Floor(√2023 - 441 - 1089)
max_c = Floor(√493)
max_c = Floor(22.203603311175)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 332)/2 = 246.5
When min_c = 16, then it is c2 = 256 ≥ 246.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 332 - 162
max_d = √2023 - 441 - 1089 - 256
max_d = √237
max_d = 15.394804318341
Since max_d = 15.394804318341 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 332 - 172
max_d = √2023 - 441 - 1089 - 289
max_d = √204
max_d = 14.282856857086
Since max_d = 14.282856857086 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 332 - 182
max_d = √2023 - 441 - 1089 - 324
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (21, 33, 18, 13) is an integer solution proven below
212 + 332 + 182 + 132 → 441 + 1089 + 324 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 332 - 192
max_d = √2023 - 441 - 1089 - 361
max_d = √132
max_d = 11.489125293076
Since max_d = 11.489125293076 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 332 - 202
max_d = √2023 - 441 - 1089 - 400
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 332 - 212
max_d = √2023 - 441 - 1089 - 441
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 332 - 222
max_d = √2023 - 441 - 1089 - 484
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (21, 33, 22, 3) is an integer solution proven below
212 + 332 + 222 + 32 → 441 + 1089 + 484 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 342)
max_c = Floor(√2023 - 441 - 1156)
max_c = Floor(√426)
max_c = Floor(20.63976744055)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 342)/2 = 213
When min_c = 15, then it is c2 = 225 ≥ 213, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 342 - 152
max_d = √2023 - 441 - 1156 - 225
max_d = √201
max_d = 14.177446878758
Since max_d = 14.177446878758 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 342 - 162
max_d = √2023 - 441 - 1156 - 256
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 342 - 172
max_d = √2023 - 441 - 1156 - 289
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 342 - 182
max_d = √2023 - 441 - 1156 - 324
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 342 - 192
max_d = √2023 - 441 - 1156 - 361
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 342 - 202
max_d = √2023 - 441 - 1156 - 400
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 352)
max_c = Floor(√2023 - 441 - 1225)
max_c = Floor(√357)
max_c = Floor(18.894443627691)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 352)/2 = 178.5
When min_c = 14, then it is c2 = 196 ≥ 178.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 352 - 142
max_d = √2023 - 441 - 1225 - 196
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 352 - 152
max_d = √2023 - 441 - 1225 - 225
max_d = √132
max_d = 11.489125293076
Since max_d = 11.489125293076 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 352 - 162
max_d = √2023 - 441 - 1225 - 256
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 352 - 172
max_d = √2023 - 441 - 1225 - 289
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 352 - 182
max_d = √2023 - 441 - 1225 - 324
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 362)
max_c = Floor(√2023 - 441 - 1296)
max_c = Floor(√286)
max_c = Floor(16.911534525288)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 362)/2 = 143
When min_c = 12, then it is c2 = 144 ≥ 143, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 362 - 122
max_d = √2023 - 441 - 1296 - 144
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 362 - 132
max_d = √2023 - 441 - 1296 - 169
max_d = √117
max_d = 10.816653826392
Since max_d = 10.816653826392 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 362 - 142
max_d = √2023 - 441 - 1296 - 196
max_d = √90
max_d = 9.4868329805051
Since max_d = 9.4868329805051 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 362 - 152
max_d = √2023 - 441 - 1296 - 225
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 362 - 162
max_d = √2023 - 441 - 1296 - 256
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 372)
max_c = Floor(√2023 - 441 - 1369)
max_c = Floor(√213)
max_c = Floor(14.594519519326)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 372)/2 = 106.5
When min_c = 11, then it is c2 = 121 ≥ 106.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 372 - 112
max_d = √2023 - 441 - 1369 - 121
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 372 - 122
max_d = √2023 - 441 - 1369 - 144
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 372 - 132
max_d = √2023 - 441 - 1369 - 169
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 372 - 142
max_d = √2023 - 441 - 1369 - 196
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 382)
max_c = Floor(√2023 - 441 - 1444)
max_c = Floor(√138)
max_c = Floor(11.747340124471)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 382)/2 = 69
When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 382 - 92
max_d = √2023 - 441 - 1444 - 81
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 382 - 102
max_d = √2023 - 441 - 1444 - 100
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 382 - 112
max_d = √2023 - 441 - 1444 - 121
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 212 - 392)
max_c = Floor(√2023 - 441 - 1521)
max_c = Floor(√61)
max_c = Floor(7.8102496759067)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 212 - 392)/2 = 30.5
When min_c = 6, then it is c2 = 36 ≥ 30.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 392 - 62
max_d = √2023 - 441 - 1521 - 36
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (21, 39, 6, 5) is an integer solution proven below
212 + 392 + 62 + 52 → 441 + 1521 + 36 + 25 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 212 - 392 - 72
max_d = √2023 - 441 - 1521 - 49
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 222)
max_b = Floor(√2023 - 484)
max_b = Floor(√1539)
max_b = Floor(39.230090491866)
max_b = 39
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 222)/3 = 513
When min_b = 23, then it is b2 = 529 ≥ 513, so min_b = 23
(23, 39)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 232)
max_c = Floor(√2023 - 484 - 529)
max_c = Floor(√1010)
max_c = Floor(31.780497164141)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 232)/2 = 505
When min_c = 23, then it is c2 = 529 ≥ 505, so min_c = 23
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 232 - 232
max_d = √2023 - 484 - 529 - 529
max_d = √481
max_d = 21.931712199461
Since max_d = 21.931712199461 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 232 - 242
max_d = √2023 - 484 - 529 - 576
max_d = √434
max_d = 20.832666656
Since max_d = 20.832666656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 232 - 252
max_d = √2023 - 484 - 529 - 625
max_d = √385
max_d = 19.621416870349
Since max_d = 19.621416870349 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 232 - 262
max_d = √2023 - 484 - 529 - 676
max_d = √334
max_d = 18.275666882497
Since max_d = 18.275666882497 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 232 - 272
max_d = √2023 - 484 - 529 - 729
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 232 - 282
max_d = √2023 - 484 - 529 - 784
max_d = √226
max_d = 15.033296378373
Since max_d = 15.033296378373 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 232 - 292
max_d = √2023 - 484 - 529 - 841
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (22, 23, 29, 13) is an integer solution proven below
222 + 232 + 292 + 132 → 484 + 529 + 841 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 232 - 302
max_d = √2023 - 484 - 529 - 900
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 232 - 312
max_d = √2023 - 484 - 529 - 961
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (22, 23, 31, 7) is an integer solution proven below
222 + 232 + 312 + 72 → 484 + 529 + 961 + 49 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 242)
max_c = Floor(√2023 - 484 - 576)
max_c = Floor(√963)
max_c = Floor(31.032241298366)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 242)/2 = 481.5
When min_c = 22, then it is c2 = 484 ≥ 481.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 242 - 222
max_d = √2023 - 484 - 576 - 484
max_d = √479
max_d = 21.886068628239
Since max_d = 21.886068628239 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 242 - 232
max_d = √2023 - 484 - 576 - 529
max_d = √434
max_d = 20.832666656
Since max_d = 20.832666656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 242 - 242
max_d = √2023 - 484 - 576 - 576
max_d = √387
max_d = 19.672315572906
Since max_d = 19.672315572906 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 242 - 252
max_d = √2023 - 484 - 576 - 625
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 242 - 262
max_d = √2023 - 484 - 576 - 676
max_d = √287
max_d = 16.941074346097
Since max_d = 16.941074346097 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 242 - 272
max_d = √2023 - 484 - 576 - 729
max_d = √234
max_d = 15.297058540778
Since max_d = 15.297058540778 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 242 - 282
max_d = √2023 - 484 - 576 - 784
max_d = √179
max_d = 13.37908816026
Since max_d = 13.37908816026 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 242 - 292
max_d = √2023 - 484 - 576 - 841
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 242 - 302
max_d = √2023 - 484 - 576 - 900
max_d = √63
max_d = 7.9372539331938
Since max_d = 7.9372539331938 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 242 - 312
max_d = √2023 - 484 - 576 - 961
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 252)
max_c = Floor(√2023 - 484 - 625)
max_c = Floor(√914)
max_c = Floor(30.232432915662)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 252)/2 = 457
When min_c = 22, then it is c2 = 484 ≥ 457, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 252 - 222
max_d = √2023 - 484 - 625 - 484
max_d = √430
max_d = 20.736441353328
Since max_d = 20.736441353328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 252 - 232
max_d = √2023 - 484 - 625 - 529
max_d = √385
max_d = 19.621416870349
Since max_d = 19.621416870349 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 252 - 242
max_d = √2023 - 484 - 625 - 576
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 252 - 252
max_d = √2023 - 484 - 625 - 625
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (22, 25, 25, 17) is an integer solution proven below
222 + 252 + 252 + 172 → 484 + 625 + 625 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 252 - 262
max_d = √2023 - 484 - 625 - 676
max_d = √238
max_d = 15.427248620542
Since max_d = 15.427248620542 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 252 - 272
max_d = √2023 - 484 - 625 - 729
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 252 - 282
max_d = √2023 - 484 - 625 - 784
max_d = √130
max_d = 11.401754250991
Since max_d = 11.401754250991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 252 - 292
max_d = √2023 - 484 - 625 - 841
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 252 - 302
max_d = √2023 - 484 - 625 - 900
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 262)
max_c = Floor(√2023 - 484 - 676)
max_c = Floor(√863)
max_c = Floor(29.376861643137)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 262)/2 = 431.5
When min_c = 21, then it is c2 = 441 ≥ 431.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 262 - 212
max_d = √2023 - 484 - 676 - 441
max_d = √422
max_d = 20.542638584174
Since max_d = 20.542638584174 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 262 - 222
max_d = √2023 - 484 - 676 - 484
max_d = √379
max_d = 19.467922333932
Since max_d = 19.467922333932 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 262 - 232
max_d = √2023 - 484 - 676 - 529
max_d = √334
max_d = 18.275666882497
Since max_d = 18.275666882497 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 262 - 242
max_d = √2023 - 484 - 676 - 576
max_d = √287
max_d = 16.941074346097
Since max_d = 16.941074346097 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 262 - 252
max_d = √2023 - 484 - 676 - 625
max_d = √238
max_d = 15.427248620542
Since max_d = 15.427248620542 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 262 - 262
max_d = √2023 - 484 - 676 - 676
max_d = √187
max_d = 13.674794331177
Since max_d = 13.674794331177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 262 - 272
max_d = √2023 - 484 - 676 - 729
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 262 - 282
max_d = √2023 - 484 - 676 - 784
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 262 - 292
max_d = √2023 - 484 - 676 - 841
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 272)
max_c = Floor(√2023 - 484 - 729)
max_c = Floor(√810)
max_c = Floor(28.460498941515)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 272)/2 = 405
When min_c = 21, then it is c2 = 441 ≥ 405, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 272 - 212
max_d = √2023 - 484 - 729 - 441
max_d = √369
max_d = 19.209372712299
Since max_d = 19.209372712299 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 272 - 222
max_d = √2023 - 484 - 729 - 484
max_d = √326
max_d = 18.055470085268
Since max_d = 18.055470085268 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 272 - 232
max_d = √2023 - 484 - 729 - 529
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 272 - 242
max_d = √2023 - 484 - 729 - 576
max_d = √234
max_d = 15.297058540778
Since max_d = 15.297058540778 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 272 - 252
max_d = √2023 - 484 - 729 - 625
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 272 - 262
max_d = √2023 - 484 - 729 - 676
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 272 - 272
max_d = √2023 - 484 - 729 - 729
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (22, 27, 27, 9) is an integer solution proven below
222 + 272 + 272 + 92 → 484 + 729 + 729 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 272 - 282
max_d = √2023 - 484 - 729 - 784
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 282)
max_c = Floor(√2023 - 484 - 784)
max_c = Floor(√755)
max_c = Floor(27.477263328068)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 282)/2 = 377.5
When min_c = 20, then it is c2 = 400 ≥ 377.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 282 - 202
max_d = √2023 - 484 - 784 - 400
max_d = √355
max_d = 18.841443681417
Since max_d = 18.841443681417 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 282 - 212
max_d = √2023 - 484 - 784 - 441
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 282 - 222
max_d = √2023 - 484 - 784 - 484
max_d = √271
max_d = 16.462077633154
Since max_d = 16.462077633154 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 282 - 232
max_d = √2023 - 484 - 784 - 529
max_d = √226
max_d = 15.033296378373
Since max_d = 15.033296378373 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 282 - 242
max_d = √2023 - 484 - 784 - 576
max_d = √179
max_d = 13.37908816026
Since max_d = 13.37908816026 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 282 - 252
max_d = √2023 - 484 - 784 - 625
max_d = √130
max_d = 11.401754250991
Since max_d = 11.401754250991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 282 - 262
max_d = √2023 - 484 - 784 - 676
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 282 - 272
max_d = √2023 - 484 - 784 - 729
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 292)
max_c = Floor(√2023 - 484 - 841)
max_c = Floor(√698)
max_c = Floor(26.419689627246)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 292)/2 = 349
When min_c = 19, then it is c2 = 361 ≥ 349, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 292 - 192
max_d = √2023 - 484 - 841 - 361
max_d = √337
max_d = 18.357559750686
Since max_d = 18.357559750686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 292 - 202
max_d = √2023 - 484 - 841 - 400
max_d = √298
max_d = 17.262676501632
Since max_d = 17.262676501632 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 292 - 212
max_d = √2023 - 484 - 841 - 441
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 292 - 222
max_d = √2023 - 484 - 841 - 484
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 292 - 232
max_d = √2023 - 484 - 841 - 529
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (22, 29, 23, 13) is an integer solution proven below
222 + 292 + 232 + 132 → 484 + 841 + 529 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 292 - 242
max_d = √2023 - 484 - 841 - 576
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 292 - 252
max_d = √2023 - 484 - 841 - 625
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 292 - 262
max_d = √2023 - 484 - 841 - 676
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 302)
max_c = Floor(√2023 - 484 - 900)
max_c = Floor(√639)
max_c = Floor(25.278449319529)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 302)/2 = 319.5
When min_c = 18, then it is c2 = 324 ≥ 319.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 302 - 182
max_d = √2023 - 484 - 900 - 324
max_d = √315
max_d = 17.748239349299
Since max_d = 17.748239349299 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 302 - 192
max_d = √2023 - 484 - 900 - 361
max_d = √278
max_d = 16.673332000533
Since max_d = 16.673332000533 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 302 - 202
max_d = √2023 - 484 - 900 - 400
max_d = √239
max_d = 15.45962483374
Since max_d = 15.45962483374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 302 - 212
max_d = √2023 - 484 - 900 - 441
max_d = √198
max_d = 14.07124727947
Since max_d = 14.07124727947 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 302 - 222
max_d = √2023 - 484 - 900 - 484
max_d = √155
max_d = 12.449899597989
Since max_d = 12.449899597989 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 302 - 232
max_d = √2023 - 484 - 900 - 529
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 302 - 242
max_d = √2023 - 484 - 900 - 576
max_d = √63
max_d = 7.9372539331938
Since max_d = 7.9372539331938 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 302 - 252
max_d = √2023 - 484 - 900 - 625
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 312)
max_c = Floor(√2023 - 484 - 961)
max_c = Floor(√578)
max_c = Floor(24.041630560343)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 312)/2 = 289
When min_c = 17, then it is c2 = 289 ≥ 289, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 312 - 172
max_d = √2023 - 484 - 961 - 289
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (22, 31, 17, 17) is an integer solution proven below
222 + 312 + 172 + 172 → 484 + 961 + 289 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 312 - 182
max_d = √2023 - 484 - 961 - 324
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 312 - 192
max_d = √2023 - 484 - 961 - 361
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 312 - 202
max_d = √2023 - 484 - 961 - 400
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 312 - 212
max_d = √2023 - 484 - 961 - 441
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 312 - 222
max_d = √2023 - 484 - 961 - 484
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 312 - 232
max_d = √2023 - 484 - 961 - 529
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (22, 31, 23, 7) is an integer solution proven below
222 + 312 + 232 + 72 → 484 + 961 + 529 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 312 - 242
max_d = √2023 - 484 - 961 - 576
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 322)
max_c = Floor(√2023 - 484 - 1024)
max_c = Floor(√515)
max_c = Floor(22.69361143582)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 322)/2 = 257.5
When min_c = 17, then it is c2 = 289 ≥ 257.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 322 - 172
max_d = √2023 - 484 - 1024 - 289
max_d = √226
max_d = 15.033296378373
Since max_d = 15.033296378373 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 322 - 182
max_d = √2023 - 484 - 1024 - 324
max_d = √191
max_d = 13.820274961085
Since max_d = 13.820274961085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 322 - 192
max_d = √2023 - 484 - 1024 - 361
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 322 - 202
max_d = √2023 - 484 - 1024 - 400
max_d = √115
max_d = 10.723805294764
Since max_d = 10.723805294764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 322 - 212
max_d = √2023 - 484 - 1024 - 441
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 322 - 222
max_d = √2023 - 484 - 1024 - 484
max_d = √31
max_d = 5.56776436283
Since max_d = 5.56776436283 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 332)
max_c = Floor(√2023 - 484 - 1089)
max_c = Floor(√450)
max_c = Floor(21.213203435596)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 332)/2 = 225
When min_c = 15, then it is c2 = 225 ≥ 225, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 332 - 152
max_d = √2023 - 484 - 1089 - 225
max_d = √225
max_d = 15
Since max_d = 15, then (a, b, c, d) = (22, 33, 15, 15) is an integer solution proven below
222 + 332 + 152 + 152 → 484 + 1089 + 225 + 225 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 332 - 162
max_d = √2023 - 484 - 1089 - 256
max_d = √194
max_d = 13.928388277184
Since max_d = 13.928388277184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 332 - 172
max_d = √2023 - 484 - 1089 - 289
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 332 - 182
max_d = √2023 - 484 - 1089 - 324
max_d = √126
max_d = 11.224972160322
Since max_d = 11.224972160322 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 332 - 192
max_d = √2023 - 484 - 1089 - 361
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 332 - 202
max_d = √2023 - 484 - 1089 - 400
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 332 - 212
max_d = √2023 - 484 - 1089 - 441
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (22, 33, 21, 3) is an integer solution proven below
222 + 332 + 212 + 32 → 484 + 1089 + 441 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 342)
max_c = Floor(√2023 - 484 - 1156)
max_c = Floor(√383)
max_c = Floor(19.570385790781)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 342)/2 = 191.5
When min_c = 14, then it is c2 = 196 ≥ 191.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 342 - 142
max_d = √2023 - 484 - 1156 - 196
max_d = √187
max_d = 13.674794331177
Since max_d = 13.674794331177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 342 - 152
max_d = √2023 - 484 - 1156 - 225
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 342 - 162
max_d = √2023 - 484 - 1156 - 256
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 342 - 172
max_d = √2023 - 484 - 1156 - 289
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 342 - 182
max_d = √2023 - 484 - 1156 - 324
max_d = √59
max_d = 7.6811457478686
Since max_d = 7.6811457478686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 342 - 192
max_d = √2023 - 484 - 1156 - 361
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 352)
max_c = Floor(√2023 - 484 - 1225)
max_c = Floor(√314)
max_c = Floor(17.720045146669)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 352)/2 = 157
When min_c = 13, then it is c2 = 169 ≥ 157, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 352 - 132
max_d = √2023 - 484 - 1225 - 169
max_d = √145
max_d = 12.041594578792
Since max_d = 12.041594578792 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 352 - 142
max_d = √2023 - 484 - 1225 - 196
max_d = √118
max_d = 10.8627804912
Since max_d = 10.8627804912 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 352 - 152
max_d = √2023 - 484 - 1225 - 225
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 352 - 162
max_d = √2023 - 484 - 1225 - 256
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 352 - 172
max_d = √2023 - 484 - 1225 - 289
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (22, 35, 17, 5) is an integer solution proven below
222 + 352 + 172 + 52 → 484 + 1225 + 289 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 362)
max_c = Floor(√2023 - 484 - 1296)
max_c = Floor(√243)
max_c = Floor(15.58845726812)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 362)/2 = 121.5
When min_c = 12, then it is c2 = 144 ≥ 121.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 362 - 122
max_d = √2023 - 484 - 1296 - 144
max_d = √99
max_d = 9.9498743710662
Since max_d = 9.9498743710662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 362 - 132
max_d = √2023 - 484 - 1296 - 169
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 362 - 142
max_d = √2023 - 484 - 1296 - 196
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 362 - 152
max_d = √2023 - 484 - 1296 - 225
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 372)
max_c = Floor(√2023 - 484 - 1369)
max_c = Floor(√170)
max_c = Floor(13.038404810405)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 372)/2 = 85
When min_c = 10, then it is c2 = 100 ≥ 85, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 372 - 102
max_d = √2023 - 484 - 1369 - 100
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 372 - 112
max_d = √2023 - 484 - 1369 - 121
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (22, 37, 11, 7) is an integer solution proven below
222 + 372 + 112 + 72 → 484 + 1369 + 121 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 372 - 122
max_d = √2023 - 484 - 1369 - 144
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 372 - 132
max_d = √2023 - 484 - 1369 - 169
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (22, 37, 13, 1) is an integer solution proven below
222 + 372 + 132 + 12 → 484 + 1369 + 169 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 382)
max_c = Floor(√2023 - 484 - 1444)
max_c = Floor(√95)
max_c = Floor(9.746794344809)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 382)/2 = 47.5
When min_c = 7, then it is c2 = 49 ≥ 47.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 382 - 72
max_d = √2023 - 484 - 1444 - 49
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 382 - 82
max_d = √2023 - 484 - 1444 - 64
max_d = √31
max_d = 5.56776436283
Since max_d = 5.56776436283 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 382 - 92
max_d = √2023 - 484 - 1444 - 81
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 222 - 392)
max_c = Floor(√2023 - 484 - 1521)
max_c = Floor(√18)
max_c = Floor(4.2426406871193)
max_c = 4
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 222 - 392)/2 = 9
When min_c = 3, then it is c2 = 9 ≥ 9, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 392 - 32
max_d = √2023 - 484 - 1521 - 9
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (22, 39, 3, 3) is an integer solution proven below
222 + 392 + 32 + 32 → 484 + 1521 + 9 + 9 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 222 - 392 - 42
max_d = √2023 - 484 - 1521 - 16
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 232)
max_b = Floor(√2023 - 529)
max_b = Floor(√1494)
max_b = Floor(38.652296180175)
max_b = 38
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 232)/3 = 498
When min_b = 23, then it is b2 = 529 ≥ 498, so min_b = 23
(23, 38)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 232)
max_c = Floor(√2023 - 529 - 529)
max_c = Floor(√965)
max_c = Floor(31.064449134018)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 232)/2 = 482.5
When min_c = 22, then it is c2 = 484 ≥ 482.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 232 - 222
max_d = √2023 - 529 - 529 - 484
max_d = √481
max_d = 21.931712199461
Since max_d = 21.931712199461 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 232 - 232
max_d = √2023 - 529 - 529 - 529
max_d = √436
max_d = 20.880613017821
Since max_d = 20.880613017821 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 232 - 242
max_d = √2023 - 529 - 529 - 576
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 232 - 252
max_d = √2023 - 529 - 529 - 625
max_d = √340
max_d = 18.439088914586
Since max_d = 18.439088914586 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 232 - 262
max_d = √2023 - 529 - 529 - 676
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (23, 23, 26, 17) is an integer solution proven below
232 + 232 + 262 + 172 → 529 + 529 + 676 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 232 - 272
max_d = √2023 - 529 - 529 - 729
max_d = √236
max_d = 15.362291495737
Since max_d = 15.362291495737 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 232 - 282
max_d = √2023 - 529 - 529 - 784
max_d = √181
max_d = 13.453624047074
Since max_d = 13.453624047074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 232 - 292
max_d = √2023 - 529 - 529 - 841
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 232 - 302
max_d = √2023 - 529 - 529 - 900
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 232 - 312
max_d = √2023 - 529 - 529 - 961
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (23, 23, 31, 2) is an integer solution proven below
232 + 232 + 312 + 22 → 529 + 529 + 961 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 242)
max_c = Floor(√2023 - 529 - 576)
max_c = Floor(√918)
max_c = Floor(30.298514815086)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 242)/2 = 459
When min_c = 22, then it is c2 = 484 ≥ 459, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 242 - 222
max_d = √2023 - 529 - 576 - 484
max_d = √434
max_d = 20.832666656
Since max_d = 20.832666656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 242 - 232
max_d = √2023 - 529 - 576 - 529
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 242 - 242
max_d = √2023 - 529 - 576 - 576
max_d = √342
max_d = 18.493242008907
Since max_d = 18.493242008907 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 242 - 252
max_d = √2023 - 529 - 576 - 625
max_d = √293
max_d = 17.117242768624
Since max_d = 17.117242768624 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 242 - 262
max_d = √2023 - 529 - 576 - 676
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 242 - 272
max_d = √2023 - 529 - 576 - 729
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 242 - 282
max_d = √2023 - 529 - 576 - 784
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 242 - 292
max_d = √2023 - 529 - 576 - 841
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 242 - 302
max_d = √2023 - 529 - 576 - 900
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 252)
max_c = Floor(√2023 - 529 - 625)
max_c = Floor(√869)
max_c = Floor(29.478805945967)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 252)/2 = 434.5
When min_c = 21, then it is c2 = 441 ≥ 434.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 252 - 212
max_d = √2023 - 529 - 625 - 441
max_d = √428
max_d = 20.688160865577
Since max_d = 20.688160865577 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 252 - 222
max_d = √2023 - 529 - 625 - 484
max_d = √385
max_d = 19.621416870349
Since max_d = 19.621416870349 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 252 - 232
max_d = √2023 - 529 - 625 - 529
max_d = √340
max_d = 18.439088914586
Since max_d = 18.439088914586 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 252 - 242
max_d = √2023 - 529 - 625 - 576
max_d = √293
max_d = 17.117242768624
Since max_d = 17.117242768624 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 252 - 252
max_d = √2023 - 529 - 625 - 625
max_d = √244
max_d = 15.620499351813
Since max_d = 15.620499351813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 252 - 262
max_d = √2023 - 529 - 625 - 676
max_d = √193
max_d = 13.89244398945
Since max_d = 13.89244398945 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 252 - 272
max_d = √2023 - 529 - 625 - 729
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 252 - 282
max_d = √2023 - 529 - 625 - 784
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 252 - 292
max_d = √2023 - 529 - 625 - 841
max_d = √28
max_d = 5.2915026221292
Since max_d = 5.2915026221292 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 262)
max_c = Floor(√2023 - 529 - 676)
max_c = Floor(√818)
max_c = Floor(28.60069929215)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 262)/2 = 409
When min_c = 21, then it is c2 = 441 ≥ 409, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 262 - 212
max_d = √2023 - 529 - 676 - 441
max_d = √377
max_d = 19.416487838948
Since max_d = 19.416487838948 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 262 - 222
max_d = √2023 - 529 - 676 - 484
max_d = √334
max_d = 18.275666882497
Since max_d = 18.275666882497 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 262 - 232
max_d = √2023 - 529 - 676 - 529
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (23, 26, 23, 17) is an integer solution proven below
232 + 262 + 232 + 172 → 529 + 676 + 529 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 262 - 242
max_d = √2023 - 529 - 676 - 576
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 262 - 252
max_d = √2023 - 529 - 676 - 625
max_d = √193
max_d = 13.89244398945
Since max_d = 13.89244398945 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 262 - 262
max_d = √2023 - 529 - 676 - 676
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 262 - 272
max_d = √2023 - 529 - 676 - 729
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 262 - 282
max_d = √2023 - 529 - 676 - 784
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 272)
max_c = Floor(√2023 - 529 - 729)
max_c = Floor(√765)
max_c = Floor(27.658633371879)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 272)/2 = 382.5
When min_c = 20, then it is c2 = 400 ≥ 382.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 272 - 202
max_d = √2023 - 529 - 729 - 400
max_d = √365
max_d = 19.104973174543
Since max_d = 19.104973174543 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 272 - 212
max_d = √2023 - 529 - 729 - 441
max_d = √324
max_d = 18
Since max_d = 18, then (a, b, c, d) = (23, 27, 21, 18) is an integer solution proven below
232 + 272 + 212 + 182 → 529 + 729 + 441 + 324 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 272 - 222
max_d = √2023 - 529 - 729 - 484
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 272 - 232
max_d = √2023 - 529 - 729 - 529
max_d = √236
max_d = 15.362291495737
Since max_d = 15.362291495737 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 272 - 242
max_d = √2023 - 529 - 729 - 576
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 272 - 252
max_d = √2023 - 529 - 729 - 625
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 272 - 262
max_d = √2023 - 529 - 729 - 676
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 272 - 272
max_d = √2023 - 529 - 729 - 729
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (23, 27, 27, 6) is an integer solution proven below
232 + 272 + 272 + 62 → 529 + 729 + 729 + 36 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 282)
max_c = Floor(√2023 - 529 - 784)
max_c = Floor(√710)
max_c = Floor(26.645825188948)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 282)/2 = 355
When min_c = 19, then it is c2 = 361 ≥ 355, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 282 - 192
max_d = √2023 - 529 - 784 - 361
max_d = √349
max_d = 18.681541692269
Since max_d = 18.681541692269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 282 - 202
max_d = √2023 - 529 - 784 - 400
max_d = √310
max_d = 17.606816861659
Since max_d = 17.606816861659 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 282 - 212
max_d = √2023 - 529 - 784 - 441
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 282 - 222
max_d = √2023 - 529 - 784 - 484
max_d = √226
max_d = 15.033296378373
Since max_d = 15.033296378373 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 282 - 232
max_d = √2023 - 529 - 784 - 529
max_d = √181
max_d = 13.453624047074
Since max_d = 13.453624047074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 282 - 242
max_d = √2023 - 529 - 784 - 576
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 282 - 252
max_d = √2023 - 529 - 784 - 625
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 282 - 262
max_d = √2023 - 529 - 784 - 676
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 292)
max_c = Floor(√2023 - 529 - 841)
max_c = Floor(√653)
max_c = Floor(25.553864678361)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 292)/2 = 326.5
When min_c = 19, then it is c2 = 361 ≥ 326.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 292 - 192
max_d = √2023 - 529 - 841 - 361
max_d = √292
max_d = 17.088007490635
Since max_d = 17.088007490635 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 292 - 202
max_d = √2023 - 529 - 841 - 400
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 292 - 212
max_d = √2023 - 529 - 841 - 441
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 292 - 222
max_d = √2023 - 529 - 841 - 484
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (23, 29, 22, 13) is an integer solution proven below
232 + 292 + 222 + 132 → 529 + 841 + 484 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 292 - 232
max_d = √2023 - 529 - 841 - 529
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 292 - 242
max_d = √2023 - 529 - 841 - 576
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 292 - 252
max_d = √2023 - 529 - 841 - 625
max_d = √28
max_d = 5.2915026221292
Since max_d = 5.2915026221292 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 302)
max_c = Floor(√2023 - 529 - 900)
max_c = Floor(√594)
max_c = Floor(24.372115213908)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 302)/2 = 297
When min_c = 18, then it is c2 = 324 ≥ 297, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 302 - 182
max_d = √2023 - 529 - 900 - 324
max_d = √270
max_d = 16.431676725155
Since max_d = 16.431676725155 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 302 - 192
max_d = √2023 - 529 - 900 - 361
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 302 - 202
max_d = √2023 - 529 - 900 - 400
max_d = √194
max_d = 13.928388277184
Since max_d = 13.928388277184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 302 - 212
max_d = √2023 - 529 - 900 - 441
max_d = √153
max_d = 12.369316876853
Since max_d = 12.369316876853 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 302 - 222
max_d = √2023 - 529 - 900 - 484
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 302 - 232
max_d = √2023 - 529 - 900 - 529
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 302 - 242
max_d = √2023 - 529 - 900 - 576
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 312)
max_c = Floor(√2023 - 529 - 961)
max_c = Floor(√533)
max_c = Floor(23.08679276123)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 312)/2 = 266.5
When min_c = 17, then it is c2 = 289 ≥ 266.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 312 - 172
max_d = √2023 - 529 - 961 - 289
max_d = √244
max_d = 15.620499351813
Since max_d = 15.620499351813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 312 - 182
max_d = √2023 - 529 - 961 - 324
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 312 - 192
max_d = √2023 - 529 - 961 - 361
max_d = √172
max_d = 13.114877048604
Since max_d = 13.114877048604 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 312 - 202
max_d = √2023 - 529 - 961 - 400
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 312 - 212
max_d = √2023 - 529 - 961 - 441
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 312 - 222
max_d = √2023 - 529 - 961 - 484
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (23, 31, 22, 7) is an integer solution proven below
232 + 312 + 222 + 72 → 529 + 961 + 484 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 312 - 232
max_d = √2023 - 529 - 961 - 529
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (23, 31, 23, 2) is an integer solution proven below
232 + 312 + 232 + 22 → 529 + 961 + 529 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 322)
max_c = Floor(√2023 - 529 - 1024)
max_c = Floor(√470)
max_c = Floor(21.679483388679)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 322)/2 = 235
When min_c = 16, then it is c2 = 256 ≥ 235, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 322 - 162
max_d = √2023 - 529 - 1024 - 256
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 322 - 172
max_d = √2023 - 529 - 1024 - 289
max_d = √181
max_d = 13.453624047074
Since max_d = 13.453624047074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 322 - 182
max_d = √2023 - 529 - 1024 - 324
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 322 - 192
max_d = √2023 - 529 - 1024 - 361
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 322 - 202
max_d = √2023 - 529 - 1024 - 400
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 322 - 212
max_d = √2023 - 529 - 1024 - 441
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 332)
max_c = Floor(√2023 - 529 - 1089)
max_c = Floor(√405)
max_c = Floor(20.124611797498)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 332)/2 = 202.5
When min_c = 15, then it is c2 = 225 ≥ 202.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 332 - 152
max_d = √2023 - 529 - 1089 - 225
max_d = √180
max_d = 13.416407864999
Since max_d = 13.416407864999 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 332 - 162
max_d = √2023 - 529 - 1089 - 256
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 332 - 172
max_d = √2023 - 529 - 1089 - 289
max_d = √116
max_d = 10.770329614269
Since max_d = 10.770329614269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 332 - 182
max_d = √2023 - 529 - 1089 - 324
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (23, 33, 18, 9) is an integer solution proven below
232 + 332 + 182 + 92 → 529 + 1089 + 324 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 332 - 192
max_d = √2023 - 529 - 1089 - 361
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 332 - 202
max_d = √2023 - 529 - 1089 - 400
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 342)
max_c = Floor(√2023 - 529 - 1156)
max_c = Floor(√338)
max_c = Floor(18.38477631085)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 342)/2 = 169
When min_c = 13, then it is c2 = 169 ≥ 169, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 342 - 132
max_d = √2023 - 529 - 1156 - 169
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (23, 34, 13, 13) is an integer solution proven below
232 + 342 + 132 + 132 → 529 + 1156 + 169 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 342 - 142
max_d = √2023 - 529 - 1156 - 196
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 342 - 152
max_d = √2023 - 529 - 1156 - 225
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 342 - 162
max_d = √2023 - 529 - 1156 - 256
max_d = √82
max_d = 9.0553851381374
Since max_d = 9.0553851381374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 342 - 172
max_d = √2023 - 529 - 1156 - 289
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (23, 34, 17, 7) is an integer solution proven below
232 + 342 + 172 + 72 → 529 + 1156 + 289 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 342 - 182
max_d = √2023 - 529 - 1156 - 324
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 352)
max_c = Floor(√2023 - 529 - 1225)
max_c = Floor(√269)
max_c = Floor(16.401219466857)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 352)/2 = 134.5
When min_c = 12, then it is c2 = 144 ≥ 134.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 352 - 122
max_d = √2023 - 529 - 1225 - 144
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 352 - 132
max_d = √2023 - 529 - 1225 - 169
max_d = √100
max_d = 10
Since max_d = 10, then (a, b, c, d) = (23, 35, 13, 10) is an integer solution proven below
232 + 352 + 132 + 102 → 529 + 1225 + 169 + 100 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 352 - 142
max_d = √2023 - 529 - 1225 - 196
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 352 - 152
max_d = √2023 - 529 - 1225 - 225
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 352 - 162
max_d = √2023 - 529 - 1225 - 256
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 362)
max_c = Floor(√2023 - 529 - 1296)
max_c = Floor(√198)
max_c = Floor(14.07124727947)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 362)/2 = 99
When min_c = 10, then it is c2 = 100 ≥ 99, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 362 - 102
max_d = √2023 - 529 - 1296 - 100
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 362 - 112
max_d = √2023 - 529 - 1296 - 121
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 362 - 122
max_d = √2023 - 529 - 1296 - 144
max_d = √54
max_d = 7.3484692283495
Since max_d = 7.3484692283495 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 362 - 132
max_d = √2023 - 529 - 1296 - 169
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 362 - 142
max_d = √2023 - 529 - 1296 - 196
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 372)
max_c = Floor(√2023 - 529 - 1369)
max_c = Floor(√125)
max_c = Floor(11.180339887499)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 372)/2 = 62.5
When min_c = 8, then it is c2 = 64 ≥ 62.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 372 - 82
max_d = √2023 - 529 - 1369 - 64
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 372 - 92
max_d = √2023 - 529 - 1369 - 81
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 372 - 102
max_d = √2023 - 529 - 1369 - 100
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (23, 37, 10, 5) is an integer solution proven below
232 + 372 + 102 + 52 → 529 + 1369 + 100 + 25 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 372 - 112
max_d = √2023 - 529 - 1369 - 121
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (23, 37, 11, 2) is an integer solution proven below
232 + 372 + 112 + 22 → 529 + 1369 + 121 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 232 - 382)
max_c = Floor(√2023 - 529 - 1444)
max_c = Floor(√50)
max_c = Floor(7.0710678118655)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 232 - 382)/2 = 25
When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 382 - 52
max_d = √2023 - 529 - 1444 - 25
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (23, 38, 5, 5) is an integer solution proven below
232 + 382 + 52 + 52 → 529 + 1444 + 25 + 25 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 382 - 62
max_d = √2023 - 529 - 1444 - 36
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 232 - 382 - 72
max_d = √2023 - 529 - 1444 - 49
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (23, 38, 7, 1) is an integer solution proven below
232 + 382 + 72 + 12 → 529 + 1444 + 49 + 1 = 2023
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 242)
max_b = Floor(√2023 - 576)
max_b = Floor(√1447)
max_b = Floor(38.03945320322)
max_b = 38
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 242)/3 = 482.33333333333
When min_b = 22, then it is b2 = 484 ≥ 482.33333333333, so min_b = 22
(22, 38)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 222)
max_c = Floor(√2023 - 576 - 484)
max_c = Floor(√963)
max_c = Floor(31.032241298366)
max_c = 31
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 222)/2 = 481.5
When min_c = 22, then it is c2 = 484 ≥ 481.5, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 222 - 222
max_d = √2023 - 576 - 484 - 484
max_d = √479
max_d = 21.886068628239
Since max_d = 21.886068628239 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 222 - 232
max_d = √2023 - 576 - 484 - 529
max_d = √434
max_d = 20.832666656
Since max_d = 20.832666656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 222 - 242
max_d = √2023 - 576 - 484 - 576
max_d = √387
max_d = 19.672315572906
Since max_d = 19.672315572906 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 222 - 252
max_d = √2023 - 576 - 484 - 625
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 222 - 262
max_d = √2023 - 576 - 484 - 676
max_d = √287
max_d = 16.941074346097
Since max_d = 16.941074346097 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 222 - 272
max_d = √2023 - 576 - 484 - 729
max_d = √234
max_d = 15.297058540778
Since max_d = 15.297058540778 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 222 - 282
max_d = √2023 - 576 - 484 - 784
max_d = √179
max_d = 13.37908816026
Since max_d = 13.37908816026 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 222 - 292
max_d = √2023 - 576 - 484 - 841
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 222 - 302
max_d = √2023 - 576 - 484 - 900
max_d = √63
max_d = 7.9372539331938
Since max_d = 7.9372539331938 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 222 - 312
max_d = √2023 - 576 - 484 - 961
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 232)
max_c = Floor(√2023 - 576 - 529)
max_c = Floor(√918)
max_c = Floor(30.298514815086)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 232)/2 = 459
When min_c = 22, then it is c2 = 484 ≥ 459, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 232 - 222
max_d = √2023 - 576 - 529 - 484
max_d = √434
max_d = 20.832666656
Since max_d = 20.832666656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 232 - 232
max_d = √2023 - 576 - 529 - 529
max_d = √389
max_d = 19.723082923316
Since max_d = 19.723082923316 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 232 - 242
max_d = √2023 - 576 - 529 - 576
max_d = √342
max_d = 18.493242008907
Since max_d = 18.493242008907 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 232 - 252
max_d = √2023 - 576 - 529 - 625
max_d = √293
max_d = 17.117242768624
Since max_d = 17.117242768624 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 232 - 262
max_d = √2023 - 576 - 529 - 676
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 232 - 272
max_d = √2023 - 576 - 529 - 729
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 232 - 282
max_d = √2023 - 576 - 529 - 784
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 232 - 292
max_d = √2023 - 576 - 529 - 841
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 232 - 302
max_d = √2023 - 576 - 529 - 900
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 242)
max_c = Floor(√2023 - 576 - 576)
max_c = Floor(√871)
max_c = Floor(29.512709126747)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 242)/2 = 435.5
When min_c = 21, then it is c2 = 441 ≥ 435.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 242 - 212
max_d = √2023 - 576 - 576 - 441
max_d = √430
max_d = 20.736441353328
Since max_d = 20.736441353328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 242 - 222
max_d = √2023 - 576 - 576 - 484
max_d = √387
max_d = 19.672315572906
Since max_d = 19.672315572906 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 242 - 232
max_d = √2023 - 576 - 576 - 529
max_d = √342
max_d = 18.493242008907
Since max_d = 18.493242008907 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 242 - 242
max_d = √2023 - 576 - 576 - 576
max_d = √295
max_d = 17.175564037318
Since max_d = 17.175564037318 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 242 - 252
max_d = √2023 - 576 - 576 - 625
max_d = √246
max_d = 15.684387141358
Since max_d = 15.684387141358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 242 - 262
max_d = √2023 - 576 - 576 - 676
max_d = √195
max_d = 13.964240043769
Since max_d = 13.964240043769 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 242 - 272
max_d = √2023 - 576 - 576 - 729
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 242 - 282
max_d = √2023 - 576 - 576 - 784
max_d = √87
max_d = 9.3273790530888
Since max_d = 9.3273790530888 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 242 - 292
max_d = √2023 - 576 - 576 - 841
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 252)
max_c = Floor(√2023 - 576 - 625)
max_c = Floor(√822)
max_c = Floor(28.670542373663)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 252)/2 = 411
When min_c = 21, then it is c2 = 441 ≥ 411, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 252 - 212
max_d = √2023 - 576 - 625 - 441
max_d = √381
max_d = 19.519221295943
Since max_d = 19.519221295943 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 252 - 222
max_d = √2023 - 576 - 625 - 484
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 252 - 232
max_d = √2023 - 576 - 625 - 529
max_d = √293
max_d = 17.117242768624
Since max_d = 17.117242768624 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 252 - 242
max_d = √2023 - 576 - 625 - 576
max_d = √246
max_d = 15.684387141358
Since max_d = 15.684387141358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 252 - 252
max_d = √2023 - 576 - 625 - 625
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 252 - 262
max_d = √2023 - 576 - 625 - 676
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 252 - 272
max_d = √2023 - 576 - 625 - 729
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 252 - 282
max_d = √2023 - 576 - 625 - 784
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 262)
max_c = Floor(√2023 - 576 - 676)
max_c = Floor(√771)
max_c = Floor(27.76688675383)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 262)/2 = 385.5
When min_c = 20, then it is c2 = 400 ≥ 385.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 262 - 202
max_d = √2023 - 576 - 676 - 400
max_d = √371
max_d = 19.261360284258
Since max_d = 19.261360284258 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 262 - 212
max_d = √2023 - 576 - 676 - 441
max_d = √330
max_d = 18.165902124585
Since max_d = 18.165902124585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 262 - 222
max_d = √2023 - 576 - 676 - 484
max_d = √287
max_d = 16.941074346097
Since max_d = 16.941074346097 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 262 - 232
max_d = √2023 - 576 - 676 - 529
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 262 - 242
max_d = √2023 - 576 - 676 - 576
max_d = √195
max_d = 13.964240043769
Since max_d = 13.964240043769 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 262 - 252
max_d = √2023 - 576 - 676 - 625
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 262 - 262
max_d = √2023 - 576 - 676 - 676
max_d = √95
max_d = 9.746794344809
Since max_d = 9.746794344809 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 262 - 272
max_d = √2023 - 576 - 676 - 729
max_d = √42
max_d = 6.4807406984079
Since max_d = 6.4807406984079 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 272)
max_c = Floor(√2023 - 576 - 729)
max_c = Floor(√718)
max_c = Floor(26.795522013949)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 272)/2 = 359
When min_c = 19, then it is c2 = 361 ≥ 359, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 272 - 192
max_d = √2023 - 576 - 729 - 361
max_d = √357
max_d = 18.894443627691
Since max_d = 18.894443627691 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 272 - 202
max_d = √2023 - 576 - 729 - 400
max_d = √318
max_d = 17.832554500127
Since max_d = 17.832554500127 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 272 - 212
max_d = √2023 - 576 - 729 - 441
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 272 - 222
max_d = √2023 - 576 - 729 - 484
max_d = √234
max_d = 15.297058540778
Since max_d = 15.297058540778 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 272 - 232
max_d = √2023 - 576 - 729 - 529
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 272 - 242
max_d = √2023 - 576 - 729 - 576
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 272 - 252
max_d = √2023 - 576 - 729 - 625
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 272 - 262
max_d = √2023 - 576 - 729 - 676
max_d = √42
max_d = 6.4807406984079
Since max_d = 6.4807406984079 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 282)
max_c = Floor(√2023 - 576 - 784)
max_c = Floor(√663)
max_c = Floor(25.748786379167)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 282)/2 = 331.5
When min_c = 19, then it is c2 = 361 ≥ 331.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 282 - 192
max_d = √2023 - 576 - 784 - 361
max_d = √302
max_d = 17.378147196983
Since max_d = 17.378147196983 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 282 - 202
max_d = √2023 - 576 - 784 - 400
max_d = √263
max_d = 16.217274740227
Since max_d = 16.217274740227 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 282 - 212
max_d = √2023 - 576 - 784 - 441
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 282 - 222
max_d = √2023 - 576 - 784 - 484
max_d = √179
max_d = 13.37908816026
Since max_d = 13.37908816026 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 282 - 232
max_d = √2023 - 576 - 784 - 529
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 282 - 242
max_d = √2023 - 576 - 784 - 576
max_d = √87
max_d = 9.3273790530888
Since max_d = 9.3273790530888 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 282 - 252
max_d = √2023 - 576 - 784 - 625
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 292)
max_c = Floor(√2023 - 576 - 841)
max_c = Floor(√606)
max_c = Floor(24.617067250182)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 292)/2 = 303
When min_c = 18, then it is c2 = 324 ≥ 303, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 292 - 182
max_d = √2023 - 576 - 841 - 324
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 292 - 192
max_d = √2023 - 576 - 841 - 361
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 292 - 202
max_d = √2023 - 576 - 841 - 400
max_d = √206
max_d = 14.352700094407
Since max_d = 14.352700094407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 292 - 212
max_d = √2023 - 576 - 841 - 441
max_d = √165
max_d = 12.845232578665
Since max_d = 12.845232578665 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 292 - 222
max_d = √2023 - 576 - 841 - 484
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 292 - 232
max_d = √2023 - 576 - 841 - 529
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 292 - 242
max_d = √2023 - 576 - 841 - 576
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 302)
max_c = Floor(√2023 - 576 - 900)
max_c = Floor(√547)
max_c = Floor(23.388031127053)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 302)/2 = 273.5
When min_c = 17, then it is c2 = 289 ≥ 273.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 302 - 172
max_d = √2023 - 576 - 900 - 289
max_d = √258
max_d = 16.062378404209
Since max_d = 16.062378404209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 302 - 182
max_d = √2023 - 576 - 900 - 324
max_d = √223
max_d = 14.933184523068
Since max_d = 14.933184523068 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 302 - 192
max_d = √2023 - 576 - 900 - 361
max_d = √186
max_d = 13.638181696986
Since max_d = 13.638181696986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 302 - 202
max_d = √2023 - 576 - 900 - 400
max_d = √147
max_d = 12.124355652982
Since max_d = 12.124355652982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 302 - 212
max_d = √2023 - 576 - 900 - 441
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 302 - 222
max_d = √2023 - 576 - 900 - 484
max_d = √63
max_d = 7.9372539331938
Since max_d = 7.9372539331938 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 302 - 232
max_d = √2023 - 576 - 900 - 529
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 312)
max_c = Floor(√2023 - 576 - 961)
max_c = Floor(√486)
max_c = Floor(22.045407685049)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 312)/2 = 243
When min_c = 16, then it is c2 = 256 ≥ 243, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 312 - 162
max_d = √2023 - 576 - 961 - 256
max_d = √230
max_d = 15.165750888103
Since max_d = 15.165750888103 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 312 - 172
max_d = √2023 - 576 - 961 - 289
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 312 - 182
max_d = √2023 - 576 - 961 - 324
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 312 - 192
max_d = √2023 - 576 - 961 - 361
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 312 - 202
max_d = √2023 - 576 - 961 - 400
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 312 - 212
max_d = √2023 - 576 - 961 - 441
max_d = √45
max_d = 6.7082039324994
Since max_d = 6.7082039324994 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 312 - 222
max_d = √2023 - 576 - 961 - 484
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 322)
max_c = Floor(√2023 - 576 - 1024)
max_c = Floor(√423)
max_c = Floor(20.566963801203)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 322)/2 = 211.5
When min_c = 15, then it is c2 = 225 ≥ 211.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 322 - 152
max_d = √2023 - 576 - 1024 - 225
max_d = √198
max_d = 14.07124727947
Since max_d = 14.07124727947 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 322 - 162
max_d = √2023 - 576 - 1024 - 256
max_d = √167
max_d = 12.92284798332
Since max_d = 12.92284798332 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 322 - 172
max_d = √2023 - 576 - 1024 - 289
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 322 - 182
max_d = √2023 - 576 - 1024 - 324
max_d = √99
max_d = 9.9498743710662
Since max_d = 9.9498743710662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 322 - 192
max_d = √2023 - 576 - 1024 - 361
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 322 - 202
max_d = √2023 - 576 - 1024 - 400
max_d = √23
max_d = 4.7958315233127
Since max_d = 4.7958315233127 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 332)
max_c = Floor(√2023 - 576 - 1089)
max_c = Floor(√358)
max_c = Floor(18.920887928425)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 332)/2 = 179
When min_c = 14, then it is c2 = 196 ≥ 179, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 332 - 142
max_d = √2023 - 576 - 1089 - 196
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 332 - 152
max_d = √2023 - 576 - 1089 - 225
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 332 - 162
max_d = √2023 - 576 - 1089 - 256
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 332 - 172
max_d = √2023 - 576 - 1089 - 289
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 332 - 182
max_d = √2023 - 576 - 1089 - 324
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 342)
max_c = Floor(√2023 - 576 - 1156)
max_c = Floor(√291)
max_c = Floor(17.058722109232)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 342)/2 = 145.5
When min_c = 13, then it is c2 = 169 ≥ 145.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 342 - 132
max_d = √2023 - 576 - 1156 - 169
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 342 - 142
max_d = √2023 - 576 - 1156 - 196
max_d = √95
max_d = 9.746794344809
Since max_d = 9.746794344809 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 342 - 152
max_d = √2023 - 576 - 1156 - 225
max_d = √66
max_d = 8.124038404636
Since max_d = 8.124038404636 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 342 - 162
max_d = √2023 - 576 - 1156 - 256
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 342 - 172
max_d = √2023 - 576 - 1156 - 289
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 352)
max_c = Floor(√2023 - 576 - 1225)
max_c = Floor(√222)
max_c = Floor(14.899664425751)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 352)/2 = 111
When min_c = 11, then it is c2 = 121 ≥ 111, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 352 - 112
max_d = √2023 - 576 - 1225 - 121
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 352 - 122
max_d = √2023 - 576 - 1225 - 144
max_d = √78
max_d = 8.8317608663278
Since max_d = 8.8317608663278 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 352 - 132
max_d = √2023 - 576 - 1225 - 169
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 352 - 142
max_d = √2023 - 576 - 1225 - 196
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 362)
max_c = Floor(√2023 - 576 - 1296)
max_c = Floor(√151)
max_c = Floor(12.288205727445)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 362)/2 = 75.5
When min_c = 9, then it is c2 = 81 ≥ 75.5, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 362 - 92
max_d = √2023 - 576 - 1296 - 81
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 362 - 102
max_d = √2023 - 576 - 1296 - 100
max_d = √51
max_d = 7.1414284285429
Since max_d = 7.1414284285429 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 362 - 112
max_d = √2023 - 576 - 1296 - 121
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 362 - 122
max_d = √2023 - 576 - 1296 - 144
max_d = √7
max_d = 2.6457513110646
Since max_d = 2.6457513110646 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 372)
max_c = Floor(√2023 - 576 - 1369)
max_c = Floor(√78)
max_c = Floor(8.8317608663278)
max_c = 8
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 372)/2 = 39
When min_c = 7, then it is c2 = 49 ≥ 39, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 372 - 72
max_d = √2023 - 576 - 1369 - 49
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 242 - 372 - 82
max_d = √2023 - 576 - 1369 - 64
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 242 - 382)
max_c = Floor(√2023 - 576 - 1444)
max_c = Floor(√3)
max_c = Floor(1.7320508075689)
max_c = 1
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 242 - 382)/2 = 1.5
When min_c = 2, then it is c2 = 4 ≥ 1.5, so min_c = 2
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 252)
max_b = Floor(√2023 - 625)
max_b = Floor(√1398)
max_b = Floor(37.38983819168)
max_b = 37
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 252)/3 = 466
When min_b = 22, then it is b2 = 484 ≥ 466, so min_b = 22
(22, 37)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 222)
max_c = Floor(√2023 - 625 - 484)
max_c = Floor(√914)
max_c = Floor(30.232432915662)
max_c = 30
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 222)/2 = 457
When min_c = 22, then it is c2 = 484 ≥ 457, so min_c = 22
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 222 - 222
max_d = √2023 - 625 - 484 - 484
max_d = √430
max_d = 20.736441353328
Since max_d = 20.736441353328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 222 - 232
max_d = √2023 - 625 - 484 - 529
max_d = √385
max_d = 19.621416870349
Since max_d = 19.621416870349 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 222 - 242
max_d = √2023 - 625 - 484 - 576
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 222 - 252
max_d = √2023 - 625 - 484 - 625
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (25, 22, 25, 17) is an integer solution proven below
252 + 222 + 252 + 172 → 625 + 484 + 625 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 222 - 262
max_d = √2023 - 625 - 484 - 676
max_d = √238
max_d = 15.427248620542
Since max_d = 15.427248620542 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 222 - 272
max_d = √2023 - 625 - 484 - 729
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 222 - 282
max_d = √2023 - 625 - 484 - 784
max_d = √130
max_d = 11.401754250991
Since max_d = 11.401754250991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 222 - 292
max_d = √2023 - 625 - 484 - 841
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 222 - 302
max_d = √2023 - 625 - 484 - 900
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 232)
max_c = Floor(√2023 - 625 - 529)
max_c = Floor(√869)
max_c = Floor(29.478805945967)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 232)/2 = 434.5
When min_c = 21, then it is c2 = 441 ≥ 434.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 232 - 212
max_d = √2023 - 625 - 529 - 441
max_d = √428
max_d = 20.688160865577
Since max_d = 20.688160865577 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 232 - 222
max_d = √2023 - 625 - 529 - 484
max_d = √385
max_d = 19.621416870349
Since max_d = 19.621416870349 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 232 - 232
max_d = √2023 - 625 - 529 - 529
max_d = √340
max_d = 18.439088914586
Since max_d = 18.439088914586 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 232 - 242
max_d = √2023 - 625 - 529 - 576
max_d = √293
max_d = 17.117242768624
Since max_d = 17.117242768624 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 232 - 252
max_d = √2023 - 625 - 529 - 625
max_d = √244
max_d = 15.620499351813
Since max_d = 15.620499351813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 232 - 262
max_d = √2023 - 625 - 529 - 676
max_d = √193
max_d = 13.89244398945
Since max_d = 13.89244398945 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 232 - 272
max_d = √2023 - 625 - 529 - 729
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 232 - 282
max_d = √2023 - 625 - 529 - 784
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 232 - 292
max_d = √2023 - 625 - 529 - 841
max_d = √28
max_d = 5.2915026221292
Since max_d = 5.2915026221292 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 242)
max_c = Floor(√2023 - 625 - 576)
max_c = Floor(√822)
max_c = Floor(28.670542373663)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 242)/2 = 411
When min_c = 21, then it is c2 = 441 ≥ 411, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 242 - 212
max_d = √2023 - 625 - 576 - 441
max_d = √381
max_d = 19.519221295943
Since max_d = 19.519221295943 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 242 - 222
max_d = √2023 - 625 - 576 - 484
max_d = √338
max_d = 18.38477631085
Since max_d = 18.38477631085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 242 - 232
max_d = √2023 - 625 - 576 - 529
max_d = √293
max_d = 17.117242768624
Since max_d = 17.117242768624 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 242 - 242
max_d = √2023 - 625 - 576 - 576
max_d = √246
max_d = 15.684387141358
Since max_d = 15.684387141358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 242 - 252
max_d = √2023 - 625 - 576 - 625
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 242 - 262
max_d = √2023 - 625 - 576 - 676
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 242 - 272
max_d = √2023 - 625 - 576 - 729
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 242 - 282
max_d = √2023 - 625 - 576 - 784
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 252)
max_c = Floor(√2023 - 625 - 625)
max_c = Floor(√773)
max_c = Floor(27.802877548916)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 252)/2 = 386.5
When min_c = 20, then it is c2 = 400 ≥ 386.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 252 - 202
max_d = √2023 - 625 - 625 - 400
max_d = √373
max_d = 19.313207915828
Since max_d = 19.313207915828 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 252 - 212
max_d = √2023 - 625 - 625 - 441
max_d = √332
max_d = 18.220867158289
Since max_d = 18.220867158289 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 252 - 222
max_d = √2023 - 625 - 625 - 484
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (25, 25, 22, 17) is an integer solution proven below
252 + 252 + 222 + 172 → 625 + 625 + 484 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 252 - 232
max_d = √2023 - 625 - 625 - 529
max_d = √244
max_d = 15.620499351813
Since max_d = 15.620499351813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 252 - 242
max_d = √2023 - 625 - 625 - 576
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 252 - 252
max_d = √2023 - 625 - 625 - 625
max_d = √148
max_d = 12.165525060596
Since max_d = 12.165525060596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 252 - 262
max_d = √2023 - 625 - 625 - 676
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 252 - 272
max_d = √2023 - 625 - 625 - 729
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 262)
max_c = Floor(√2023 - 625 - 676)
max_c = Floor(√722)
max_c = Floor(26.870057685089)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 262)/2 = 361
When min_c = 19, then it is c2 = 361 ≥ 361, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 262 - 192
max_d = √2023 - 625 - 676 - 361
max_d = √361
max_d = 19
Since max_d = 19, then (a, b, c, d) = (25, 26, 19, 19) is an integer solution proven below
252 + 262 + 192 + 192 → 625 + 676 + 361 + 361 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 262 - 202
max_d = √2023 - 625 - 676 - 400
max_d = √322
max_d = 17.944358444926
Since max_d = 17.944358444926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 262 - 212
max_d = √2023 - 625 - 676 - 441
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 262 - 222
max_d = √2023 - 625 - 676 - 484
max_d = √238
max_d = 15.427248620542
Since max_d = 15.427248620542 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 262 - 232
max_d = √2023 - 625 - 676 - 529
max_d = √193
max_d = 13.89244398945
Since max_d = 13.89244398945 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 262 - 242
max_d = √2023 - 625 - 676 - 576
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 262 - 252
max_d = √2023 - 625 - 676 - 625
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 262 - 262
max_d = √2023 - 625 - 676 - 676
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 272)
max_c = Floor(√2023 - 625 - 729)
max_c = Floor(√669)
max_c = Floor(25.865034312755)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 272)/2 = 334.5
When min_c = 19, then it is c2 = 361 ≥ 334.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 272 - 192
max_d = √2023 - 625 - 729 - 361
max_d = √308
max_d = 17.549928774784
Since max_d = 17.549928774784 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 272 - 202
max_d = √2023 - 625 - 729 - 400
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 272 - 212
max_d = √2023 - 625 - 729 - 441
max_d = √228
max_d = 15.099668870541
Since max_d = 15.099668870541 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 272 - 222
max_d = √2023 - 625 - 729 - 484
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 272 - 232
max_d = √2023 - 625 - 729 - 529
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 272 - 242
max_d = √2023 - 625 - 729 - 576
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 272 - 252
max_d = √2023 - 625 - 729 - 625
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 282)
max_c = Floor(√2023 - 625 - 784)
max_c = Floor(√614)
max_c = Floor(24.779023386728)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 282)/2 = 307
When min_c = 18, then it is c2 = 324 ≥ 307, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 282 - 182
max_d = √2023 - 625 - 784 - 324
max_d = √290
max_d = 17.029386365926
Since max_d = 17.029386365926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 282 - 192
max_d = √2023 - 625 - 784 - 361
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 282 - 202
max_d = √2023 - 625 - 784 - 400
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 282 - 212
max_d = √2023 - 625 - 784 - 441
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 282 - 222
max_d = √2023 - 625 - 784 - 484
max_d = √130
max_d = 11.401754250991
Since max_d = 11.401754250991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 282 - 232
max_d = √2023 - 625 - 784 - 529
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 282 - 242
max_d = √2023 - 625 - 784 - 576
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 292)
max_c = Floor(√2023 - 625 - 841)
max_c = Floor(√557)
max_c = Floor(23.600847442412)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 292)/2 = 278.5
When min_c = 17, then it is c2 = 289 ≥ 278.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 292 - 172
max_d = √2023 - 625 - 841 - 289
max_d = √268
max_d = 16.370705543745
Since max_d = 16.370705543745 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 292 - 182
max_d = √2023 - 625 - 841 - 324
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 292 - 192
max_d = √2023 - 625 - 841 - 361
max_d = √196
max_d = 14
Since max_d = 14, then (a, b, c, d) = (25, 29, 19, 14) is an integer solution proven below
252 + 292 + 192 + 142 → 625 + 841 + 361 + 196 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 292 - 202
max_d = √2023 - 625 - 841 - 400
max_d = √157
max_d = 12.529964086142
Since max_d = 12.529964086142 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 292 - 212
max_d = √2023 - 625 - 841 - 441
max_d = √116
max_d = 10.770329614269
Since max_d = 10.770329614269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 292 - 222
max_d = √2023 - 625 - 841 - 484
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 292 - 232
max_d = √2023 - 625 - 841 - 529
max_d = √28
max_d = 5.2915026221292
Since max_d = 5.2915026221292 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 302)
max_c = Floor(√2023 - 625 - 900)
max_c = Floor(√498)
max_c = Floor(22.315913604421)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 302)/2 = 249
When min_c = 16, then it is c2 = 256 ≥ 249, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 302 - 162
max_d = √2023 - 625 - 900 - 256
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 302 - 172
max_d = √2023 - 625 - 900 - 289
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 302 - 182
max_d = √2023 - 625 - 900 - 324
max_d = √174
max_d = 13.190905958273
Since max_d = 13.190905958273 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 302 - 192
max_d = √2023 - 625 - 900 - 361
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 302 - 202
max_d = √2023 - 625 - 900 - 400
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 302 - 212
max_d = √2023 - 625 - 900 - 441
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 302 - 222
max_d = √2023 - 625 - 900 - 484
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 312)
max_c = Floor(√2023 - 625 - 961)
max_c = Floor(√437)
max_c = Floor(20.904544960367)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 312)/2 = 218.5
When min_c = 15, then it is c2 = 225 ≥ 218.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 312 - 152
max_d = √2023 - 625 - 961 - 225
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 312 - 162
max_d = √2023 - 625 - 961 - 256
max_d = √181
max_d = 13.453624047074
Since max_d = 13.453624047074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 312 - 172
max_d = √2023 - 625 - 961 - 289
max_d = √148
max_d = 12.165525060596
Since max_d = 12.165525060596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 312 - 182
max_d = √2023 - 625 - 961 - 324
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 312 - 192
max_d = √2023 - 625 - 961 - 361
max_d = √76
max_d = 8.7177978870813
Since max_d = 8.7177978870813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 312 - 202
max_d = √2023 - 625 - 961 - 400
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 322)
max_c = Floor(√2023 - 625 - 1024)
max_c = Floor(√374)
max_c = Floor(19.339079605814)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 322)/2 = 187
When min_c = 14, then it is c2 = 196 ≥ 187, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 322 - 142
max_d = √2023 - 625 - 1024 - 196
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 322 - 152
max_d = √2023 - 625 - 1024 - 225
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 322 - 162
max_d = √2023 - 625 - 1024 - 256
max_d = √118
max_d = 10.8627804912
Since max_d = 10.8627804912 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 322 - 172
max_d = √2023 - 625 - 1024 - 289
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 322 - 182
max_d = √2023 - 625 - 1024 - 324
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 322 - 192
max_d = √2023 - 625 - 1024 - 361
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 332)
max_c = Floor(√2023 - 625 - 1089)
max_c = Floor(√309)
max_c = Floor(17.578395831247)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 332)/2 = 154.5
When min_c = 13, then it is c2 = 169 ≥ 154.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 332 - 132
max_d = √2023 - 625 - 1089 - 169
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 332 - 142
max_d = √2023 - 625 - 1089 - 196
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 332 - 152
max_d = √2023 - 625 - 1089 - 225
max_d = √84
max_d = 9.1651513899117
Since max_d = 9.1651513899117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 332 - 162
max_d = √2023 - 625 - 1089 - 256
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 332 - 172
max_d = √2023 - 625 - 1089 - 289
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 342)
max_c = Floor(√2023 - 625 - 1156)
max_c = Floor(√242)
max_c = Floor(15.556349186104)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 342)/2 = 121
When min_c = 11, then it is c2 = 121 ≥ 121, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 342 - 112
max_d = √2023 - 625 - 1156 - 121
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (25, 34, 11, 11) is an integer solution proven below
252 + 342 + 112 + 112 → 625 + 1156 + 121 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 342 - 122
max_d = √2023 - 625 - 1156 - 144
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 342 - 132
max_d = √2023 - 625 - 1156 - 169
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 342 - 142
max_d = √2023 - 625 - 1156 - 196
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 342 - 152
max_d = √2023 - 625 - 1156 - 225
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 352)
max_c = Floor(√2023 - 625 - 1225)
max_c = Floor(√173)
max_c = Floor(13.152946437966)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 352)/2 = 86.5
When min_c = 10, then it is c2 = 100 ≥ 86.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 352 - 102
max_d = √2023 - 625 - 1225 - 100
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 352 - 112
max_d = √2023 - 625 - 1225 - 121
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 352 - 122
max_d = √2023 - 625 - 1225 - 144
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 352 - 132
max_d = √2023 - 625 - 1225 - 169
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (25, 35, 13, 2) is an integer solution proven below
252 + 352 + 132 + 22 → 625 + 1225 + 169 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 362)
max_c = Floor(√2023 - 625 - 1296)
max_c = Floor(√102)
max_c = Floor(10.099504938362)
max_c = 10
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 362)/2 = 51
When min_c = 8, then it is c2 = 64 ≥ 51, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 362 - 82
max_d = √2023 - 625 - 1296 - 64
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 362 - 92
max_d = √2023 - 625 - 1296 - 81
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 362 - 102
max_d = √2023 - 625 - 1296 - 100
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 252 - 372)
max_c = Floor(√2023 - 625 - 1369)
max_c = Floor(√29)
max_c = Floor(5.3851648071345)
max_c = 5
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 252 - 372)/2 = 14.5
When min_c = 4, then it is c2 = 16 ≥ 14.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 372 - 42
max_d = √2023 - 625 - 1369 - 16
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 252 - 372 - 52
max_d = √2023 - 625 - 1369 - 25
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (25, 37, 5, 2) is an integer solution proven below
252 + 372 + 52 + 22 → 625 + 1369 + 25 + 4 = 2023
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 262)
max_b = Floor(√2023 - 676)
max_b = Floor(√1347)
max_b = Floor(36.701498607005)
max_b = 36
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 262)/3 = 449
When min_b = 22, then it is b2 = 484 ≥ 449, so min_b = 22
(22, 36)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 222)
max_c = Floor(√2023 - 676 - 484)
max_c = Floor(√863)
max_c = Floor(29.376861643137)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 222)/2 = 431.5
When min_c = 21, then it is c2 = 441 ≥ 431.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 222 - 212
max_d = √2023 - 676 - 484 - 441
max_d = √422
max_d = 20.542638584174
Since max_d = 20.542638584174 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 222 - 222
max_d = √2023 - 676 - 484 - 484
max_d = √379
max_d = 19.467922333932
Since max_d = 19.467922333932 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 222 - 232
max_d = √2023 - 676 - 484 - 529
max_d = √334
max_d = 18.275666882497
Since max_d = 18.275666882497 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 222 - 242
max_d = √2023 - 676 - 484 - 576
max_d = √287
max_d = 16.941074346097
Since max_d = 16.941074346097 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 222 - 252
max_d = √2023 - 676 - 484 - 625
max_d = √238
max_d = 15.427248620542
Since max_d = 15.427248620542 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 222 - 262
max_d = √2023 - 676 - 484 - 676
max_d = √187
max_d = 13.674794331177
Since max_d = 13.674794331177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 222 - 272
max_d = √2023 - 676 - 484 - 729
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 222 - 282
max_d = √2023 - 676 - 484 - 784
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 222 - 292
max_d = √2023 - 676 - 484 - 841
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 232)
max_c = Floor(√2023 - 676 - 529)
max_c = Floor(√818)
max_c = Floor(28.60069929215)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 232)/2 = 409
When min_c = 21, then it is c2 = 441 ≥ 409, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 232 - 212
max_d = √2023 - 676 - 529 - 441
max_d = √377
max_d = 19.416487838948
Since max_d = 19.416487838948 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 232 - 222
max_d = √2023 - 676 - 529 - 484
max_d = √334
max_d = 18.275666882497
Since max_d = 18.275666882497 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 232 - 232
max_d = √2023 - 676 - 529 - 529
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (26, 23, 23, 17) is an integer solution proven below
262 + 232 + 232 + 172 → 676 + 529 + 529 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 232 - 242
max_d = √2023 - 676 - 529 - 576
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 232 - 252
max_d = √2023 - 676 - 529 - 625
max_d = √193
max_d = 13.89244398945
Since max_d = 13.89244398945 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 232 - 262
max_d = √2023 - 676 - 529 - 676
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 232 - 272
max_d = √2023 - 676 - 529 - 729
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 232 - 282
max_d = √2023 - 676 - 529 - 784
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 242)
max_c = Floor(√2023 - 676 - 576)
max_c = Floor(√771)
max_c = Floor(27.76688675383)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 242)/2 = 385.5
When min_c = 20, then it is c2 = 400 ≥ 385.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 242 - 202
max_d = √2023 - 676 - 576 - 400
max_d = √371
max_d = 19.261360284258
Since max_d = 19.261360284258 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 242 - 212
max_d = √2023 - 676 - 576 - 441
max_d = √330
max_d = 18.165902124585
Since max_d = 18.165902124585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 242 - 222
max_d = √2023 - 676 - 576 - 484
max_d = √287
max_d = 16.941074346097
Since max_d = 16.941074346097 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 242 - 232
max_d = √2023 - 676 - 576 - 529
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 242 - 242
max_d = √2023 - 676 - 576 - 576
max_d = √195
max_d = 13.964240043769
Since max_d = 13.964240043769 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 242 - 252
max_d = √2023 - 676 - 576 - 625
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 242 - 262
max_d = √2023 - 676 - 576 - 676
max_d = √95
max_d = 9.746794344809
Since max_d = 9.746794344809 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 242 - 272
max_d = √2023 - 676 - 576 - 729
max_d = √42
max_d = 6.4807406984079
Since max_d = 6.4807406984079 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 252)
max_c = Floor(√2023 - 676 - 625)
max_c = Floor(√722)
max_c = Floor(26.870057685089)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 252)/2 = 361
When min_c = 19, then it is c2 = 361 ≥ 361, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 252 - 192
max_d = √2023 - 676 - 625 - 361
max_d = √361
max_d = 19
Since max_d = 19, then (a, b, c, d) = (26, 25, 19, 19) is an integer solution proven below
262 + 252 + 192 + 192 → 676 + 625 + 361 + 361 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 252 - 202
max_d = √2023 - 676 - 625 - 400
max_d = √322
max_d = 17.944358444926
Since max_d = 17.944358444926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 252 - 212
max_d = √2023 - 676 - 625 - 441
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 252 - 222
max_d = √2023 - 676 - 625 - 484
max_d = √238
max_d = 15.427248620542
Since max_d = 15.427248620542 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 252 - 232
max_d = √2023 - 676 - 625 - 529
max_d = √193
max_d = 13.89244398945
Since max_d = 13.89244398945 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 252 - 242
max_d = √2023 - 676 - 625 - 576
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 252 - 252
max_d = √2023 - 676 - 625 - 625
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 252 - 262
max_d = √2023 - 676 - 625 - 676
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 262)
max_c = Floor(√2023 - 676 - 676)
max_c = Floor(√671)
max_c = Floor(25.903667693977)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 262)/2 = 335.5
When min_c = 19, then it is c2 = 361 ≥ 335.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 262 - 192
max_d = √2023 - 676 - 676 - 361
max_d = √310
max_d = 17.606816861659
Since max_d = 17.606816861659 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 262 - 202
max_d = √2023 - 676 - 676 - 400
max_d = √271
max_d = 16.462077633154
Since max_d = 16.462077633154 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 262 - 212
max_d = √2023 - 676 - 676 - 441
max_d = √230
max_d = 15.165750888103
Since max_d = 15.165750888103 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 262 - 222
max_d = √2023 - 676 - 676 - 484
max_d = √187
max_d = 13.674794331177
Since max_d = 13.674794331177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 262 - 232
max_d = √2023 - 676 - 676 - 529
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 262 - 242
max_d = √2023 - 676 - 676 - 576
max_d = √95
max_d = 9.746794344809
Since max_d = 9.746794344809 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 262 - 252
max_d = √2023 - 676 - 676 - 625
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 272)
max_c = Floor(√2023 - 676 - 729)
max_c = Floor(√618)
max_c = Floor(24.859605789312)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 272)/2 = 309
When min_c = 18, then it is c2 = 324 ≥ 309, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 272 - 182
max_d = √2023 - 676 - 729 - 324
max_d = √294
max_d = 17.146428199482
Since max_d = 17.146428199482 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 272 - 192
max_d = √2023 - 676 - 729 - 361
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 272 - 202
max_d = √2023 - 676 - 729 - 400
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 272 - 212
max_d = √2023 - 676 - 729 - 441
max_d = √177
max_d = 13.30413469565
Since max_d = 13.30413469565 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 272 - 222
max_d = √2023 - 676 - 729 - 484
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 272 - 232
max_d = √2023 - 676 - 729 - 529
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 272 - 242
max_d = √2023 - 676 - 729 - 576
max_d = √42
max_d = 6.4807406984079
Since max_d = 6.4807406984079 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 282)
max_c = Floor(√2023 - 676 - 784)
max_c = Floor(√563)
max_c = Floor(23.727621035409)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 282)/2 = 281.5
When min_c = 17, then it is c2 = 289 ≥ 281.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 282 - 172
max_d = √2023 - 676 - 784 - 289
max_d = √274
max_d = 16.552945357247
Since max_d = 16.552945357247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 282 - 182
max_d = √2023 - 676 - 784 - 324
max_d = √239
max_d = 15.45962483374
Since max_d = 15.45962483374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 282 - 192
max_d = √2023 - 676 - 784 - 361
max_d = √202
max_d = 14.212670403552
Since max_d = 14.212670403552 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 282 - 202
max_d = √2023 - 676 - 784 - 400
max_d = √163
max_d = 12.767145334804
Since max_d = 12.767145334804 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 282 - 212
max_d = √2023 - 676 - 784 - 441
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 282 - 222
max_d = √2023 - 676 - 784 - 484
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 282 - 232
max_d = √2023 - 676 - 784 - 529
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 292)
max_c = Floor(√2023 - 676 - 841)
max_c = Floor(√506)
max_c = Floor(22.494443758404)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 292)/2 = 253
When min_c = 16, then it is c2 = 256 ≥ 253, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 292 - 162
max_d = √2023 - 676 - 841 - 256
max_d = √250
max_d = 15.811388300842
Since max_d = 15.811388300842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 292 - 172
max_d = √2023 - 676 - 841 - 289
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 292 - 182
max_d = √2023 - 676 - 841 - 324
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 292 - 192
max_d = √2023 - 676 - 841 - 361
max_d = √145
max_d = 12.041594578792
Since max_d = 12.041594578792 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 292 - 202
max_d = √2023 - 676 - 841 - 400
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 292 - 212
max_d = √2023 - 676 - 841 - 441
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 292 - 222
max_d = √2023 - 676 - 841 - 484
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 302)
max_c = Floor(√2023 - 676 - 900)
max_c = Floor(√447)
max_c = Floor(21.142374511866)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 302)/2 = 223.5
When min_c = 15, then it is c2 = 225 ≥ 223.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 302 - 152
max_d = √2023 - 676 - 900 - 225
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 302 - 162
max_d = √2023 - 676 - 900 - 256
max_d = √191
max_d = 13.820274961085
Since max_d = 13.820274961085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 302 - 172
max_d = √2023 - 676 - 900 - 289
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 302 - 182
max_d = √2023 - 676 - 900 - 324
max_d = √123
max_d = 11.090536506409
Since max_d = 11.090536506409 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 302 - 192
max_d = √2023 - 676 - 900 - 361
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 302 - 202
max_d = √2023 - 676 - 900 - 400
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 302 - 212
max_d = √2023 - 676 - 900 - 441
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 312)
max_c = Floor(√2023 - 676 - 961)
max_c = Floor(√386)
max_c = Floor(19.646882704388)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 312)/2 = 193
When min_c = 14, then it is c2 = 196 ≥ 193, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 312 - 142
max_d = √2023 - 676 - 961 - 196
max_d = √190
max_d = 13.78404875209
Since max_d = 13.78404875209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 312 - 152
max_d = √2023 - 676 - 961 - 225
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 312 - 162
max_d = √2023 - 676 - 961 - 256
max_d = √130
max_d = 11.401754250991
Since max_d = 11.401754250991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 312 - 172
max_d = √2023 - 676 - 961 - 289
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 312 - 182
max_d = √2023 - 676 - 961 - 324
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 312 - 192
max_d = √2023 - 676 - 961 - 361
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (26, 31, 19, 5) is an integer solution proven below
262 + 312 + 192 + 52 → 676 + 961 + 361 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 322)
max_c = Floor(√2023 - 676 - 1024)
max_c = Floor(√323)
max_c = Floor(17.972200755611)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 322)/2 = 161.5
When min_c = 13, then it is c2 = 169 ≥ 161.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 322 - 132
max_d = √2023 - 676 - 1024 - 169
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 322 - 142
max_d = √2023 - 676 - 1024 - 196
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 322 - 152
max_d = √2023 - 676 - 1024 - 225
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 322 - 162
max_d = √2023 - 676 - 1024 - 256
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 322 - 172
max_d = √2023 - 676 - 1024 - 289
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 332)
max_c = Floor(√2023 - 676 - 1089)
max_c = Floor(√258)
max_c = Floor(16.062378404209)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 332)/2 = 129
When min_c = 12, then it is c2 = 144 ≥ 129, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 332 - 122
max_d = √2023 - 676 - 1089 - 144
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 332 - 132
max_d = √2023 - 676 - 1089 - 169
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 332 - 142
max_d = √2023 - 676 - 1089 - 196
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 332 - 152
max_d = √2023 - 676 - 1089 - 225
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 332 - 162
max_d = √2023 - 676 - 1089 - 256
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 342)
max_c = Floor(√2023 - 676 - 1156)
max_c = Floor(√191)
max_c = Floor(13.820274961085)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 342)/2 = 95.5
When min_c = 10, then it is c2 = 100 ≥ 95.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 342 - 102
max_d = √2023 - 676 - 1156 - 100
max_d = √91
max_d = 9.5393920141695
Since max_d = 9.5393920141695 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 342 - 112
max_d = √2023 - 676 - 1156 - 121
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 342 - 122
max_d = √2023 - 676 - 1156 - 144
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 342 - 132
max_d = √2023 - 676 - 1156 - 169
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 352)
max_c = Floor(√2023 - 676 - 1225)
max_c = Floor(√122)
max_c = Floor(11.045361017187)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 352)/2 = 61
When min_c = 8, then it is c2 = 64 ≥ 61, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 352 - 82
max_d = √2023 - 676 - 1225 - 64
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 352 - 92
max_d = √2023 - 676 - 1225 - 81
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 352 - 102
max_d = √2023 - 676 - 1225 - 100
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 352 - 112
max_d = √2023 - 676 - 1225 - 121
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (26, 35, 11, 1) is an integer solution proven below
262 + 352 + 112 + 12 → 676 + 1225 + 121 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 262 - 362)
max_c = Floor(√2023 - 676 - 1296)
max_c = Floor(√51)
max_c = Floor(7.1414284285429)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 262 - 362)/2 = 25.5
When min_c = 6, then it is c2 = 36 ≥ 25.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 362 - 62
max_d = √2023 - 676 - 1296 - 36
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 262 - 362 - 72
max_d = √2023 - 676 - 1296 - 49
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 272)
max_b = Floor(√2023 - 729)
max_b = Floor(√1294)
max_b = Floor(35.97221149721)
max_b = 35
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 272)/3 = 431.33333333333
When min_b = 21, then it is b2 = 441 ≥ 431.33333333333, so min_b = 21
(21, 35)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 212)
max_c = Floor(√2023 - 729 - 441)
max_c = Floor(√853)
max_c = Floor(29.20616373302)
max_c = 29
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 212)/2 = 426.5
When min_c = 21, then it is c2 = 441 ≥ 426.5, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 212 - 212
max_d = √2023 - 729 - 441 - 441
max_d = √412
max_d = 20.297783130184
Since max_d = 20.297783130184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 212 - 222
max_d = √2023 - 729 - 441 - 484
max_d = √369
max_d = 19.209372712299
Since max_d = 19.209372712299 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 212 - 232
max_d = √2023 - 729 - 441 - 529
max_d = √324
max_d = 18
Since max_d = 18, then (a, b, c, d) = (27, 21, 23, 18) is an integer solution proven below
272 + 212 + 232 + 182 → 729 + 441 + 529 + 324 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 212 - 242
max_d = √2023 - 729 - 441 - 576
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 212 - 252
max_d = √2023 - 729 - 441 - 625
max_d = √228
max_d = 15.099668870541
Since max_d = 15.099668870541 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 212 - 262
max_d = √2023 - 729 - 441 - 676
max_d = √177
max_d = 13.30413469565
Since max_d = 13.30413469565 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 212 - 272
max_d = √2023 - 729 - 441 - 729
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 212 - 282
max_d = √2023 - 729 - 441 - 784
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 212 - 292
max_d = √2023 - 729 - 441 - 841
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 222)
max_c = Floor(√2023 - 729 - 484)
max_c = Floor(√810)
max_c = Floor(28.460498941515)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 222)/2 = 405
When min_c = 21, then it is c2 = 441 ≥ 405, so min_c = 21
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 222 - 212
max_d = √2023 - 729 - 484 - 441
max_d = √369
max_d = 19.209372712299
Since max_d = 19.209372712299 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 222 - 222
max_d = √2023 - 729 - 484 - 484
max_d = √326
max_d = 18.055470085268
Since max_d = 18.055470085268 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 222 - 232
max_d = √2023 - 729 - 484 - 529
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 222 - 242
max_d = √2023 - 729 - 484 - 576
max_d = √234
max_d = 15.297058540778
Since max_d = 15.297058540778 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 222 - 252
max_d = √2023 - 729 - 484 - 625
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 222 - 262
max_d = √2023 - 729 - 484 - 676
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 222 - 272
max_d = √2023 - 729 - 484 - 729
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (27, 22, 27, 9) is an integer solution proven below
272 + 222 + 272 + 92 → 729 + 484 + 729 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 222 - 282
max_d = √2023 - 729 - 484 - 784
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 232)
max_c = Floor(√2023 - 729 - 529)
max_c = Floor(√765)
max_c = Floor(27.658633371879)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 232)/2 = 382.5
When min_c = 20, then it is c2 = 400 ≥ 382.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 232 - 202
max_d = √2023 - 729 - 529 - 400
max_d = √365
max_d = 19.104973174543
Since max_d = 19.104973174543 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 232 - 212
max_d = √2023 - 729 - 529 - 441
max_d = √324
max_d = 18
Since max_d = 18, then (a, b, c, d) = (27, 23, 21, 18) is an integer solution proven below
272 + 232 + 212 + 182 → 729 + 529 + 441 + 324 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 232 - 222
max_d = √2023 - 729 - 529 - 484
max_d = √281
max_d = 16.76305461424
Since max_d = 16.76305461424 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 232 - 232
max_d = √2023 - 729 - 529 - 529
max_d = √236
max_d = 15.362291495737
Since max_d = 15.362291495737 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 232 - 242
max_d = √2023 - 729 - 529 - 576
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 232 - 252
max_d = √2023 - 729 - 529 - 625
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 232 - 262
max_d = √2023 - 729 - 529 - 676
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 232 - 272
max_d = √2023 - 729 - 529 - 729
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (27, 23, 27, 6) is an integer solution proven below
272 + 232 + 272 + 62 → 729 + 529 + 729 + 36 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 242)
max_c = Floor(√2023 - 729 - 576)
max_c = Floor(√718)
max_c = Floor(26.795522013949)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 242)/2 = 359
When min_c = 19, then it is c2 = 361 ≥ 359, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 242 - 192
max_d = √2023 - 729 - 576 - 361
max_d = √357
max_d = 18.894443627691
Since max_d = 18.894443627691 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 242 - 202
max_d = √2023 - 729 - 576 - 400
max_d = √318
max_d = 17.832554500127
Since max_d = 17.832554500127 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 242 - 212
max_d = √2023 - 729 - 576 - 441
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 242 - 222
max_d = √2023 - 729 - 576 - 484
max_d = √234
max_d = 15.297058540778
Since max_d = 15.297058540778 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 242 - 232
max_d = √2023 - 729 - 576 - 529
max_d = √189
max_d = 13.747727084868
Since max_d = 13.747727084868 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 242 - 242
max_d = √2023 - 729 - 576 - 576
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 242 - 252
max_d = √2023 - 729 - 576 - 625
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 242 - 262
max_d = √2023 - 729 - 576 - 676
max_d = √42
max_d = 6.4807406984079
Since max_d = 6.4807406984079 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 252)
max_c = Floor(√2023 - 729 - 625)
max_c = Floor(√669)
max_c = Floor(25.865034312755)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 252)/2 = 334.5
When min_c = 19, then it is c2 = 361 ≥ 334.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 252 - 192
max_d = √2023 - 729 - 625 - 361
max_d = √308
max_d = 17.549928774784
Since max_d = 17.549928774784 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 252 - 202
max_d = √2023 - 729 - 625 - 400
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 252 - 212
max_d = √2023 - 729 - 625 - 441
max_d = √228
max_d = 15.099668870541
Since max_d = 15.099668870541 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 252 - 222
max_d = √2023 - 729 - 625 - 484
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 252 - 232
max_d = √2023 - 729 - 625 - 529
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 252 - 242
max_d = √2023 - 729 - 625 - 576
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 252 - 252
max_d = √2023 - 729 - 625 - 625
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 262)
max_c = Floor(√2023 - 729 - 676)
max_c = Floor(√618)
max_c = Floor(24.859605789312)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 262)/2 = 309
When min_c = 18, then it is c2 = 324 ≥ 309, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 262 - 182
max_d = √2023 - 729 - 676 - 324
max_d = √294
max_d = 17.146428199482
Since max_d = 17.146428199482 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 262 - 192
max_d = √2023 - 729 - 676 - 361
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 262 - 202
max_d = √2023 - 729 - 676 - 400
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 262 - 212
max_d = √2023 - 729 - 676 - 441
max_d = √177
max_d = 13.30413469565
Since max_d = 13.30413469565 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 262 - 222
max_d = √2023 - 729 - 676 - 484
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 262 - 232
max_d = √2023 - 729 - 676 - 529
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 262 - 242
max_d = √2023 - 729 - 676 - 576
max_d = √42
max_d = 6.4807406984079
Since max_d = 6.4807406984079 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 272)
max_c = Floor(√2023 - 729 - 729)
max_c = Floor(√565)
max_c = Floor(23.769728648009)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 272)/2 = 282.5
When min_c = 17, then it is c2 = 289 ≥ 282.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 272 - 172
max_d = √2023 - 729 - 729 - 289
max_d = √276
max_d = 16.613247725836
Since max_d = 16.613247725836 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 272 - 182
max_d = √2023 - 729 - 729 - 324
max_d = √241
max_d = 15.52417469626
Since max_d = 15.52417469626 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 272 - 192
max_d = √2023 - 729 - 729 - 361
max_d = √204
max_d = 14.282856857086
Since max_d = 14.282856857086 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 272 - 202
max_d = √2023 - 729 - 729 - 400
max_d = √165
max_d = 12.845232578665
Since max_d = 12.845232578665 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 272 - 212
max_d = √2023 - 729 - 729 - 441
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 272 - 222
max_d = √2023 - 729 - 729 - 484
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (27, 27, 22, 9) is an integer solution proven below
272 + 272 + 222 + 92 → 729 + 729 + 484 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 272 - 232
max_d = √2023 - 729 - 729 - 529
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (27, 27, 23, 6) is an integer solution proven below
272 + 272 + 232 + 62 → 729 + 729 + 529 + 36 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 282)
max_c = Floor(√2023 - 729 - 784)
max_c = Floor(√510)
max_c = Floor(22.583179581272)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 282)/2 = 255
When min_c = 16, then it is c2 = 256 ≥ 255, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 282 - 162
max_d = √2023 - 729 - 784 - 256
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 282 - 172
max_d = √2023 - 729 - 784 - 289
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 282 - 182
max_d = √2023 - 729 - 784 - 324
max_d = √186
max_d = 13.638181696986
Since max_d = 13.638181696986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 282 - 192
max_d = √2023 - 729 - 784 - 361
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 282 - 202
max_d = √2023 - 729 - 784 - 400
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 282 - 212
max_d = √2023 - 729 - 784 - 441
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 282 - 222
max_d = √2023 - 729 - 784 - 484
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 292)
max_c = Floor(√2023 - 729 - 841)
max_c = Floor(√453)
max_c = Floor(21.283796653793)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 292)/2 = 226.5
When min_c = 16, then it is c2 = 256 ≥ 226.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 292 - 162
max_d = √2023 - 729 - 841 - 256
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 292 - 172
max_d = √2023 - 729 - 841 - 289
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 292 - 182
max_d = √2023 - 729 - 841 - 324
max_d = √129
max_d = 11.357816691601
Since max_d = 11.357816691601 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 292 - 192
max_d = √2023 - 729 - 841 - 361
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 292 - 202
max_d = √2023 - 729 - 841 - 400
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 292 - 212
max_d = √2023 - 729 - 841 - 441
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 302)
max_c = Floor(√2023 - 729 - 900)
max_c = Floor(√394)
max_c = Floor(19.849433241279)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 302)/2 = 197
When min_c = 15, then it is c2 = 225 ≥ 197, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 302 - 152
max_d = √2023 - 729 - 900 - 225
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (27, 30, 15, 13) is an integer solution proven below
272 + 302 + 152 + 132 → 729 + 900 + 225 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 302 - 162
max_d = √2023 - 729 - 900 - 256
max_d = √138
max_d = 11.747340124471
Since max_d = 11.747340124471 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 302 - 172
max_d = √2023 - 729 - 900 - 289
max_d = √105
max_d = 10.24695076596
Since max_d = 10.24695076596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 302 - 182
max_d = √2023 - 729 - 900 - 324
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 302 - 192
max_d = √2023 - 729 - 900 - 361
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 312)
max_c = Floor(√2023 - 729 - 961)
max_c = Floor(√333)
max_c = Floor(18.248287590895)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 312)/2 = 166.5
When min_c = 13, then it is c2 = 169 ≥ 166.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 312 - 132
max_d = √2023 - 729 - 961 - 169
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 312 - 142
max_d = √2023 - 729 - 961 - 196
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 312 - 152
max_d = √2023 - 729 - 961 - 225
max_d = √108
max_d = 10.392304845413
Since max_d = 10.392304845413 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 312 - 162
max_d = √2023 - 729 - 961 - 256
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 312 - 172
max_d = √2023 - 729 - 961 - 289
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 312 - 182
max_d = √2023 - 729 - 961 - 324
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (27, 31, 18, 3) is an integer solution proven below
272 + 312 + 182 + 32 → 729 + 961 + 324 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 322)
max_c = Floor(√2023 - 729 - 1024)
max_c = Floor(√270)
max_c = Floor(16.431676725155)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 322)/2 = 135
When min_c = 12, then it is c2 = 144 ≥ 135, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 322 - 122
max_d = √2023 - 729 - 1024 - 144
max_d = √126
max_d = 11.224972160322
Since max_d = 11.224972160322 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 322 - 132
max_d = √2023 - 729 - 1024 - 169
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 322 - 142
max_d = √2023 - 729 - 1024 - 196
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 322 - 152
max_d = √2023 - 729 - 1024 - 225
max_d = √45
max_d = 6.7082039324994
Since max_d = 6.7082039324994 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 322 - 162
max_d = √2023 - 729 - 1024 - 256
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 332)
max_c = Floor(√2023 - 729 - 1089)
max_c = Floor(√205)
max_c = Floor(14.317821063276)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 332)/2 = 102.5
When min_c = 11, then it is c2 = 121 ≥ 102.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 332 - 112
max_d = √2023 - 729 - 1089 - 121
max_d = √84
max_d = 9.1651513899117
Since max_d = 9.1651513899117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 332 - 122
max_d = √2023 - 729 - 1089 - 144
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 332 - 132
max_d = √2023 - 729 - 1089 - 169
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (27, 33, 13, 6) is an integer solution proven below
272 + 332 + 132 + 62 → 729 + 1089 + 169 + 36 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 332 - 142
max_d = √2023 - 729 - 1089 - 196
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (27, 33, 14, 3) is an integer solution proven below
272 + 332 + 142 + 32 → 729 + 1089 + 196 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 342)
max_c = Floor(√2023 - 729 - 1156)
max_c = Floor(√138)
max_c = Floor(11.747340124471)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 342)/2 = 69
When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 342 - 92
max_d = √2023 - 729 - 1156 - 81
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 342 - 102
max_d = √2023 - 729 - 1156 - 100
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 342 - 112
max_d = √2023 - 729 - 1156 - 121
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 272 - 352)
max_c = Floor(√2023 - 729 - 1225)
max_c = Floor(√69)
max_c = Floor(8.3066238629181)
max_c = 8
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 272 - 352)/2 = 34.5
When min_c = 6, then it is c2 = 36 ≥ 34.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 352 - 62
max_d = √2023 - 729 - 1225 - 36
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 352 - 72
max_d = √2023 - 729 - 1225 - 49
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 272 - 352 - 82
max_d = √2023 - 729 - 1225 - 64
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 282)
max_b = Floor(√2023 - 784)
max_b = Floor(√1239)
max_b = Floor(35.199431813596)
max_b = 35
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 282)/3 = 413
When min_b = 21, then it is b2 = 441 ≥ 413, so min_b = 21
(21, 35)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 212)
max_c = Floor(√2023 - 784 - 441)
max_c = Floor(√798)
max_c = Floor(28.248893783651)
max_c = 28
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 212)/2 = 399
When min_c = 20, then it is c2 = 400 ≥ 399, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 212 - 202
max_d = √2023 - 784 - 441 - 400
max_d = √398
max_d = 19.94993734326
Since max_d = 19.94993734326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 212 - 212
max_d = √2023 - 784 - 441 - 441
max_d = √357
max_d = 18.894443627691
Since max_d = 18.894443627691 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 212 - 222
max_d = √2023 - 784 - 441 - 484
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 212 - 232
max_d = √2023 - 784 - 441 - 529
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 212 - 242
max_d = √2023 - 784 - 441 - 576
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 212 - 252
max_d = √2023 - 784 - 441 - 625
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 212 - 262
max_d = √2023 - 784 - 441 - 676
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 212 - 272
max_d = √2023 - 784 - 441 - 729
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 212 - 282
max_d = √2023 - 784 - 441 - 784
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 222)
max_c = Floor(√2023 - 784 - 484)
max_c = Floor(√755)
max_c = Floor(27.477263328068)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 222)/2 = 377.5
When min_c = 20, then it is c2 = 400 ≥ 377.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 222 - 202
max_d = √2023 - 784 - 484 - 400
max_d = √355
max_d = 18.841443681417
Since max_d = 18.841443681417 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 222 - 212
max_d = √2023 - 784 - 484 - 441
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 222 - 222
max_d = √2023 - 784 - 484 - 484
max_d = √271
max_d = 16.462077633154
Since max_d = 16.462077633154 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 222 - 232
max_d = √2023 - 784 - 484 - 529
max_d = √226
max_d = 15.033296378373
Since max_d = 15.033296378373 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 222 - 242
max_d = √2023 - 784 - 484 - 576
max_d = √179
max_d = 13.37908816026
Since max_d = 13.37908816026 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 222 - 252
max_d = √2023 - 784 - 484 - 625
max_d = √130
max_d = 11.401754250991
Since max_d = 11.401754250991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 222 - 262
max_d = √2023 - 784 - 484 - 676
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 222 - 272
max_d = √2023 - 784 - 484 - 729
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 232)
max_c = Floor(√2023 - 784 - 529)
max_c = Floor(√710)
max_c = Floor(26.645825188948)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 232)/2 = 355
When min_c = 19, then it is c2 = 361 ≥ 355, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 232 - 192
max_d = √2023 - 784 - 529 - 361
max_d = √349
max_d = 18.681541692269
Since max_d = 18.681541692269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 232 - 202
max_d = √2023 - 784 - 529 - 400
max_d = √310
max_d = 17.606816861659
Since max_d = 17.606816861659 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 232 - 212
max_d = √2023 - 784 - 529 - 441
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 232 - 222
max_d = √2023 - 784 - 529 - 484
max_d = √226
max_d = 15.033296378373
Since max_d = 15.033296378373 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 232 - 232
max_d = √2023 - 784 - 529 - 529
max_d = √181
max_d = 13.453624047074
Since max_d = 13.453624047074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 232 - 242
max_d = √2023 - 784 - 529 - 576
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 232 - 252
max_d = √2023 - 784 - 529 - 625
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 232 - 262
max_d = √2023 - 784 - 529 - 676
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 242)
max_c = Floor(√2023 - 784 - 576)
max_c = Floor(√663)
max_c = Floor(25.748786379167)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 242)/2 = 331.5
When min_c = 19, then it is c2 = 361 ≥ 331.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 242 - 192
max_d = √2023 - 784 - 576 - 361
max_d = √302
max_d = 17.378147196983
Since max_d = 17.378147196983 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 242 - 202
max_d = √2023 - 784 - 576 - 400
max_d = √263
max_d = 16.217274740227
Since max_d = 16.217274740227 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 242 - 212
max_d = √2023 - 784 - 576 - 441
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 242 - 222
max_d = √2023 - 784 - 576 - 484
max_d = √179
max_d = 13.37908816026
Since max_d = 13.37908816026 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 242 - 232
max_d = √2023 - 784 - 576 - 529
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 242 - 242
max_d = √2023 - 784 - 576 - 576
max_d = √87
max_d = 9.3273790530888
Since max_d = 9.3273790530888 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 242 - 252
max_d = √2023 - 784 - 576 - 625
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 252)
max_c = Floor(√2023 - 784 - 625)
max_c = Floor(√614)
max_c = Floor(24.779023386728)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 252)/2 = 307
When min_c = 18, then it is c2 = 324 ≥ 307, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 252 - 182
max_d = √2023 - 784 - 625 - 324
max_d = √290
max_d = 17.029386365926
Since max_d = 17.029386365926 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 252 - 192
max_d = √2023 - 784 - 625 - 361
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 252 - 202
max_d = √2023 - 784 - 625 - 400
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 252 - 212
max_d = √2023 - 784 - 625 - 441
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 252 - 222
max_d = √2023 - 784 - 625 - 484
max_d = √130
max_d = 11.401754250991
Since max_d = 11.401754250991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 252 - 232
max_d = √2023 - 784 - 625 - 529
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 252 - 242
max_d = √2023 - 784 - 625 - 576
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 262)
max_c = Floor(√2023 - 784 - 676)
max_c = Floor(√563)
max_c = Floor(23.727621035409)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 262)/2 = 281.5
When min_c = 17, then it is c2 = 289 ≥ 281.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 262 - 172
max_d = √2023 - 784 - 676 - 289
max_d = √274
max_d = 16.552945357247
Since max_d = 16.552945357247 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 262 - 182
max_d = √2023 - 784 - 676 - 324
max_d = √239
max_d = 15.45962483374
Since max_d = 15.45962483374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 262 - 192
max_d = √2023 - 784 - 676 - 361
max_d = √202
max_d = 14.212670403552
Since max_d = 14.212670403552 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 262 - 202
max_d = √2023 - 784 - 676 - 400
max_d = √163
max_d = 12.767145334804
Since max_d = 12.767145334804 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 262 - 212
max_d = √2023 - 784 - 676 - 441
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 262 - 222
max_d = √2023 - 784 - 676 - 484
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 262 - 232
max_d = √2023 - 784 - 676 - 529
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 272)
max_c = Floor(√2023 - 784 - 729)
max_c = Floor(√510)
max_c = Floor(22.583179581272)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 272)/2 = 255
When min_c = 16, then it is c2 = 256 ≥ 255, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 272 - 162
max_d = √2023 - 784 - 729 - 256
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 272 - 172
max_d = √2023 - 784 - 729 - 289
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 272 - 182
max_d = √2023 - 784 - 729 - 324
max_d = √186
max_d = 13.638181696986
Since max_d = 13.638181696986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 272 - 192
max_d = √2023 - 784 - 729 - 361
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 272 - 202
max_d = √2023 - 784 - 729 - 400
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 272 - 212
max_d = √2023 - 784 - 729 - 441
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 272 - 222
max_d = √2023 - 784 - 729 - 484
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 282)
max_c = Floor(√2023 - 784 - 784)
max_c = Floor(√455)
max_c = Floor(21.330729007702)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 282)/2 = 227.5
When min_c = 16, then it is c2 = 256 ≥ 227.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 282 - 162
max_d = √2023 - 784 - 784 - 256
max_d = √199
max_d = 14.106735979666
Since max_d = 14.106735979666 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 282 - 172
max_d = √2023 - 784 - 784 - 289
max_d = √166
max_d = 12.884098726725
Since max_d = 12.884098726725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 282 - 182
max_d = √2023 - 784 - 784 - 324
max_d = √131
max_d = 11.44552314226
Since max_d = 11.44552314226 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 282 - 192
max_d = √2023 - 784 - 784 - 361
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 282 - 202
max_d = √2023 - 784 - 784 - 400
max_d = √55
max_d = 7.4161984870957
Since max_d = 7.4161984870957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 282 - 212
max_d = √2023 - 784 - 784 - 441
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 292)
max_c = Floor(√2023 - 784 - 841)
max_c = Floor(√398)
max_c = Floor(19.94993734326)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 292)/2 = 199
When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 292 - 152
max_d = √2023 - 784 - 841 - 225
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 292 - 162
max_d = √2023 - 784 - 841 - 256
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 292 - 172
max_d = √2023 - 784 - 841 - 289
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 292 - 182
max_d = √2023 - 784 - 841 - 324
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 292 - 192
max_d = √2023 - 784 - 841 - 361
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 302)
max_c = Floor(√2023 - 784 - 900)
max_c = Floor(√339)
max_c = Floor(18.411952639522)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 302)/2 = 169.5
When min_c = 14, then it is c2 = 196 ≥ 169.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 302 - 142
max_d = √2023 - 784 - 900 - 196
max_d = √143
max_d = 11.958260743101
Since max_d = 11.958260743101 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 302 - 152
max_d = √2023 - 784 - 900 - 225
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 302 - 162
max_d = √2023 - 784 - 900 - 256
max_d = √83
max_d = 9.1104335791443
Since max_d = 9.1104335791443 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 302 - 172
max_d = √2023 - 784 - 900 - 289
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 302 - 182
max_d = √2023 - 784 - 900 - 324
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 312)
max_c = Floor(√2023 - 784 - 961)
max_c = Floor(√278)
max_c = Floor(16.673332000533)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 312)/2 = 139
When min_c = 12, then it is c2 = 144 ≥ 139, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 312 - 122
max_d = √2023 - 784 - 961 - 144
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 312 - 132
max_d = √2023 - 784 - 961 - 169
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 312 - 142
max_d = √2023 - 784 - 961 - 196
max_d = √82
max_d = 9.0553851381374
Since max_d = 9.0553851381374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 312 - 152
max_d = √2023 - 784 - 961 - 225
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 312 - 162
max_d = √2023 - 784 - 961 - 256
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 322)
max_c = Floor(√2023 - 784 - 1024)
max_c = Floor(√215)
max_c = Floor(14.662878298615)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 322)/2 = 107.5
When min_c = 11, then it is c2 = 121 ≥ 107.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 322 - 112
max_d = √2023 - 784 - 1024 - 121
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 322 - 122
max_d = √2023 - 784 - 1024 - 144
max_d = √71
max_d = 8.4261497731764
Since max_d = 8.4261497731764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 322 - 132
max_d = √2023 - 784 - 1024 - 169
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 322 - 142
max_d = √2023 - 784 - 1024 - 196
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 332)
max_c = Floor(√2023 - 784 - 1089)
max_c = Floor(√150)
max_c = Floor(12.247448713916)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 332)/2 = 75
When min_c = 9, then it is c2 = 81 ≥ 75, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 332 - 92
max_d = √2023 - 784 - 1089 - 81
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 332 - 102
max_d = √2023 - 784 - 1089 - 100
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 332 - 112
max_d = √2023 - 784 - 1089 - 121
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 332 - 122
max_d = √2023 - 784 - 1089 - 144
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 342)
max_c = Floor(√2023 - 784 - 1156)
max_c = Floor(√83)
max_c = Floor(9.1104335791443)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 342)/2 = 41.5
When min_c = 7, then it is c2 = 49 ≥ 41.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 342 - 72
max_d = √2023 - 784 - 1156 - 49
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 342 - 82
max_d = √2023 - 784 - 1156 - 64
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 342 - 92
max_d = √2023 - 784 - 1156 - 81
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 282 - 352)
max_c = Floor(√2023 - 784 - 1225)
max_c = Floor(√14)
max_c = Floor(3.7416573867739)
max_c = 3
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 282 - 352)/2 = 7
When min_c = 3, then it is c2 = 9 ≥ 7, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 282 - 352 - 32
max_d = √2023 - 784 - 1225 - 9
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 292)
max_b = Floor(√2023 - 841)
max_b = Floor(√1182)
max_b = Floor(34.380226875342)
max_b = 34
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 292)/3 = 394
When min_b = 20, then it is b2 = 400 ≥ 394, so min_b = 20
(20, 34)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 202)
max_c = Floor(√2023 - 841 - 400)
max_c = Floor(√782)
max_c = Floor(27.964262908219)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 202)/2 = 391
When min_c = 20, then it is c2 = 400 ≥ 391, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 202 - 202
max_d = √2023 - 841 - 400 - 400
max_d = √382
max_d = 19.544820285692
Since max_d = 19.544820285692 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 202 - 212
max_d = √2023 - 841 - 400 - 441
max_d = √341
max_d = 18.466185312619
Since max_d = 18.466185312619 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 202 - 222
max_d = √2023 - 841 - 400 - 484
max_d = √298
max_d = 17.262676501632
Since max_d = 17.262676501632 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 202 - 232
max_d = √2023 - 841 - 400 - 529
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 202 - 242
max_d = √2023 - 841 - 400 - 576
max_d = √206
max_d = 14.352700094407
Since max_d = 14.352700094407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 202 - 252
max_d = √2023 - 841 - 400 - 625
max_d = √157
max_d = 12.529964086142
Since max_d = 12.529964086142 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 202 - 262
max_d = √2023 - 841 - 400 - 676
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 202 - 272
max_d = √2023 - 841 - 400 - 729
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 212)
max_c = Floor(√2023 - 841 - 441)
max_c = Floor(√741)
max_c = Floor(27.221315177632)
max_c = 27
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 212)/2 = 370.5
When min_c = 20, then it is c2 = 400 ≥ 370.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 212 - 202
max_d = √2023 - 841 - 441 - 400
max_d = √341
max_d = 18.466185312619
Since max_d = 18.466185312619 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 212 - 212
max_d = √2023 - 841 - 441 - 441
max_d = √300
max_d = 17.320508075689
Since max_d = 17.320508075689 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 212 - 222
max_d = √2023 - 841 - 441 - 484
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 212 - 232
max_d = √2023 - 841 - 441 - 529
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 212 - 242
max_d = √2023 - 841 - 441 - 576
max_d = √165
max_d = 12.845232578665
Since max_d = 12.845232578665 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 212 - 252
max_d = √2023 - 841 - 441 - 625
max_d = √116
max_d = 10.770329614269
Since max_d = 10.770329614269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 212 - 262
max_d = √2023 - 841 - 441 - 676
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 212 - 272
max_d = √2023 - 841 - 441 - 729
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 222)
max_c = Floor(√2023 - 841 - 484)
max_c = Floor(√698)
max_c = Floor(26.419689627246)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 222)/2 = 349
When min_c = 19, then it is c2 = 361 ≥ 349, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 222 - 192
max_d = √2023 - 841 - 484 - 361
max_d = √337
max_d = 18.357559750686
Since max_d = 18.357559750686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 222 - 202
max_d = √2023 - 841 - 484 - 400
max_d = √298
max_d = 17.262676501632
Since max_d = 17.262676501632 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 222 - 212
max_d = √2023 - 841 - 484 - 441
max_d = √257
max_d = 16.031219541881
Since max_d = 16.031219541881 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 222 - 222
max_d = √2023 - 841 - 484 - 484
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 222 - 232
max_d = √2023 - 841 - 484 - 529
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (29, 22, 23, 13) is an integer solution proven below
292 + 222 + 232 + 132 → 841 + 484 + 529 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 222 - 242
max_d = √2023 - 841 - 484 - 576
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 222 - 252
max_d = √2023 - 841 - 484 - 625
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 222 - 262
max_d = √2023 - 841 - 484 - 676
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 232)
max_c = Floor(√2023 - 841 - 529)
max_c = Floor(√653)
max_c = Floor(25.553864678361)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 232)/2 = 326.5
When min_c = 19, then it is c2 = 361 ≥ 326.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 232 - 192
max_d = √2023 - 841 - 529 - 361
max_d = √292
max_d = 17.088007490635
Since max_d = 17.088007490635 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 232 - 202
max_d = √2023 - 841 - 529 - 400
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 232 - 212
max_d = √2023 - 841 - 529 - 441
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 232 - 222
max_d = √2023 - 841 - 529 - 484
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (29, 23, 22, 13) is an integer solution proven below
292 + 232 + 222 + 132 → 841 + 529 + 484 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 232 - 232
max_d = √2023 - 841 - 529 - 529
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 232 - 242
max_d = √2023 - 841 - 529 - 576
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 232 - 252
max_d = √2023 - 841 - 529 - 625
max_d = √28
max_d = 5.2915026221292
Since max_d = 5.2915026221292 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 242)
max_c = Floor(√2023 - 841 - 576)
max_c = Floor(√606)
max_c = Floor(24.617067250182)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 242)/2 = 303
When min_c = 18, then it is c2 = 324 ≥ 303, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 242 - 182
max_d = √2023 - 841 - 576 - 324
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 242 - 192
max_d = √2023 - 841 - 576 - 361
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 242 - 202
max_d = √2023 - 841 - 576 - 400
max_d = √206
max_d = 14.352700094407
Since max_d = 14.352700094407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 242 - 212
max_d = √2023 - 841 - 576 - 441
max_d = √165
max_d = 12.845232578665
Since max_d = 12.845232578665 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 242 - 222
max_d = √2023 - 841 - 576 - 484
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 242 - 232
max_d = √2023 - 841 - 576 - 529
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 242 - 242
max_d = √2023 - 841 - 576 - 576
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 252)
max_c = Floor(√2023 - 841 - 625)
max_c = Floor(√557)
max_c = Floor(23.600847442412)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 252)/2 = 278.5
When min_c = 17, then it is c2 = 289 ≥ 278.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 252 - 172
max_d = √2023 - 841 - 625 - 289
max_d = √268
max_d = 16.370705543745
Since max_d = 16.370705543745 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 252 - 182
max_d = √2023 - 841 - 625 - 324
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 252 - 192
max_d = √2023 - 841 - 625 - 361
max_d = √196
max_d = 14
Since max_d = 14, then (a, b, c, d) = (29, 25, 19, 14) is an integer solution proven below
292 + 252 + 192 + 142 → 841 + 625 + 361 + 196 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 252 - 202
max_d = √2023 - 841 - 625 - 400
max_d = √157
max_d = 12.529964086142
Since max_d = 12.529964086142 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 252 - 212
max_d = √2023 - 841 - 625 - 441
max_d = √116
max_d = 10.770329614269
Since max_d = 10.770329614269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 252 - 222
max_d = √2023 - 841 - 625 - 484
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 252 - 232
max_d = √2023 - 841 - 625 - 529
max_d = √28
max_d = 5.2915026221292
Since max_d = 5.2915026221292 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 262)
max_c = Floor(√2023 - 841 - 676)
max_c = Floor(√506)
max_c = Floor(22.494443758404)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 262)/2 = 253
When min_c = 16, then it is c2 = 256 ≥ 253, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 262 - 162
max_d = √2023 - 841 - 676 - 256
max_d = √250
max_d = 15.811388300842
Since max_d = 15.811388300842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 262 - 172
max_d = √2023 - 841 - 676 - 289
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 262 - 182
max_d = √2023 - 841 - 676 - 324
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 262 - 192
max_d = √2023 - 841 - 676 - 361
max_d = √145
max_d = 12.041594578792
Since max_d = 12.041594578792 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 262 - 202
max_d = √2023 - 841 - 676 - 400
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 262 - 212
max_d = √2023 - 841 - 676 - 441
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 262 - 222
max_d = √2023 - 841 - 676 - 484
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 272)
max_c = Floor(√2023 - 841 - 729)
max_c = Floor(√453)
max_c = Floor(21.283796653793)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 272)/2 = 226.5
When min_c = 16, then it is c2 = 256 ≥ 226.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 272 - 162
max_d = √2023 - 841 - 729 - 256
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 272 - 172
max_d = √2023 - 841 - 729 - 289
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 272 - 182
max_d = √2023 - 841 - 729 - 324
max_d = √129
max_d = 11.357816691601
Since max_d = 11.357816691601 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 272 - 192
max_d = √2023 - 841 - 729 - 361
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 272 - 202
max_d = √2023 - 841 - 729 - 400
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 272 - 212
max_d = √2023 - 841 - 729 - 441
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 282)
max_c = Floor(√2023 - 841 - 784)
max_c = Floor(√398)
max_c = Floor(19.94993734326)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 282)/2 = 199
When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 282 - 152
max_d = √2023 - 841 - 784 - 225
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 282 - 162
max_d = √2023 - 841 - 784 - 256
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 282 - 172
max_d = √2023 - 841 - 784 - 289
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 282 - 182
max_d = √2023 - 841 - 784 - 324
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 282 - 192
max_d = √2023 - 841 - 784 - 361
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 292)
max_c = Floor(√2023 - 841 - 841)
max_c = Floor(√341)
max_c = Floor(18.466185312619)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 292)/2 = 170.5
When min_c = 14, then it is c2 = 196 ≥ 170.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 292 - 142
max_d = √2023 - 841 - 841 - 196
max_d = √145
max_d = 12.041594578792
Since max_d = 12.041594578792 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 292 - 152
max_d = √2023 - 841 - 841 - 225
max_d = √116
max_d = 10.770329614269
Since max_d = 10.770329614269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 292 - 162
max_d = √2023 - 841 - 841 - 256
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 292 - 172
max_d = √2023 - 841 - 841 - 289
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 292 - 182
max_d = √2023 - 841 - 841 - 324
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 302)
max_c = Floor(√2023 - 841 - 900)
max_c = Floor(√282)
max_c = Floor(16.792855623747)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 302)/2 = 141
When min_c = 12, then it is c2 = 144 ≥ 141, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 302 - 122
max_d = √2023 - 841 - 900 - 144
max_d = √138
max_d = 11.747340124471
Since max_d = 11.747340124471 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 302 - 132
max_d = √2023 - 841 - 900 - 169
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 302 - 142
max_d = √2023 - 841 - 900 - 196
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 302 - 152
max_d = √2023 - 841 - 900 - 225
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 302 - 162
max_d = √2023 - 841 - 900 - 256
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 312)
max_c = Floor(√2023 - 841 - 961)
max_c = Floor(√221)
max_c = Floor(14.866068747319)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 312)/2 = 110.5
When min_c = 11, then it is c2 = 121 ≥ 110.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 312 - 112
max_d = √2023 - 841 - 961 - 121
max_d = √100
max_d = 10
Since max_d = 10, then (a, b, c, d) = (29, 31, 11, 10) is an integer solution proven below
292 + 312 + 112 + 102 → 841 + 961 + 121 + 100 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 312 - 122
max_d = √2023 - 841 - 961 - 144
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 312 - 132
max_d = √2023 - 841 - 961 - 169
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 312 - 142
max_d = √2023 - 841 - 961 - 196
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (29, 31, 14, 5) is an integer solution proven below
292 + 312 + 142 + 52 → 841 + 961 + 196 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 322)
max_c = Floor(√2023 - 841 - 1024)
max_c = Floor(√158)
max_c = Floor(12.569805089977)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 322)/2 = 79
When min_c = 9, then it is c2 = 81 ≥ 79, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 322 - 92
max_d = √2023 - 841 - 1024 - 81
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 322 - 102
max_d = √2023 - 841 - 1024 - 100
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 322 - 112
max_d = √2023 - 841 - 1024 - 121
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 322 - 122
max_d = √2023 - 841 - 1024 - 144
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 332)
max_c = Floor(√2023 - 841 - 1089)
max_c = Floor(√93)
max_c = Floor(9.643650760993)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 332)/2 = 46.5
When min_c = 7, then it is c2 = 49 ≥ 46.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 332 - 72
max_d = √2023 - 841 - 1089 - 49
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 332 - 82
max_d = √2023 - 841 - 1089 - 64
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 332 - 92
max_d = √2023 - 841 - 1089 - 81
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 292 - 342)
max_c = Floor(√2023 - 841 - 1156)
max_c = Floor(√26)
max_c = Floor(5.0990195135928)
max_c = 5
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 292 - 342)/2 = 13
When min_c = 4, then it is c2 = 16 ≥ 13, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 342 - 42
max_d = √2023 - 841 - 1156 - 16
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 292 - 342 - 52
max_d = √2023 - 841 - 1156 - 25
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (29, 34, 5, 1) is an integer solution proven below
292 + 342 + 52 + 12 → 841 + 1156 + 25 + 1 = 2023
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 302)
max_b = Floor(√2023 - 900)
max_b = Floor(√1123)
max_b = Floor(33.511192160232)
max_b = 33
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 302)/3 = 374.33333333333
When min_b = 20, then it is b2 = 400 ≥ 374.33333333333, so min_b = 20
(20, 33)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 202)
max_c = Floor(√2023 - 900 - 400)
max_c = Floor(√723)
max_c = Floor(26.888659319498)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 202)/2 = 361.5
When min_c = 20, then it is c2 = 400 ≥ 361.5, so min_c = 20
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 202 - 202
max_d = √2023 - 900 - 400 - 400
max_d = √323
max_d = 17.972200755611
Since max_d = 17.972200755611 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 202 - 212
max_d = √2023 - 900 - 400 - 441
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 202 - 222
max_d = √2023 - 900 - 400 - 484
max_d = √239
max_d = 15.45962483374
Since max_d = 15.45962483374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 202 - 232
max_d = √2023 - 900 - 400 - 529
max_d = √194
max_d = 13.928388277184
Since max_d = 13.928388277184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 202 - 242
max_d = √2023 - 900 - 400 - 576
max_d = √147
max_d = 12.124355652982
Since max_d = 12.124355652982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 202 - 252
max_d = √2023 - 900 - 400 - 625
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 202 - 262
max_d = √2023 - 900 - 400 - 676
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 212)
max_c = Floor(√2023 - 900 - 441)
max_c = Floor(√682)
max_c = Floor(26.115129714401)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 212)/2 = 341
When min_c = 19, then it is c2 = 361 ≥ 341, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 212 - 192
max_d = √2023 - 900 - 441 - 361
max_d = √321
max_d = 17.916472867169
Since max_d = 17.916472867169 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 212 - 202
max_d = √2023 - 900 - 441 - 400
max_d = √282
max_d = 16.792855623747
Since max_d = 16.792855623747 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 212 - 212
max_d = √2023 - 900 - 441 - 441
max_d = √241
max_d = 15.52417469626
Since max_d = 15.52417469626 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 212 - 222
max_d = √2023 - 900 - 441 - 484
max_d = √198
max_d = 14.07124727947
Since max_d = 14.07124727947 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 212 - 232
max_d = √2023 - 900 - 441 - 529
max_d = √153
max_d = 12.369316876853
Since max_d = 12.369316876853 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 212 - 242
max_d = √2023 - 900 - 441 - 576
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 212 - 252
max_d = √2023 - 900 - 441 - 625
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 212 - 262
max_d = √2023 - 900 - 441 - 676
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 222)
max_c = Floor(√2023 - 900 - 484)
max_c = Floor(√639)
max_c = Floor(25.278449319529)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 222)/2 = 319.5
When min_c = 18, then it is c2 = 324 ≥ 319.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 222 - 182
max_d = √2023 - 900 - 484 - 324
max_d = √315
max_d = 17.748239349299
Since max_d = 17.748239349299 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 222 - 192
max_d = √2023 - 900 - 484 - 361
max_d = √278
max_d = 16.673332000533
Since max_d = 16.673332000533 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 222 - 202
max_d = √2023 - 900 - 484 - 400
max_d = √239
max_d = 15.45962483374
Since max_d = 15.45962483374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 222 - 212
max_d = √2023 - 900 - 484 - 441
max_d = √198
max_d = 14.07124727947
Since max_d = 14.07124727947 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 222 - 222
max_d = √2023 - 900 - 484 - 484
max_d = √155
max_d = 12.449899597989
Since max_d = 12.449899597989 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 222 - 232
max_d = √2023 - 900 - 484 - 529
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 222 - 242
max_d = √2023 - 900 - 484 - 576
max_d = √63
max_d = 7.9372539331938
Since max_d = 7.9372539331938 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 222 - 252
max_d = √2023 - 900 - 484 - 625
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 232)
max_c = Floor(√2023 - 900 - 529)
max_c = Floor(√594)
max_c = Floor(24.372115213908)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 232)/2 = 297
When min_c = 18, then it is c2 = 324 ≥ 297, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 232 - 182
max_d = √2023 - 900 - 529 - 324
max_d = √270
max_d = 16.431676725155
Since max_d = 16.431676725155 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 232 - 192
max_d = √2023 - 900 - 529 - 361
max_d = √233
max_d = 15.264337522474
Since max_d = 15.264337522474 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 232 - 202
max_d = √2023 - 900 - 529 - 400
max_d = √194
max_d = 13.928388277184
Since max_d = 13.928388277184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 232 - 212
max_d = √2023 - 900 - 529 - 441
max_d = √153
max_d = 12.369316876853
Since max_d = 12.369316876853 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 232 - 222
max_d = √2023 - 900 - 529 - 484
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 232 - 232
max_d = √2023 - 900 - 529 - 529
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 232 - 242
max_d = √2023 - 900 - 529 - 576
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 242)
max_c = Floor(√2023 - 900 - 576)
max_c = Floor(√547)
max_c = Floor(23.388031127053)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 242)/2 = 273.5
When min_c = 17, then it is c2 = 289 ≥ 273.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 242 - 172
max_d = √2023 - 900 - 576 - 289
max_d = √258
max_d = 16.062378404209
Since max_d = 16.062378404209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 242 - 182
max_d = √2023 - 900 - 576 - 324
max_d = √223
max_d = 14.933184523068
Since max_d = 14.933184523068 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 242 - 192
max_d = √2023 - 900 - 576 - 361
max_d = √186
max_d = 13.638181696986
Since max_d = 13.638181696986 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 242 - 202
max_d = √2023 - 900 - 576 - 400
max_d = √147
max_d = 12.124355652982
Since max_d = 12.124355652982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 242 - 212
max_d = √2023 - 900 - 576 - 441
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 242 - 222
max_d = √2023 - 900 - 576 - 484
max_d = √63
max_d = 7.9372539331938
Since max_d = 7.9372539331938 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 242 - 232
max_d = √2023 - 900 - 576 - 529
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 252)
max_c = Floor(√2023 - 900 - 625)
max_c = Floor(√498)
max_c = Floor(22.315913604421)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 252)/2 = 249
When min_c = 16, then it is c2 = 256 ≥ 249, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 252 - 162
max_d = √2023 - 900 - 625 - 256
max_d = √242
max_d = 15.556349186104
Since max_d = 15.556349186104 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 252 - 172
max_d = √2023 - 900 - 625 - 289
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 252 - 182
max_d = √2023 - 900 - 625 - 324
max_d = √174
max_d = 13.190905958273
Since max_d = 13.190905958273 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 252 - 192
max_d = √2023 - 900 - 625 - 361
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 252 - 202
max_d = √2023 - 900 - 625 - 400
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 252 - 212
max_d = √2023 - 900 - 625 - 441
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 252 - 222
max_d = √2023 - 900 - 625 - 484
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 262)
max_c = Floor(√2023 - 900 - 676)
max_c = Floor(√447)
max_c = Floor(21.142374511866)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 262)/2 = 223.5
When min_c = 15, then it is c2 = 225 ≥ 223.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 262 - 152
max_d = √2023 - 900 - 676 - 225
max_d = √222
max_d = 14.899664425751
Since max_d = 14.899664425751 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 262 - 162
max_d = √2023 - 900 - 676 - 256
max_d = √191
max_d = 13.820274961085
Since max_d = 13.820274961085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 262 - 172
max_d = √2023 - 900 - 676 - 289
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 262 - 182
max_d = √2023 - 900 - 676 - 324
max_d = √123
max_d = 11.090536506409
Since max_d = 11.090536506409 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 262 - 192
max_d = √2023 - 900 - 676 - 361
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 262 - 202
max_d = √2023 - 900 - 676 - 400
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 262 - 212
max_d = √2023 - 900 - 676 - 441
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 272)
max_c = Floor(√2023 - 900 - 729)
max_c = Floor(√394)
max_c = Floor(19.849433241279)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 272)/2 = 197
When min_c = 15, then it is c2 = 225 ≥ 197, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 272 - 152
max_d = √2023 - 900 - 729 - 225
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (30, 27, 15, 13) is an integer solution proven below
302 + 272 + 152 + 132 → 900 + 729 + 225 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 272 - 162
max_d = √2023 - 900 - 729 - 256
max_d = √138
max_d = 11.747340124471
Since max_d = 11.747340124471 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 272 - 172
max_d = √2023 - 900 - 729 - 289
max_d = √105
max_d = 10.24695076596
Since max_d = 10.24695076596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 272 - 182
max_d = √2023 - 900 - 729 - 324
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 272 - 192
max_d = √2023 - 900 - 729 - 361
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 282)
max_c = Floor(√2023 - 900 - 784)
max_c = Floor(√339)
max_c = Floor(18.411952639522)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 282)/2 = 169.5
When min_c = 14, then it is c2 = 196 ≥ 169.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 282 - 142
max_d = √2023 - 900 - 784 - 196
max_d = √143
max_d = 11.958260743101
Since max_d = 11.958260743101 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 282 - 152
max_d = √2023 - 900 - 784 - 225
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 282 - 162
max_d = √2023 - 900 - 784 - 256
max_d = √83
max_d = 9.1104335791443
Since max_d = 9.1104335791443 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 282 - 172
max_d = √2023 - 900 - 784 - 289
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 282 - 182
max_d = √2023 - 900 - 784 - 324
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 292)
max_c = Floor(√2023 - 900 - 841)
max_c = Floor(√282)
max_c = Floor(16.792855623747)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 292)/2 = 141
When min_c = 12, then it is c2 = 144 ≥ 141, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 292 - 122
max_d = √2023 - 900 - 841 - 144
max_d = √138
max_d = 11.747340124471
Since max_d = 11.747340124471 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 292 - 132
max_d = √2023 - 900 - 841 - 169
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 292 - 142
max_d = √2023 - 900 - 841 - 196
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 292 - 152
max_d = √2023 - 900 - 841 - 225
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 292 - 162
max_d = √2023 - 900 - 841 - 256
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 302)
max_c = Floor(√2023 - 900 - 900)
max_c = Floor(√223)
max_c = Floor(14.933184523068)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 302)/2 = 111.5
When min_c = 11, then it is c2 = 121 ≥ 111.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 302 - 112
max_d = √2023 - 900 - 900 - 121
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 302 - 122
max_d = √2023 - 900 - 900 - 144
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 302 - 132
max_d = √2023 - 900 - 900 - 169
max_d = √54
max_d = 7.3484692283495
Since max_d = 7.3484692283495 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 302 - 142
max_d = √2023 - 900 - 900 - 196
max_d = √27
max_d = 5.1961524227066
Since max_d = 5.1961524227066 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 312)
max_c = Floor(√2023 - 900 - 961)
max_c = Floor(√162)
max_c = Floor(12.727922061358)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 312)/2 = 81
When min_c = 9, then it is c2 = 81 ≥ 81, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 312 - 92
max_d = √2023 - 900 - 961 - 81
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (30, 31, 9, 9) is an integer solution proven below
302 + 312 + 92 + 92 → 900 + 961 + 81 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 312 - 102
max_d = √2023 - 900 - 961 - 100
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 312 - 112
max_d = √2023 - 900 - 961 - 121
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 312 - 122
max_d = √2023 - 900 - 961 - 144
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 322)
max_c = Floor(√2023 - 900 - 1024)
max_c = Floor(√99)
max_c = Floor(9.9498743710662)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 322)/2 = 49.5
When min_c = 8, then it is c2 = 64 ≥ 49.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 322 - 82
max_d = √2023 - 900 - 1024 - 64
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 322 - 92
max_d = √2023 - 900 - 1024 - 81
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 302 - 332)
max_c = Floor(√2023 - 900 - 1089)
max_c = Floor(√34)
max_c = Floor(5.8309518948453)
max_c = 5
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 302 - 332)/2 = 17
When min_c = 5, then it is c2 = 25 ≥ 17, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 302 - 332 - 52
max_d = √2023 - 900 - 1089 - 25
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (30, 33, 5, 3) is an integer solution proven below
302 + 332 + 52 + 32 → 900 + 1089 + 25 + 9 = 2023
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 312)
max_b = Floor(√2023 - 961)
max_b = Floor(√1062)
max_b = Floor(32.588341473601)
max_b = 32
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 312)/3 = 354
When min_b = 19, then it is b2 = 361 ≥ 354, so min_b = 19
(19, 32)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 192)
max_c = Floor(√2023 - 961 - 361)
max_c = Floor(√701)
max_c = Floor(26.476404589747)
max_c = 26
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 192)/2 = 350.5
When min_c = 19, then it is c2 = 361 ≥ 350.5, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 192 - 192
max_d = √2023 - 961 - 361 - 361
max_d = √340
max_d = 18.439088914586
Since max_d = 18.439088914586 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 192 - 202
max_d = √2023 - 961 - 361 - 400
max_d = √301
max_d = 17.349351572897
Since max_d = 17.349351572897 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 192 - 212
max_d = √2023 - 961 - 361 - 441
max_d = √260
max_d = 16.124515496597
Since max_d = 16.124515496597 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 192 - 222
max_d = √2023 - 961 - 361 - 484
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 192 - 232
max_d = √2023 - 961 - 361 - 529
max_d = √172
max_d = 13.114877048604
Since max_d = 13.114877048604 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 192 - 242
max_d = √2023 - 961 - 361 - 576
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 192 - 252
max_d = √2023 - 961 - 361 - 625
max_d = √76
max_d = 8.7177978870813
Since max_d = 8.7177978870813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 192 - 262
max_d = √2023 - 961 - 361 - 676
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (31, 19, 26, 5) is an integer solution proven below
312 + 192 + 262 + 52 → 961 + 361 + 676 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 202)
max_c = Floor(√2023 - 961 - 400)
max_c = Floor(√662)
max_c = Floor(25.729360660537)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 202)/2 = 331
When min_c = 19, then it is c2 = 361 ≥ 331, so min_c = 19
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 202 - 192
max_d = √2023 - 961 - 400 - 361
max_d = √301
max_d = 17.349351572897
Since max_d = 17.349351572897 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 202 - 202
max_d = √2023 - 961 - 400 - 400
max_d = √262
max_d = 16.186414056239
Since max_d = 16.186414056239 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 202 - 212
max_d = √2023 - 961 - 400 - 441
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 202 - 222
max_d = √2023 - 961 - 400 - 484
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 202 - 232
max_d = √2023 - 961 - 400 - 529
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 202 - 242
max_d = √2023 - 961 - 400 - 576
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 202 - 252
max_d = √2023 - 961 - 400 - 625
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 212)
max_c = Floor(√2023 - 961 - 441)
max_c = Floor(√621)
max_c = Floor(24.919871588754)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 212)/2 = 310.5
When min_c = 18, then it is c2 = 324 ≥ 310.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 212 - 182
max_d = √2023 - 961 - 441 - 324
max_d = √297
max_d = 17.233687939614
Since max_d = 17.233687939614 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 212 - 192
max_d = √2023 - 961 - 441 - 361
max_d = √260
max_d = 16.124515496597
Since max_d = 16.124515496597 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 212 - 202
max_d = √2023 - 961 - 441 - 400
max_d = √221
max_d = 14.866068747319
Since max_d = 14.866068747319 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 212 - 212
max_d = √2023 - 961 - 441 - 441
max_d = √180
max_d = 13.416407864999
Since max_d = 13.416407864999 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 212 - 222
max_d = √2023 - 961 - 441 - 484
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 212 - 232
max_d = √2023 - 961 - 441 - 529
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 212 - 242
max_d = √2023 - 961 - 441 - 576
max_d = √45
max_d = 6.7082039324994
Since max_d = 6.7082039324994 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 222)
max_c = Floor(√2023 - 961 - 484)
max_c = Floor(√578)
max_c = Floor(24.041630560343)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 222)/2 = 289
When min_c = 17, then it is c2 = 289 ≥ 289, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 222 - 172
max_d = √2023 - 961 - 484 - 289
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (31, 22, 17, 17) is an integer solution proven below
312 + 222 + 172 + 172 → 961 + 484 + 289 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 222 - 182
max_d = √2023 - 961 - 484 - 324
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 222 - 192
max_d = √2023 - 961 - 484 - 361
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 222 - 202
max_d = √2023 - 961 - 484 - 400
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 222 - 212
max_d = √2023 - 961 - 484 - 441
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 222 - 222
max_d = √2023 - 961 - 484 - 484
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 222 - 232
max_d = √2023 - 961 - 484 - 529
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (31, 22, 23, 7) is an integer solution proven below
312 + 222 + 232 + 72 → 961 + 484 + 529 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 222 - 242
max_d = √2023 - 961 - 484 - 576
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 232)
max_c = Floor(√2023 - 961 - 529)
max_c = Floor(√533)
max_c = Floor(23.08679276123)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 232)/2 = 266.5
When min_c = 17, then it is c2 = 289 ≥ 266.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 232 - 172
max_d = √2023 - 961 - 529 - 289
max_d = √244
max_d = 15.620499351813
Since max_d = 15.620499351813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 232 - 182
max_d = √2023 - 961 - 529 - 324
max_d = √209
max_d = 14.456832294801
Since max_d = 14.456832294801 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 232 - 192
max_d = √2023 - 961 - 529 - 361
max_d = √172
max_d = 13.114877048604
Since max_d = 13.114877048604 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 232 - 202
max_d = √2023 - 961 - 529 - 400
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 232 - 212
max_d = √2023 - 961 - 529 - 441
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 232 - 222
max_d = √2023 - 961 - 529 - 484
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (31, 23, 22, 7) is an integer solution proven below
312 + 232 + 222 + 72 → 961 + 529 + 484 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 232 - 232
max_d = √2023 - 961 - 529 - 529
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (31, 23, 23, 2) is an integer solution proven below
312 + 232 + 232 + 22 → 961 + 529 + 529 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 242)
max_c = Floor(√2023 - 961 - 576)
max_c = Floor(√486)
max_c = Floor(22.045407685049)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 242)/2 = 243
When min_c = 16, then it is c2 = 256 ≥ 243, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 242 - 162
max_d = √2023 - 961 - 576 - 256
max_d = √230
max_d = 15.165750888103
Since max_d = 15.165750888103 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 242 - 172
max_d = √2023 - 961 - 576 - 289
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 242 - 182
max_d = √2023 - 961 - 576 - 324
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 242 - 192
max_d = √2023 - 961 - 576 - 361
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 242 - 202
max_d = √2023 - 961 - 576 - 400
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 242 - 212
max_d = √2023 - 961 - 576 - 441
max_d = √45
max_d = 6.7082039324994
Since max_d = 6.7082039324994 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 242 - 222
max_d = √2023 - 961 - 576 - 484
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 252)
max_c = Floor(√2023 - 961 - 625)
max_c = Floor(√437)
max_c = Floor(20.904544960367)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 252)/2 = 218.5
When min_c = 15, then it is c2 = 225 ≥ 218.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 252 - 152
max_d = √2023 - 961 - 625 - 225
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 252 - 162
max_d = √2023 - 961 - 625 - 256
max_d = √181
max_d = 13.453624047074
Since max_d = 13.453624047074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 252 - 172
max_d = √2023 - 961 - 625 - 289
max_d = √148
max_d = 12.165525060596
Since max_d = 12.165525060596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 252 - 182
max_d = √2023 - 961 - 625 - 324
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 252 - 192
max_d = √2023 - 961 - 625 - 361
max_d = √76
max_d = 8.7177978870813
Since max_d = 8.7177978870813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 252 - 202
max_d = √2023 - 961 - 625 - 400
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 262)
max_c = Floor(√2023 - 961 - 676)
max_c = Floor(√386)
max_c = Floor(19.646882704388)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 262)/2 = 193
When min_c = 14, then it is c2 = 196 ≥ 193, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 262 - 142
max_d = √2023 - 961 - 676 - 196
max_d = √190
max_d = 13.78404875209
Since max_d = 13.78404875209 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 262 - 152
max_d = √2023 - 961 - 676 - 225
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 262 - 162
max_d = √2023 - 961 - 676 - 256
max_d = √130
max_d = 11.401754250991
Since max_d = 11.401754250991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 262 - 172
max_d = √2023 - 961 - 676 - 289
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 262 - 182
max_d = √2023 - 961 - 676 - 324
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 262 - 192
max_d = √2023 - 961 - 676 - 361
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (31, 26, 19, 5) is an integer solution proven below
312 + 262 + 192 + 52 → 961 + 676 + 361 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 272)
max_c = Floor(√2023 - 961 - 729)
max_c = Floor(√333)
max_c = Floor(18.248287590895)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 272)/2 = 166.5
When min_c = 13, then it is c2 = 169 ≥ 166.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 272 - 132
max_d = √2023 - 961 - 729 - 169
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 272 - 142
max_d = √2023 - 961 - 729 - 196
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 272 - 152
max_d = √2023 - 961 - 729 - 225
max_d = √108
max_d = 10.392304845413
Since max_d = 10.392304845413 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 272 - 162
max_d = √2023 - 961 - 729 - 256
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 272 - 172
max_d = √2023 - 961 - 729 - 289
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 272 - 182
max_d = √2023 - 961 - 729 - 324
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (31, 27, 18, 3) is an integer solution proven below
312 + 272 + 182 + 32 → 961 + 729 + 324 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 282)
max_c = Floor(√2023 - 961 - 784)
max_c = Floor(√278)
max_c = Floor(16.673332000533)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 282)/2 = 139
When min_c = 12, then it is c2 = 144 ≥ 139, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 282 - 122
max_d = √2023 - 961 - 784 - 144
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 282 - 132
max_d = √2023 - 961 - 784 - 169
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 282 - 142
max_d = √2023 - 961 - 784 - 196
max_d = √82
max_d = 9.0553851381374
Since max_d = 9.0553851381374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 282 - 152
max_d = √2023 - 961 - 784 - 225
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 282 - 162
max_d = √2023 - 961 - 784 - 256
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 292)
max_c = Floor(√2023 - 961 - 841)
max_c = Floor(√221)
max_c = Floor(14.866068747319)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 292)/2 = 110.5
When min_c = 11, then it is c2 = 121 ≥ 110.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 292 - 112
max_d = √2023 - 961 - 841 - 121
max_d = √100
max_d = 10
Since max_d = 10, then (a, b, c, d) = (31, 29, 11, 10) is an integer solution proven below
312 + 292 + 112 + 102 → 961 + 841 + 121 + 100 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 292 - 122
max_d = √2023 - 961 - 841 - 144
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 292 - 132
max_d = √2023 - 961 - 841 - 169
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 292 - 142
max_d = √2023 - 961 - 841 - 196
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (31, 29, 14, 5) is an integer solution proven below
312 + 292 + 142 + 52 → 961 + 841 + 196 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 302)
max_c = Floor(√2023 - 961 - 900)
max_c = Floor(√162)
max_c = Floor(12.727922061358)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 302)/2 = 81
When min_c = 9, then it is c2 = 81 ≥ 81, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 302 - 92
max_d = √2023 - 961 - 900 - 81
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (31, 30, 9, 9) is an integer solution proven below
312 + 302 + 92 + 92 → 961 + 900 + 81 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 302 - 102
max_d = √2023 - 961 - 900 - 100
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 302 - 112
max_d = √2023 - 961 - 900 - 121
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 302 - 122
max_d = √2023 - 961 - 900 - 144
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 312)
max_c = Floor(√2023 - 961 - 961)
max_c = Floor(√101)
max_c = Floor(10.049875621121)
max_c = 10
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 312)/2 = 50.5
When min_c = 8, then it is c2 = 64 ≥ 50.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 312 - 82
max_d = √2023 - 961 - 961 - 64
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 312 - 92
max_d = √2023 - 961 - 961 - 81
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 312 - 102
max_d = √2023 - 961 - 961 - 100
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (31, 31, 10, 1) is an integer solution proven below
312 + 312 + 102 + 12 → 961 + 961 + 100 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 312 - 322)
max_c = Floor(√2023 - 961 - 1024)
max_c = Floor(√38)
max_c = Floor(6.164414002969)
max_c = 6
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 312 - 322)/2 = 19
When min_c = 5, then it is c2 = 25 ≥ 19, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 322 - 52
max_d = √2023 - 961 - 1024 - 25
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 312 - 322 - 62
max_d = √2023 - 961 - 1024 - 36
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 322)
max_b = Floor(√2023 - 1024)
max_b = Floor(√999)
max_b = Floor(31.606961258558)
max_b = 31
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 322)/3 = 333
When min_b = 19, then it is b2 = 361 ≥ 333, so min_b = 19
(19, 31)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 322 - 192)
max_c = Floor(√2023 - 1024 - 361)
max_c = Floor(√638)
max_c = Floor(25.25866188063)
max_c = 25
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 322 - 192)/2 = 319
When min_c = 18, then it is c2 = 324 ≥ 319, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 192 - 182
max_d = √2023 - 1024 - 361 - 324
max_d = √314
max_d = 17.720045146669
Since max_d = 17.720045146669 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 192 - 192
max_d = √2023 - 1024 - 361 - 361
max_d = √277
max_d = 16.643316977093
Since max_d = 16.643316977093 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 192 - 202
max_d = √2023 - 1024 - 361 - 400
max_d = √238
max_d = 15.427248620542
Since max_d = 15.427248620542 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 192 - 212
max_d = √2023 - 1024 - 361 - 441
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 192 - 222
max_d = √2023 - 1024 - 361 - 484
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 192 - 232
max_d = √2023 - 1024 - 361 - 529
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 192 - 242
max_d = √2023 - 1024 - 361 - 576
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 192 - 252
max_d = √2023 - 1024 - 361 - 625
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 322 - 202)
max_c = Floor(√2023 - 1024 - 400)
max_c = Floor(√599)
max_c = Floor(24.474476501041)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 322 - 202)/2 = 299.5
When min_c = 18, then it is c2 = 324 ≥ 299.5, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 202 - 182
max_d = √2023 - 1024 - 400 - 324
max_d = √275
max_d = 16.583123951777
Since max_d = 16.583123951777 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 202 - 192
max_d = √2023 - 1024 - 400 - 361
max_d = √238
max_d = 15.427248620542
Since max_d = 15.427248620542 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 202 - 202
max_d = √2023 - 1024 - 400 - 400
max_d = √199
max_d = 14.106735979666
Since max_d = 14.106735979666 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 202 - 212
max_d = √2023 - 1024 - 400 - 441
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 202 - 222
max_d = √2023 - 1024 - 400 - 484
max_d = √115
max_d = 10.723805294764
Since max_d = 10.723805294764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 202 - 232
max_d = √2023 - 1024 - 400 - 529
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 202 - 242
max_d = √2023 - 1024 - 400 - 576
max_d = √23
max_d = 4.7958315233127
Since max_d = 4.7958315233127 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 322 - 212)
max_c = Floor(√2023 - 1024 - 441)
max_c = Floor(√558)
max_c = Floor(23.622023622035)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 322 - 212)/2 = 279
When min_c = 17, then it is c2 = 289 ≥ 279, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 212 - 172
max_d = √2023 - 1024 - 441 - 289
max_d = √269
max_d = 16.401219466857
Since max_d = 16.401219466857 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 212 - 182
max_d = √2023 - 1024 - 441 - 324
max_d = √234
max_d = 15.297058540778
Since max_d = 15.297058540778 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 212 - 192
max_d = √2023 - 1024 - 441 - 361
max_d = √197
max_d = 14.035668847618
Since max_d = 14.035668847618 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 212 - 202
max_d = √2023 - 1024 - 441 - 400
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 212 - 212
max_d = √2023 - 1024 - 441 - 441
max_d = √117
max_d = 10.816653826392
Since max_d = 10.816653826392 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 212 - 222
max_d = √2023 - 1024 - 441 - 484
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 212 - 232
max_d = √2023 - 1024 - 441 - 529
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 322 - 222)
max_c = Floor(√2023 - 1024 - 484)
max_c = Floor(√515)
max_c = Floor(22.69361143582)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 322 - 222)/2 = 257.5
When min_c = 17, then it is c2 = 289 ≥ 257.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 222 - 172
max_d = √2023 - 1024 - 484 - 289
max_d = √226
max_d = 15.033296378373
Since max_d = 15.033296378373 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 222 - 182
max_d = √2023 - 1024 - 484 - 324
max_d = √191
max_d = 13.820274961085
Since max_d = 13.820274961085 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 222 - 192
max_d = √2023 - 1024 - 484 - 361
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 222 - 202
max_d = √2023 - 1024 - 484 - 400
max_d = √115
max_d = 10.723805294764
Since max_d = 10.723805294764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 222 - 212
max_d = √2023 - 1024 - 484 - 441
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 222 - 222
max_d = √2023 - 1024 - 484 - 484
max_d = √31
max_d = 5.56776436283
Since max_d = 5.56776436283 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 322 - 232)
max_c = Floor(√2023 - 1024 - 529)
max_c = Floor(√470)
max_c = Floor(21.679483388679)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 322 - 232)/2 = 235
When min_c = 16, then it is c2 = 256 ≥ 235, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 232 - 162
max_d = √2023 - 1024 - 529 - 256
max_d = √214
max_d = 14.628738838328
Since max_d = 14.628738838328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 232 - 172
max_d = √2023 - 1024 - 529 - 289
max_d = √181
max_d = 13.453624047074
Since max_d = 13.453624047074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 232 - 182
max_d = √2023 - 1024 - 529 - 324
max_d = √146
max_d = 12.083045973595
Since max_d = 12.083045973595 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 232 - 192
max_d = √2023 - 1024 - 529 - 361
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 232 - 202
max_d = √2023 - 1024 - 529 - 400
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 232 - 212
max_d = √2023 - 1024 - 529 - 441
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 322 - 242)
max_c = Floor(√2023 - 1024 - 576)
max_c = Floor(√423)
max_c = Floor(20.566963801203)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 322 - 242)/2 = 211.5
When min_c = 15, then it is c2 = 225 ≥ 211.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 242 - 152
max_d = √2023 - 1024 - 576 - 225
max_d = √198
max_d = 14.07124727947
Since max_d = 14.07124727947 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 242 - 162
max_d = √2023 - 1024 - 576 - 256
max_d = √167
max_d = 12.92284798332
Since max_d = 12.92284798332 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 242 - 172
max_d = √2023 - 1024 - 576 - 289
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 242 - 182
max_d = √2023 - 1024 - 576 - 324
max_d = √99
max_d = 9.9498743710662
Since max_d = 9.9498743710662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 242 - 192
max_d = √2023 - 1024 - 576 - 361
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 242 - 202
max_d = √2023 - 1024 - 576 - 400
max_d = √23
max_d = 4.7958315233127
Since max_d = 4.7958315233127 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 322 - 252)
max_c = Floor(√2023 - 1024 - 625)
max_c = Floor(√374)
max_c = Floor(19.339079605814)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 322 - 252)/2 = 187
When min_c = 14, then it is c2 = 196 ≥ 187, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 252 - 142
max_d = √2023 - 1024 - 625 - 196
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 252 - 152
max_d = √2023 - 1024 - 625 - 225
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 252 - 162
max_d = √2023 - 1024 - 625 - 256
max_d = √118
max_d = 10.8627804912
Since max_d = 10.8627804912 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 252 - 172
max_d = √2023 - 1024 - 625 - 289
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 252 - 182
max_d = √2023 - 1024 - 625 - 324
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 252 - 192
max_d = √2023 - 1024 - 625 - 361
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 322 - 262)
max_c = Floor(√2023 - 1024 - 676)
max_c = Floor(√323)
max_c = Floor(17.972200755611)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 322 - 262)/2 = 161.5
When min_c = 13, then it is c2 = 169 ≥ 161.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 262 - 132
max_d = √2023 - 1024 - 676 - 169
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 262 - 142
max_d = √2023 - 1024 - 676 - 196
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 262 - 152
max_d = √2023 - 1024 - 676 - 225
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 262 - 162
max_d = √2023 - 1024 - 676 - 256
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 262 - 172
max_d = √2023 - 1024 - 676 - 289
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 322 - 272)
max_c = Floor(√2023 - 1024 - 729)
max_c = Floor(√270)
max_c = Floor(16.431676725155)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 322 - 272)/2 = 135
When min_c = 12, then it is c2 = 144 ≥ 135, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 272 - 122
max_d = √2023 - 1024 - 729 - 144
max_d = √126
max_d = 11.224972160322
Since max_d = 11.224972160322 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 272 - 132
max_d = √2023 - 1024 - 729 - 169
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 272 - 142
max_d = √2023 - 1024 - 729 - 196
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 272 - 152
max_d = √2023 - 1024 - 729 - 225
max_d = √45
max_d = 6.7082039324994
Since max_d = 6.7082039324994 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 272 - 162
max_d = √2023 - 1024 - 729 - 256
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 322 - 282)
max_c = Floor(√2023 - 1024 - 784)
max_c = Floor(√215)
max_c = Floor(14.662878298615)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 322 - 282)/2 = 107.5
When min_c = 11, then it is c2 = 121 ≥ 107.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 282 - 112
max_d = √2023 - 1024 - 784 - 121
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 282 - 122
max_d = √2023 - 1024 - 784 - 144
max_d = √71
max_d = 8.4261497731764
Since max_d = 8.4261497731764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 282 - 132
max_d = √2023 - 1024 - 784 - 169
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 282 - 142
max_d = √2023 - 1024 - 784 - 196
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 322 - 292)
max_c = Floor(√2023 - 1024 - 841)
max_c = Floor(√158)
max_c = Floor(12.569805089977)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 322 - 292)/2 = 79
When min_c = 9, then it is c2 = 81 ≥ 79, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 292 - 92
max_d = √2023 - 1024 - 841 - 81
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 292 - 102
max_d = √2023 - 1024 - 841 - 100
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 292 - 112
max_d = √2023 - 1024 - 841 - 121
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 292 - 122
max_d = √2023 - 1024 - 841 - 144
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 322 - 302)
max_c = Floor(√2023 - 1024 - 900)
max_c = Floor(√99)
max_c = Floor(9.9498743710662)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 322 - 302)/2 = 49.5
When min_c = 8, then it is c2 = 64 ≥ 49.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 302 - 82
max_d = √2023 - 1024 - 900 - 64
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 302 - 92
max_d = √2023 - 1024 - 900 - 81
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 322 - 312)
max_c = Floor(√2023 - 1024 - 961)
max_c = Floor(√38)
max_c = Floor(6.164414002969)
max_c = 6
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 322 - 312)/2 = 19
When min_c = 5, then it is c2 = 25 ≥ 19, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 312 - 52
max_d = √2023 - 1024 - 961 - 25
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 322 - 312 - 62
max_d = √2023 - 1024 - 961 - 36
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 332)
max_b = Floor(√2023 - 1089)
max_b = Floor(√934)
max_b = Floor(30.561413579872)
max_b = 30
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 332)/3 = 311.33333333333
When min_b = 18, then it is b2 = 324 ≥ 311.33333333333, so min_b = 18
(18, 30)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 332 - 182)
max_c = Floor(√2023 - 1089 - 324)
max_c = Floor(√610)
max_c = Floor(24.698178070457)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 332 - 182)/2 = 305
When min_c = 18, then it is c2 = 324 ≥ 305, so min_c = 18
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 182 - 182
max_d = √2023 - 1089 - 324 - 324
max_d = √286
max_d = 16.911534525288
Since max_d = 16.911534525288 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 182 - 192
max_d = √2023 - 1089 - 324 - 361
max_d = √249
max_d = 15.779733838059
Since max_d = 15.779733838059 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 182 - 202
max_d = √2023 - 1089 - 324 - 400
max_d = √210
max_d = 14.491376746189
Since max_d = 14.491376746189 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 182 - 212
max_d = √2023 - 1089 - 324 - 441
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (33, 18, 21, 13) is an integer solution proven below
332 + 182 + 212 + 132 → 1089 + 324 + 441 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 182 - 222
max_d = √2023 - 1089 - 324 - 484
max_d = √126
max_d = 11.224972160322
Since max_d = 11.224972160322 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 182 - 232
max_d = √2023 - 1089 - 324 - 529
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (33, 18, 23, 9) is an integer solution proven below
332 + 182 + 232 + 92 → 1089 + 324 + 529 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 182 - 242
max_d = √2023 - 1089 - 324 - 576
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 332 - 192)
max_c = Floor(√2023 - 1089 - 361)
max_c = Floor(√573)
max_c = Floor(23.937418407172)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 332 - 192)/2 = 286.5
When min_c = 17, then it is c2 = 289 ≥ 286.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 192 - 172
max_d = √2023 - 1089 - 361 - 289
max_d = √284
max_d = 16.852299546353
Since max_d = 16.852299546353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 192 - 182
max_d = √2023 - 1089 - 361 - 324
max_d = √249
max_d = 15.779733838059
Since max_d = 15.779733838059 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 192 - 192
max_d = √2023 - 1089 - 361 - 361
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 192 - 202
max_d = √2023 - 1089 - 361 - 400
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 192 - 212
max_d = √2023 - 1089 - 361 - 441
max_d = √132
max_d = 11.489125293076
Since max_d = 11.489125293076 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 192 - 222
max_d = √2023 - 1089 - 361 - 484
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 192 - 232
max_d = √2023 - 1089 - 361 - 529
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 332 - 202)
max_c = Floor(√2023 - 1089 - 400)
max_c = Floor(√534)
max_c = Floor(23.108440016583)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 332 - 202)/2 = 267
When min_c = 17, then it is c2 = 289 ≥ 267, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 202 - 172
max_d = √2023 - 1089 - 400 - 289
max_d = √245
max_d = 15.652475842499
Since max_d = 15.652475842499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 202 - 182
max_d = √2023 - 1089 - 400 - 324
max_d = √210
max_d = 14.491376746189
Since max_d = 14.491376746189 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 202 - 192
max_d = √2023 - 1089 - 400 - 361
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 202 - 202
max_d = √2023 - 1089 - 400 - 400
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 202 - 212
max_d = √2023 - 1089 - 400 - 441
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 202 - 222
max_d = √2023 - 1089 - 400 - 484
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 202 - 232
max_d = √2023 - 1089 - 400 - 529
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 332 - 212)
max_c = Floor(√2023 - 1089 - 441)
max_c = Floor(√493)
max_c = Floor(22.203603311175)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 332 - 212)/2 = 246.5
When min_c = 16, then it is c2 = 256 ≥ 246.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 212 - 162
max_d = √2023 - 1089 - 441 - 256
max_d = √237
max_d = 15.394804318341
Since max_d = 15.394804318341 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 212 - 172
max_d = √2023 - 1089 - 441 - 289
max_d = √204
max_d = 14.282856857086
Since max_d = 14.282856857086 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 212 - 182
max_d = √2023 - 1089 - 441 - 324
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (33, 21, 18, 13) is an integer solution proven below
332 + 212 + 182 + 132 → 1089 + 441 + 324 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 212 - 192
max_d = √2023 - 1089 - 441 - 361
max_d = √132
max_d = 11.489125293076
Since max_d = 11.489125293076 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 212 - 202
max_d = √2023 - 1089 - 441 - 400
max_d = √93
max_d = 9.643650760993
Since max_d = 9.643650760993 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 212 - 212
max_d = √2023 - 1089 - 441 - 441
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 212 - 222
max_d = √2023 - 1089 - 441 - 484
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (33, 21, 22, 3) is an integer solution proven below
332 + 212 + 222 + 32 → 1089 + 441 + 484 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 332 - 222)
max_c = Floor(√2023 - 1089 - 484)
max_c = Floor(√450)
max_c = Floor(21.213203435596)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 332 - 222)/2 = 225
When min_c = 15, then it is c2 = 225 ≥ 225, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 222 - 152
max_d = √2023 - 1089 - 484 - 225
max_d = √225
max_d = 15
Since max_d = 15, then (a, b, c, d) = (33, 22, 15, 15) is an integer solution proven below
332 + 222 + 152 + 152 → 1089 + 484 + 225 + 225 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 222 - 162
max_d = √2023 - 1089 - 484 - 256
max_d = √194
max_d = 13.928388277184
Since max_d = 13.928388277184 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 222 - 172
max_d = √2023 - 1089 - 484 - 289
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 222 - 182
max_d = √2023 - 1089 - 484 - 324
max_d = √126
max_d = 11.224972160322
Since max_d = 11.224972160322 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 222 - 192
max_d = √2023 - 1089 - 484 - 361
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 222 - 202
max_d = √2023 - 1089 - 484 - 400
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 222 - 212
max_d = √2023 - 1089 - 484 - 441
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (33, 22, 21, 3) is an integer solution proven below
332 + 222 + 212 + 32 → 1089 + 484 + 441 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 332 - 232)
max_c = Floor(√2023 - 1089 - 529)
max_c = Floor(√405)
max_c = Floor(20.124611797498)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 332 - 232)/2 = 202.5
When min_c = 15, then it is c2 = 225 ≥ 202.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 232 - 152
max_d = √2023 - 1089 - 529 - 225
max_d = √180
max_d = 13.416407864999
Since max_d = 13.416407864999 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 232 - 162
max_d = √2023 - 1089 - 529 - 256
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 232 - 172
max_d = √2023 - 1089 - 529 - 289
max_d = √116
max_d = 10.770329614269
Since max_d = 10.770329614269 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 232 - 182
max_d = √2023 - 1089 - 529 - 324
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (33, 23, 18, 9) is an integer solution proven below
332 + 232 + 182 + 92 → 1089 + 529 + 324 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 232 - 192
max_d = √2023 - 1089 - 529 - 361
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 232 - 202
max_d = √2023 - 1089 - 529 - 400
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 332 - 242)
max_c = Floor(√2023 - 1089 - 576)
max_c = Floor(√358)
max_c = Floor(18.920887928425)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 332 - 242)/2 = 179
When min_c = 14, then it is c2 = 196 ≥ 179, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 242 - 142
max_d = √2023 - 1089 - 576 - 196
max_d = √162
max_d = 12.727922061358
Since max_d = 12.727922061358 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 242 - 152
max_d = √2023 - 1089 - 576 - 225
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 242 - 162
max_d = √2023 - 1089 - 576 - 256
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 242 - 172
max_d = √2023 - 1089 - 576 - 289
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 242 - 182
max_d = √2023 - 1089 - 576 - 324
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 332 - 252)
max_c = Floor(√2023 - 1089 - 625)
max_c = Floor(√309)
max_c = Floor(17.578395831247)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 332 - 252)/2 = 154.5
When min_c = 13, then it is c2 = 169 ≥ 154.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 252 - 132
max_d = √2023 - 1089 - 625 - 169
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 252 - 142
max_d = √2023 - 1089 - 625 - 196
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 252 - 152
max_d = √2023 - 1089 - 625 - 225
max_d = √84
max_d = 9.1651513899117
Since max_d = 9.1651513899117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 252 - 162
max_d = √2023 - 1089 - 625 - 256
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 252 - 172
max_d = √2023 - 1089 - 625 - 289
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 332 - 262)
max_c = Floor(√2023 - 1089 - 676)
max_c = Floor(√258)
max_c = Floor(16.062378404209)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 332 - 262)/2 = 129
When min_c = 12, then it is c2 = 144 ≥ 129, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 262 - 122
max_d = √2023 - 1089 - 676 - 144
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 262 - 132
max_d = √2023 - 1089 - 676 - 169
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 262 - 142
max_d = √2023 - 1089 - 676 - 196
max_d = √62
max_d = 7.8740078740118
Since max_d = 7.8740078740118 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 262 - 152
max_d = √2023 - 1089 - 676 - 225
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 262 - 162
max_d = √2023 - 1089 - 676 - 256
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 332 - 272)
max_c = Floor(√2023 - 1089 - 729)
max_c = Floor(√205)
max_c = Floor(14.317821063276)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 332 - 272)/2 = 102.5
When min_c = 11, then it is c2 = 121 ≥ 102.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 272 - 112
max_d = √2023 - 1089 - 729 - 121
max_d = √84
max_d = 9.1651513899117
Since max_d = 9.1651513899117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 272 - 122
max_d = √2023 - 1089 - 729 - 144
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 272 - 132
max_d = √2023 - 1089 - 729 - 169
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (33, 27, 13, 6) is an integer solution proven below
332 + 272 + 132 + 62 → 1089 + 729 + 169 + 36 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 272 - 142
max_d = √2023 - 1089 - 729 - 196
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (33, 27, 14, 3) is an integer solution proven below
332 + 272 + 142 + 32 → 1089 + 729 + 196 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 332 - 282)
max_c = Floor(√2023 - 1089 - 784)
max_c = Floor(√150)
max_c = Floor(12.247448713916)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 332 - 282)/2 = 75
When min_c = 9, then it is c2 = 81 ≥ 75, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 282 - 92
max_d = √2023 - 1089 - 784 - 81
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 282 - 102
max_d = √2023 - 1089 - 784 - 100
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 282 - 112
max_d = √2023 - 1089 - 784 - 121
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 282 - 122
max_d = √2023 - 1089 - 784 - 144
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 332 - 292)
max_c = Floor(√2023 - 1089 - 841)
max_c = Floor(√93)
max_c = Floor(9.643650760993)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 332 - 292)/2 = 46.5
When min_c = 7, then it is c2 = 49 ≥ 46.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 292 - 72
max_d = √2023 - 1089 - 841 - 49
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 292 - 82
max_d = √2023 - 1089 - 841 - 64
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 292 - 92
max_d = √2023 - 1089 - 841 - 81
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 332 - 302)
max_c = Floor(√2023 - 1089 - 900)
max_c = Floor(√34)
max_c = Floor(5.8309518948453)
max_c = 5
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 332 - 302)/2 = 17
When min_c = 5, then it is c2 = 25 ≥ 17, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 332 - 302 - 52
max_d = √2023 - 1089 - 900 - 25
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (33, 30, 5, 3) is an integer solution proven below
332 + 302 + 52 + 32 → 1089 + 900 + 25 + 9 = 2023
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 342)
max_b = Floor(√2023 - 1156)
max_b = Floor(√867)
max_b = Floor(29.444863728671)
max_b = 29
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 342)/3 = 289
When min_b = 17, then it is b2 = 289 ≥ 289, so min_b = 17
(17, 29)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 342 - 172)
max_c = Floor(√2023 - 1156 - 289)
max_c = Floor(√578)
max_c = Floor(24.041630560343)
max_c = 24
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 342 - 172)/2 = 289
When min_c = 17, then it is c2 = 289 ≥ 289, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 172 - 172
max_d = √2023 - 1156 - 289 - 289
max_d = √289
max_d = 17
Since max_d = 17, then (a, b, c, d) = (34, 17, 17, 17) is an integer solution proven below
342 + 172 + 172 + 172 → 1156 + 289 + 289 + 289 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 172 - 182
max_d = √2023 - 1156 - 289 - 324
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 172 - 192
max_d = √2023 - 1156 - 289 - 361
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 172 - 202
max_d = √2023 - 1156 - 289 - 400
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 172 - 212
max_d = √2023 - 1156 - 289 - 441
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 172 - 222
max_d = √2023 - 1156 - 289 - 484
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 172 - 232
max_d = √2023 - 1156 - 289 - 529
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (34, 17, 23, 7) is an integer solution proven below
342 + 172 + 232 + 72 → 1156 + 289 + 529 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 172 - 242
max_d = √2023 - 1156 - 289 - 576
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 342 - 182)
max_c = Floor(√2023 - 1156 - 324)
max_c = Floor(√543)
max_c = Floor(23.302360395462)
max_c = 23
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 342 - 182)/2 = 271.5
When min_c = 17, then it is c2 = 289 ≥ 271.5, so min_c = 17
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 182 - 172
max_d = √2023 - 1156 - 324 - 289
max_d = √254
max_d = 15.937377450509
Since max_d = 15.937377450509 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 182 - 182
max_d = √2023 - 1156 - 324 - 324
max_d = √219
max_d = 14.798648586949
Since max_d = 14.798648586949 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 182 - 192
max_d = √2023 - 1156 - 324 - 361
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 182 - 202
max_d = √2023 - 1156 - 324 - 400
max_d = √143
max_d = 11.958260743101
Since max_d = 11.958260743101 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 182 - 212
max_d = √2023 - 1156 - 324 - 441
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 182 - 222
max_d = √2023 - 1156 - 324 - 484
max_d = √59
max_d = 7.6811457478686
Since max_d = 7.6811457478686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 182 - 232
max_d = √2023 - 1156 - 324 - 529
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 342 - 192)
max_c = Floor(√2023 - 1156 - 361)
max_c = Floor(√506)
max_c = Floor(22.494443758404)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 342 - 192)/2 = 253
When min_c = 16, then it is c2 = 256 ≥ 253, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 192 - 162
max_d = √2023 - 1156 - 361 - 256
max_d = √250
max_d = 15.811388300842
Since max_d = 15.811388300842 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 192 - 172
max_d = √2023 - 1156 - 361 - 289
max_d = √217
max_d = 14.730919862656
Since max_d = 14.730919862656 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 192 - 182
max_d = √2023 - 1156 - 361 - 324
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 192 - 192
max_d = √2023 - 1156 - 361 - 361
max_d = √145
max_d = 12.041594578792
Since max_d = 12.041594578792 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 192 - 202
max_d = √2023 - 1156 - 361 - 400
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 192 - 212
max_d = √2023 - 1156 - 361 - 441
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 192 - 222
max_d = √2023 - 1156 - 361 - 484
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 342 - 202)
max_c = Floor(√2023 - 1156 - 400)
max_c = Floor(√467)
max_c = Floor(21.610182784974)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 342 - 202)/2 = 233.5
When min_c = 16, then it is c2 = 256 ≥ 233.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 202 - 162
max_d = √2023 - 1156 - 400 - 256
max_d = √211
max_d = 14.525839046334
Since max_d = 14.525839046334 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 202 - 172
max_d = √2023 - 1156 - 400 - 289
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 202 - 182
max_d = √2023 - 1156 - 400 - 324
max_d = √143
max_d = 11.958260743101
Since max_d = 11.958260743101 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 202 - 192
max_d = √2023 - 1156 - 400 - 361
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 202 - 202
max_d = √2023 - 1156 - 400 - 400
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 202 - 212
max_d = √2023 - 1156 - 400 - 441
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 342 - 212)
max_c = Floor(√2023 - 1156 - 441)
max_c = Floor(√426)
max_c = Floor(20.63976744055)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 342 - 212)/2 = 213
When min_c = 15, then it is c2 = 225 ≥ 213, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 212 - 152
max_d = √2023 - 1156 - 441 - 225
max_d = √201
max_d = 14.177446878758
Since max_d = 14.177446878758 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 212 - 162
max_d = √2023 - 1156 - 441 - 256
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 212 - 172
max_d = √2023 - 1156 - 441 - 289
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 212 - 182
max_d = √2023 - 1156 - 441 - 324
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 212 - 192
max_d = √2023 - 1156 - 441 - 361
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 212 - 202
max_d = √2023 - 1156 - 441 - 400
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 342 - 222)
max_c = Floor(√2023 - 1156 - 484)
max_c = Floor(√383)
max_c = Floor(19.570385790781)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 342 - 222)/2 = 191.5
When min_c = 14, then it is c2 = 196 ≥ 191.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 222 - 142
max_d = √2023 - 1156 - 484 - 196
max_d = √187
max_d = 13.674794331177
Since max_d = 13.674794331177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 222 - 152
max_d = √2023 - 1156 - 484 - 225
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 222 - 162
max_d = √2023 - 1156 - 484 - 256
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 222 - 172
max_d = √2023 - 1156 - 484 - 289
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 222 - 182
max_d = √2023 - 1156 - 484 - 324
max_d = √59
max_d = 7.6811457478686
Since max_d = 7.6811457478686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 222 - 192
max_d = √2023 - 1156 - 484 - 361
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 342 - 232)
max_c = Floor(√2023 - 1156 - 529)
max_c = Floor(√338)
max_c = Floor(18.38477631085)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 342 - 232)/2 = 169
When min_c = 13, then it is c2 = 169 ≥ 169, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 232 - 132
max_d = √2023 - 1156 - 529 - 169
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (34, 23, 13, 13) is an integer solution proven below
342 + 232 + 132 + 132 → 1156 + 529 + 169 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 232 - 142
max_d = √2023 - 1156 - 529 - 196
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 232 - 152
max_d = √2023 - 1156 - 529 - 225
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 232 - 162
max_d = √2023 - 1156 - 529 - 256
max_d = √82
max_d = 9.0553851381374
Since max_d = 9.0553851381374 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 232 - 172
max_d = √2023 - 1156 - 529 - 289
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (34, 23, 17, 7) is an integer solution proven below
342 + 232 + 172 + 72 → 1156 + 529 + 289 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 232 - 182
max_d = √2023 - 1156 - 529 - 324
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 342 - 242)
max_c = Floor(√2023 - 1156 - 576)
max_c = Floor(√291)
max_c = Floor(17.058722109232)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 342 - 242)/2 = 145.5
When min_c = 13, then it is c2 = 169 ≥ 145.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 242 - 132
max_d = √2023 - 1156 - 576 - 169
max_d = √122
max_d = 11.045361017187
Since max_d = 11.045361017187 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 242 - 142
max_d = √2023 - 1156 - 576 - 196
max_d = √95
max_d = 9.746794344809
Since max_d = 9.746794344809 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 242 - 152
max_d = √2023 - 1156 - 576 - 225
max_d = √66
max_d = 8.124038404636
Since max_d = 8.124038404636 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 242 - 162
max_d = √2023 - 1156 - 576 - 256
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 242 - 172
max_d = √2023 - 1156 - 576 - 289
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 342 - 252)
max_c = Floor(√2023 - 1156 - 625)
max_c = Floor(√242)
max_c = Floor(15.556349186104)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 342 - 252)/2 = 121
When min_c = 11, then it is c2 = 121 ≥ 121, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 252 - 112
max_d = √2023 - 1156 - 625 - 121
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (34, 25, 11, 11) is an integer solution proven below
342 + 252 + 112 + 112 → 1156 + 625 + 121 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 252 - 122
max_d = √2023 - 1156 - 625 - 144
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 252 - 132
max_d = √2023 - 1156 - 625 - 169
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 252 - 142
max_d = √2023 - 1156 - 625 - 196
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 252 - 152
max_d = √2023 - 1156 - 625 - 225
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 342 - 262)
max_c = Floor(√2023 - 1156 - 676)
max_c = Floor(√191)
max_c = Floor(13.820274961085)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 342 - 262)/2 = 95.5
When min_c = 10, then it is c2 = 100 ≥ 95.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 262 - 102
max_d = √2023 - 1156 - 676 - 100
max_d = √91
max_d = 9.5393920141695
Since max_d = 9.5393920141695 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 262 - 112
max_d = √2023 - 1156 - 676 - 121
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 262 - 122
max_d = √2023 - 1156 - 676 - 144
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 262 - 132
max_d = √2023 - 1156 - 676 - 169
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 342 - 272)
max_c = Floor(√2023 - 1156 - 729)
max_c = Floor(√138)
max_c = Floor(11.747340124471)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 342 - 272)/2 = 69
When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 272 - 92
max_d = √2023 - 1156 - 729 - 81
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 272 - 102
max_d = √2023 - 1156 - 729 - 100
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 272 - 112
max_d = √2023 - 1156 - 729 - 121
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 342 - 282)
max_c = Floor(√2023 - 1156 - 784)
max_c = Floor(√83)
max_c = Floor(9.1104335791443)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 342 - 282)/2 = 41.5
When min_c = 7, then it is c2 = 49 ≥ 41.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 282 - 72
max_d = √2023 - 1156 - 784 - 49
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 282 - 82
max_d = √2023 - 1156 - 784 - 64
max_d = √19
max_d = 4.3588989435407
Since max_d = 4.3588989435407 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 282 - 92
max_d = √2023 - 1156 - 784 - 81
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 342 - 292)
max_c = Floor(√2023 - 1156 - 841)
max_c = Floor(√26)
max_c = Floor(5.0990195135928)
max_c = 5
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 342 - 292)/2 = 13
When min_c = 4, then it is c2 = 16 ≥ 13, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 292 - 42
max_d = √2023 - 1156 - 841 - 16
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 342 - 292 - 52
max_d = √2023 - 1156 - 841 - 25
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (34, 29, 5, 1) is an integer solution proven below
342 + 292 + 52 + 12 → 1156 + 841 + 25 + 1 = 2023
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 352)
max_b = Floor(√2023 - 1225)
max_b = Floor(√798)
max_b = Floor(28.248893783651)
max_b = 28
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 352)/3 = 266
When min_b = 17, then it is b2 = 289 ≥ 266, so min_b = 17
(17, 28)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 352 - 172)
max_c = Floor(√2023 - 1225 - 289)
max_c = Floor(√509)
max_c = Floor(22.561028345357)
max_c = 22
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 352 - 172)/2 = 254.5
When min_c = 16, then it is c2 = 256 ≥ 254.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 172 - 162
max_d = √2023 - 1225 - 289 - 256
max_d = √253
max_d = 15.905973720587
Since max_d = 15.905973720587 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 172 - 172
max_d = √2023 - 1225 - 289 - 289
max_d = √220
max_d = 14.832396974191
Since max_d = 14.832396974191 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 172 - 182
max_d = √2023 - 1225 - 289 - 324
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 172 - 192
max_d = √2023 - 1225 - 289 - 361
max_d = √148
max_d = 12.165525060596
Since max_d = 12.165525060596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 172 - 202
max_d = √2023 - 1225 - 289 - 400
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 172 - 212
max_d = √2023 - 1225 - 289 - 441
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 172 - 222
max_d = √2023 - 1225 - 289 - 484
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (35, 17, 22, 5) is an integer solution proven below
352 + 172 + 222 + 52 → 1225 + 289 + 484 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 352 - 182)
max_c = Floor(√2023 - 1225 - 324)
max_c = Floor(√474)
max_c = Floor(21.771541057077)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 352 - 182)/2 = 237
When min_c = 16, then it is c2 = 256 ≥ 237, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 182 - 162
max_d = √2023 - 1225 - 324 - 256
max_d = √218
max_d = 14.764823060233
Since max_d = 14.764823060233 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 182 - 172
max_d = √2023 - 1225 - 324 - 289
max_d = √185
max_d = 13.601470508735
Since max_d = 13.601470508735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 182 - 182
max_d = √2023 - 1225 - 324 - 324
max_d = √150
max_d = 12.247448713916
Since max_d = 12.247448713916 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 182 - 192
max_d = √2023 - 1225 - 324 - 361
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 182 - 202
max_d = √2023 - 1225 - 324 - 400
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 182 - 212
max_d = √2023 - 1225 - 324 - 441
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 352 - 192)
max_c = Floor(√2023 - 1225 - 361)
max_c = Floor(√437)
max_c = Floor(20.904544960367)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 352 - 192)/2 = 218.5
When min_c = 15, then it is c2 = 225 ≥ 218.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 192 - 152
max_d = √2023 - 1225 - 361 - 225
max_d = √212
max_d = 14.560219778561
Since max_d = 14.560219778561 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 192 - 162
max_d = √2023 - 1225 - 361 - 256
max_d = √181
max_d = 13.453624047074
Since max_d = 13.453624047074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 192 - 172
max_d = √2023 - 1225 - 361 - 289
max_d = √148
max_d = 12.165525060596
Since max_d = 12.165525060596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 192 - 182
max_d = √2023 - 1225 - 361 - 324
max_d = √113
max_d = 10.630145812735
Since max_d = 10.630145812735 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 192 - 192
max_d = √2023 - 1225 - 361 - 361
max_d = √76
max_d = 8.7177978870813
Since max_d = 8.7177978870813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 192 - 202
max_d = √2023 - 1225 - 361 - 400
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 352 - 202)
max_c = Floor(√2023 - 1225 - 400)
max_c = Floor(√398)
max_c = Floor(19.94993734326)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 352 - 202)/2 = 199
When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 202 - 152
max_d = √2023 - 1225 - 400 - 225
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 202 - 162
max_d = √2023 - 1225 - 400 - 256
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 202 - 172
max_d = √2023 - 1225 - 400 - 289
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 202 - 182
max_d = √2023 - 1225 - 400 - 324
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 202 - 192
max_d = √2023 - 1225 - 400 - 361
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 352 - 212)
max_c = Floor(√2023 - 1225 - 441)
max_c = Floor(√357)
max_c = Floor(18.894443627691)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 352 - 212)/2 = 178.5
When min_c = 14, then it is c2 = 196 ≥ 178.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 212 - 142
max_d = √2023 - 1225 - 441 - 196
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 212 - 152
max_d = √2023 - 1225 - 441 - 225
max_d = √132
max_d = 11.489125293076
Since max_d = 11.489125293076 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 212 - 162
max_d = √2023 - 1225 - 441 - 256
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 212 - 172
max_d = √2023 - 1225 - 441 - 289
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 212 - 182
max_d = √2023 - 1225 - 441 - 324
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 352 - 222)
max_c = Floor(√2023 - 1225 - 484)
max_c = Floor(√314)
max_c = Floor(17.720045146669)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 352 - 222)/2 = 157
When min_c = 13, then it is c2 = 169 ≥ 157, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 222 - 132
max_d = √2023 - 1225 - 484 - 169
max_d = √145
max_d = 12.041594578792
Since max_d = 12.041594578792 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 222 - 142
max_d = √2023 - 1225 - 484 - 196
max_d = √118
max_d = 10.8627804912
Since max_d = 10.8627804912 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 222 - 152
max_d = √2023 - 1225 - 484 - 225
max_d = √89
max_d = 9.4339811320566
Since max_d = 9.4339811320566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 222 - 162
max_d = √2023 - 1225 - 484 - 256
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 222 - 172
max_d = √2023 - 1225 - 484 - 289
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (35, 22, 17, 5) is an integer solution proven below
352 + 222 + 172 + 52 → 1225 + 484 + 289 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 352 - 232)
max_c = Floor(√2023 - 1225 - 529)
max_c = Floor(√269)
max_c = Floor(16.401219466857)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 352 - 232)/2 = 134.5
When min_c = 12, then it is c2 = 144 ≥ 134.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 232 - 122
max_d = √2023 - 1225 - 529 - 144
max_d = √125
max_d = 11.180339887499
Since max_d = 11.180339887499 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 232 - 132
max_d = √2023 - 1225 - 529 - 169
max_d = √100
max_d = 10
Since max_d = 10, then (a, b, c, d) = (35, 23, 13, 10) is an integer solution proven below
352 + 232 + 132 + 102 → 1225 + 529 + 169 + 100 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 232 - 142
max_d = √2023 - 1225 - 529 - 196
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 232 - 152
max_d = √2023 - 1225 - 529 - 225
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 232 - 162
max_d = √2023 - 1225 - 529 - 256
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 352 - 242)
max_c = Floor(√2023 - 1225 - 576)
max_c = Floor(√222)
max_c = Floor(14.899664425751)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 352 - 242)/2 = 111
When min_c = 11, then it is c2 = 121 ≥ 111, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 242 - 112
max_d = √2023 - 1225 - 576 - 121
max_d = √101
max_d = 10.049875621121
Since max_d = 10.049875621121 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 242 - 122
max_d = √2023 - 1225 - 576 - 144
max_d = √78
max_d = 8.8317608663278
Since max_d = 8.8317608663278 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 242 - 132
max_d = √2023 - 1225 - 576 - 169
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 242 - 142
max_d = √2023 - 1225 - 576 - 196
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 352 - 252)
max_c = Floor(√2023 - 1225 - 625)
max_c = Floor(√173)
max_c = Floor(13.152946437966)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 352 - 252)/2 = 86.5
When min_c = 10, then it is c2 = 100 ≥ 86.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 252 - 102
max_d = √2023 - 1225 - 625 - 100
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 252 - 112
max_d = √2023 - 1225 - 625 - 121
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 252 - 122
max_d = √2023 - 1225 - 625 - 144
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 252 - 132
max_d = √2023 - 1225 - 625 - 169
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (35, 25, 13, 2) is an integer solution proven below
352 + 252 + 132 + 22 → 1225 + 625 + 169 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 352 - 262)
max_c = Floor(√2023 - 1225 - 676)
max_c = Floor(√122)
max_c = Floor(11.045361017187)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 352 - 262)/2 = 61
When min_c = 8, then it is c2 = 64 ≥ 61, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 262 - 82
max_d = √2023 - 1225 - 676 - 64
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 262 - 92
max_d = √2023 - 1225 - 676 - 81
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 262 - 102
max_d = √2023 - 1225 - 676 - 100
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 262 - 112
max_d = √2023 - 1225 - 676 - 121
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (35, 26, 11, 1) is an integer solution proven below
352 + 262 + 112 + 12 → 1225 + 676 + 121 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 352 - 272)
max_c = Floor(√2023 - 1225 - 729)
max_c = Floor(√69)
max_c = Floor(8.3066238629181)
max_c = 8
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 352 - 272)/2 = 34.5
When min_c = 6, then it is c2 = 36 ≥ 34.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 272 - 62
max_d = √2023 - 1225 - 729 - 36
max_d = √33
max_d = 5.744562646538
Since max_d = 5.744562646538 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 272 - 72
max_d = √2023 - 1225 - 729 - 49
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 272 - 82
max_d = √2023 - 1225 - 729 - 64
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 352 - 282)
max_c = Floor(√2023 - 1225 - 784)
max_c = Floor(√14)
max_c = Floor(3.7416573867739)
max_c = 3
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 352 - 282)/2 = 7
When min_c = 3, then it is c2 = 9 ≥ 7, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 352 - 282 - 32
max_d = √2023 - 1225 - 784 - 9
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 362)
max_b = Floor(√2023 - 1296)
max_b = Floor(√727)
max_b = Floor(26.962937525426)
max_b = 26
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 362)/3 = 242.33333333333
When min_b = 16, then it is b2 = 256 ≥ 242.33333333333, so min_b = 16
(16, 26)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 362 - 162)
max_c = Floor(√2023 - 1296 - 256)
max_c = Floor(√471)
max_c = Floor(21.702534414211)
max_c = 21
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 362 - 162)/2 = 235.5
When min_c = 16, then it is c2 = 256 ≥ 235.5, so min_c = 16
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 162 - 162
max_d = √2023 - 1296 - 256 - 256
max_d = √215
max_d = 14.662878298615
Since max_d = 14.662878298615 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 162 - 172
max_d = √2023 - 1296 - 256 - 289
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 162 - 182
max_d = √2023 - 1296 - 256 - 324
max_d = √147
max_d = 12.124355652982
Since max_d = 12.124355652982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 162 - 192
max_d = √2023 - 1296 - 256 - 361
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 162 - 202
max_d = √2023 - 1296 - 256 - 400
max_d = √71
max_d = 8.4261497731764
Since max_d = 8.4261497731764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 162 - 212
max_d = √2023 - 1296 - 256 - 441
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 362 - 172)
max_c = Floor(√2023 - 1296 - 289)
max_c = Floor(√438)
max_c = Floor(20.928449536456)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 362 - 172)/2 = 219
When min_c = 15, then it is c2 = 225 ≥ 219, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 172 - 152
max_d = √2023 - 1296 - 289 - 225
max_d = √213
max_d = 14.594519519326
Since max_d = 14.594519519326 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 172 - 162
max_d = √2023 - 1296 - 289 - 256
max_d = √182
max_d = 13.490737563232
Since max_d = 13.490737563232 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 172 - 172
max_d = √2023 - 1296 - 289 - 289
max_d = √149
max_d = 12.206555615734
Since max_d = 12.206555615734 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 172 - 182
max_d = √2023 - 1296 - 289 - 324
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 172 - 192
max_d = √2023 - 1296 - 289 - 361
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 172 - 202
max_d = √2023 - 1296 - 289 - 400
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 362 - 182)
max_c = Floor(√2023 - 1296 - 324)
max_c = Floor(√403)
max_c = Floor(20.074859899885)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 362 - 182)/2 = 201.5
When min_c = 15, then it is c2 = 225 ≥ 201.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 182 - 152
max_d = √2023 - 1296 - 324 - 225
max_d = √178
max_d = 13.341664064126
Since max_d = 13.341664064126 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 182 - 162
max_d = √2023 - 1296 - 324 - 256
max_d = √147
max_d = 12.124355652982
Since max_d = 12.124355652982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 182 - 172
max_d = √2023 - 1296 - 324 - 289
max_d = √114
max_d = 10.677078252031
Since max_d = 10.677078252031 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 182 - 182
max_d = √2023 - 1296 - 324 - 324
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 182 - 192
max_d = √2023 - 1296 - 324 - 361
max_d = √42
max_d = 6.4807406984079
Since max_d = 6.4807406984079 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 182 - 202
max_d = √2023 - 1296 - 324 - 400
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 362 - 192)
max_c = Floor(√2023 - 1296 - 361)
max_c = Floor(√366)
max_c = Floor(19.131126469709)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 362 - 192)/2 = 183
When min_c = 14, then it is c2 = 196 ≥ 183, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 192 - 142
max_d = √2023 - 1296 - 361 - 196
max_d = √170
max_d = 13.038404810405
Since max_d = 13.038404810405 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 192 - 152
max_d = √2023 - 1296 - 361 - 225
max_d = √141
max_d = 11.874342087038
Since max_d = 11.874342087038 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 192 - 162
max_d = √2023 - 1296 - 361 - 256
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 192 - 172
max_d = √2023 - 1296 - 361 - 289
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 192 - 182
max_d = √2023 - 1296 - 361 - 324
max_d = √42
max_d = 6.4807406984079
Since max_d = 6.4807406984079 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 192 - 192
max_d = √2023 - 1296 - 361 - 361
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 362 - 202)
max_c = Floor(√2023 - 1296 - 400)
max_c = Floor(√327)
max_c = Floor(18.083141320025)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 362 - 202)/2 = 163.5
When min_c = 13, then it is c2 = 169 ≥ 163.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 202 - 132
max_d = √2023 - 1296 - 400 - 169
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 202 - 142
max_d = √2023 - 1296 - 400 - 196
max_d = √131
max_d = 11.44552314226
Since max_d = 11.44552314226 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 202 - 152
max_d = √2023 - 1296 - 400 - 225
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 202 - 162
max_d = √2023 - 1296 - 400 - 256
max_d = √71
max_d = 8.4261497731764
Since max_d = 8.4261497731764 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 202 - 172
max_d = √2023 - 1296 - 400 - 289
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 202 - 182
max_d = √2023 - 1296 - 400 - 324
max_d = √3
max_d = 1.7320508075689
Since max_d = 1.7320508075689 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 362 - 212)
max_c = Floor(√2023 - 1296 - 441)
max_c = Floor(√286)
max_c = Floor(16.911534525288)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 362 - 212)/2 = 143
When min_c = 12, then it is c2 = 144 ≥ 143, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 212 - 122
max_d = √2023 - 1296 - 441 - 144
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 212 - 132
max_d = √2023 - 1296 - 441 - 169
max_d = √117
max_d = 10.816653826392
Since max_d = 10.816653826392 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 212 - 142
max_d = √2023 - 1296 - 441 - 196
max_d = √90
max_d = 9.4868329805051
Since max_d = 9.4868329805051 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 212 - 152
max_d = √2023 - 1296 - 441 - 225
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 212 - 162
max_d = √2023 - 1296 - 441 - 256
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 362 - 222)
max_c = Floor(√2023 - 1296 - 484)
max_c = Floor(√243)
max_c = Floor(15.58845726812)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 362 - 222)/2 = 121.5
When min_c = 12, then it is c2 = 144 ≥ 121.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 222 - 122
max_d = √2023 - 1296 - 484 - 144
max_d = √99
max_d = 9.9498743710662
Since max_d = 9.9498743710662 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 222 - 132
max_d = √2023 - 1296 - 484 - 169
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 222 - 142
max_d = √2023 - 1296 - 484 - 196
max_d = √47
max_d = 6.855654600401
Since max_d = 6.855654600401 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 222 - 152
max_d = √2023 - 1296 - 484 - 225
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 362 - 232)
max_c = Floor(√2023 - 1296 - 529)
max_c = Floor(√198)
max_c = Floor(14.07124727947)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 362 - 232)/2 = 99
When min_c = 10, then it is c2 = 100 ≥ 99, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 232 - 102
max_d = √2023 - 1296 - 529 - 100
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 232 - 112
max_d = √2023 - 1296 - 529 - 121
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 232 - 122
max_d = √2023 - 1296 - 529 - 144
max_d = √54
max_d = 7.3484692283495
Since max_d = 7.3484692283495 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 232 - 132
max_d = √2023 - 1296 - 529 - 169
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 232 - 142
max_d = √2023 - 1296 - 529 - 196
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 362 - 242)
max_c = Floor(√2023 - 1296 - 576)
max_c = Floor(√151)
max_c = Floor(12.288205727445)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 362 - 242)/2 = 75.5
When min_c = 9, then it is c2 = 81 ≥ 75.5, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 242 - 92
max_d = √2023 - 1296 - 576 - 81
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 242 - 102
max_d = √2023 - 1296 - 576 - 100
max_d = √51
max_d = 7.1414284285429
Since max_d = 7.1414284285429 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 242 - 112
max_d = √2023 - 1296 - 576 - 121
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 242 - 122
max_d = √2023 - 1296 - 576 - 144
max_d = √7
max_d = 2.6457513110646
Since max_d = 2.6457513110646 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 362 - 252)
max_c = Floor(√2023 - 1296 - 625)
max_c = Floor(√102)
max_c = Floor(10.099504938362)
max_c = 10
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 362 - 252)/2 = 51
When min_c = 8, then it is c2 = 64 ≥ 51, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 252 - 82
max_d = √2023 - 1296 - 625 - 64
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 252 - 92
max_d = √2023 - 1296 - 625 - 81
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 252 - 102
max_d = √2023 - 1296 - 625 - 100
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 362 - 262)
max_c = Floor(√2023 - 1296 - 676)
max_c = Floor(√51)
max_c = Floor(7.1414284285429)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 362 - 262)/2 = 25.5
When min_c = 6, then it is c2 = 36 ≥ 25.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 262 - 62
max_d = √2023 - 1296 - 676 - 36
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 362 - 262 - 72
max_d = √2023 - 1296 - 676 - 49
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 372)
max_b = Floor(√2023 - 1369)
max_b = Floor(√654)
max_b = Floor(25.573423705089)
max_b = 25
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 372)/3 = 218
When min_b = 15, then it is b2 = 225 ≥ 218, so min_b = 15
(15, 25)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 372 - 152)
max_c = Floor(√2023 - 1369 - 225)
max_c = Floor(√429)
max_c = Floor(20.712315177208)
max_c = 20
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 372 - 152)/2 = 214.5
When min_c = 15, then it is c2 = 225 ≥ 214.5, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 152 - 152
max_d = √2023 - 1369 - 225 - 225
max_d = √204
max_d = 14.282856857086
Since max_d = 14.282856857086 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 152 - 162
max_d = √2023 - 1369 - 225 - 256
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 152 - 172
max_d = √2023 - 1369 - 225 - 289
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 152 - 182
max_d = √2023 - 1369 - 225 - 324
max_d = √105
max_d = 10.24695076596
Since max_d = 10.24695076596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 152 - 192
max_d = √2023 - 1369 - 225 - 361
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 152 - 202
max_d = √2023 - 1369 - 225 - 400
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 372 - 162)
max_c = Floor(√2023 - 1369 - 256)
max_c = Floor(√398)
max_c = Floor(19.94993734326)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 372 - 162)/2 = 199
When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 162 - 152
max_d = √2023 - 1369 - 256 - 225
max_d = √173
max_d = 13.152946437966
Since max_d = 13.152946437966 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 162 - 162
max_d = √2023 - 1369 - 256 - 256
max_d = √142
max_d = 11.916375287813
Since max_d = 11.916375287813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 162 - 172
max_d = √2023 - 1369 - 256 - 289
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 162 - 182
max_d = √2023 - 1369 - 256 - 324
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 162 - 192
max_d = √2023 - 1369 - 256 - 361
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 372 - 172)
max_c = Floor(√2023 - 1369 - 289)
max_c = Floor(√365)
max_c = Floor(19.104973174543)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 372 - 172)/2 = 182.5
When min_c = 14, then it is c2 = 196 ≥ 182.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 172 - 142
max_d = √2023 - 1369 - 289 - 196
max_d = √169
max_d = 13
Since max_d = 13, then (a, b, c, d) = (37, 17, 14, 13) is an integer solution proven below
372 + 172 + 142 + 132 → 1369 + 289 + 196 + 169 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 172 - 152
max_d = √2023 - 1369 - 289 - 225
max_d = √140
max_d = 11.832159566199
Since max_d = 11.832159566199 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 172 - 162
max_d = √2023 - 1369 - 289 - 256
max_d = √109
max_d = 10.440306508911
Since max_d = 10.440306508911 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 172 - 172
max_d = √2023 - 1369 - 289 - 289
max_d = √76
max_d = 8.7177978870813
Since max_d = 8.7177978870813 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 172 - 182
max_d = √2023 - 1369 - 289 - 324
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 172 - 192
max_d = √2023 - 1369 - 289 - 361
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (37, 17, 19, 2) is an integer solution proven below
372 + 172 + 192 + 22 → 1369 + 289 + 361 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 372 - 182)
max_c = Floor(√2023 - 1369 - 324)
max_c = Floor(√330)
max_c = Floor(18.165902124585)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 372 - 182)/2 = 165
When min_c = 13, then it is c2 = 169 ≥ 165, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 182 - 132
max_d = √2023 - 1369 - 324 - 169
max_d = √161
max_d = 12.68857754045
Since max_d = 12.68857754045 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 182 - 142
max_d = √2023 - 1369 - 324 - 196
max_d = √134
max_d = 11.57583690279
Since max_d = 11.57583690279 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 182 - 152
max_d = √2023 - 1369 - 324 - 225
max_d = √105
max_d = 10.24695076596
Since max_d = 10.24695076596 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 182 - 162
max_d = √2023 - 1369 - 324 - 256
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 182 - 172
max_d = √2023 - 1369 - 324 - 289
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 182 - 182
max_d = √2023 - 1369 - 324 - 324
max_d = √6
max_d = 2.4494897427832
Since max_d = 2.4494897427832 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 372 - 192)
max_c = Floor(√2023 - 1369 - 361)
max_c = Floor(√293)
max_c = Floor(17.117242768624)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 372 - 192)/2 = 146.5
When min_c = 13, then it is c2 = 169 ≥ 146.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 192 - 132
max_d = √2023 - 1369 - 361 - 169
max_d = √124
max_d = 11.13552872566
Since max_d = 11.13552872566 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 192 - 142
max_d = √2023 - 1369 - 361 - 196
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 192 - 152
max_d = √2023 - 1369 - 361 - 225
max_d = √68
max_d = 8.2462112512353
Since max_d = 8.2462112512353 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 192 - 162
max_d = √2023 - 1369 - 361 - 256
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 192 - 172
max_d = √2023 - 1369 - 361 - 289
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (37, 19, 17, 2) is an integer solution proven below
372 + 192 + 172 + 22 → 1369 + 361 + 289 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 372 - 202)
max_c = Floor(√2023 - 1369 - 400)
max_c = Floor(√254)
max_c = Floor(15.937377450509)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 372 - 202)/2 = 127
When min_c = 12, then it is c2 = 144 ≥ 127, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 202 - 122
max_d = √2023 - 1369 - 400 - 144
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 202 - 132
max_d = √2023 - 1369 - 400 - 169
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 202 - 142
max_d = √2023 - 1369 - 400 - 196
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 202 - 152
max_d = √2023 - 1369 - 400 - 225
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 372 - 212)
max_c = Floor(√2023 - 1369 - 441)
max_c = Floor(√213)
max_c = Floor(14.594519519326)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 372 - 212)/2 = 106.5
When min_c = 11, then it is c2 = 121 ≥ 106.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 212 - 112
max_d = √2023 - 1369 - 441 - 121
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 212 - 122
max_d = √2023 - 1369 - 441 - 144
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 212 - 132
max_d = √2023 - 1369 - 441 - 169
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 212 - 142
max_d = √2023 - 1369 - 441 - 196
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 372 - 222)
max_c = Floor(√2023 - 1369 - 484)
max_c = Floor(√170)
max_c = Floor(13.038404810405)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 372 - 222)/2 = 85
When min_c = 10, then it is c2 = 100 ≥ 85, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 222 - 102
max_d = √2023 - 1369 - 484 - 100
max_d = √70
max_d = 8.3666002653408
Since max_d = 8.3666002653408 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 222 - 112
max_d = √2023 - 1369 - 484 - 121
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (37, 22, 11, 7) is an integer solution proven below
372 + 222 + 112 + 72 → 1369 + 484 + 121 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 222 - 122
max_d = √2023 - 1369 - 484 - 144
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 222 - 132
max_d = √2023 - 1369 - 484 - 169
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (37, 22, 13, 1) is an integer solution proven below
372 + 222 + 132 + 12 → 1369 + 484 + 169 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 372 - 232)
max_c = Floor(√2023 - 1369 - 529)
max_c = Floor(√125)
max_c = Floor(11.180339887499)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 372 - 232)/2 = 62.5
When min_c = 8, then it is c2 = 64 ≥ 62.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 232 - 82
max_d = √2023 - 1369 - 529 - 64
max_d = √61
max_d = 7.8102496759067
Since max_d = 7.8102496759067 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 232 - 92
max_d = √2023 - 1369 - 529 - 81
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 232 - 102
max_d = √2023 - 1369 - 529 - 100
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (37, 23, 10, 5) is an integer solution proven below
372 + 232 + 102 + 52 → 1369 + 529 + 100 + 25 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 232 - 112
max_d = √2023 - 1369 - 529 - 121
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (37, 23, 11, 2) is an integer solution proven below
372 + 232 + 112 + 22 → 1369 + 529 + 121 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 372 - 242)
max_c = Floor(√2023 - 1369 - 576)
max_c = Floor(√78)
max_c = Floor(8.8317608663278)
max_c = 8
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 372 - 242)/2 = 39
When min_c = 7, then it is c2 = 49 ≥ 39, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 242 - 72
max_d = √2023 - 1369 - 576 - 49
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 242 - 82
max_d = √2023 - 1369 - 576 - 64
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 372 - 252)
max_c = Floor(√2023 - 1369 - 625)
max_c = Floor(√29)
max_c = Floor(5.3851648071345)
max_c = 5
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 372 - 252)/2 = 14.5
When min_c = 4, then it is c2 = 16 ≥ 14.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 252 - 42
max_d = √2023 - 1369 - 625 - 16
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 372 - 252 - 52
max_d = √2023 - 1369 - 625 - 25
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (37, 25, 5, 2) is an integer solution proven below
372 + 252 + 52 + 22 → 1369 + 625 + 25 + 4 = 2023
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 382)
max_b = Floor(√2023 - 1444)
max_b = Floor(√579)
max_b = Floor(24.062418831032)
max_b = 24
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 382)/3 = 193
When min_b = 14, then it is b2 = 196 ≥ 193, so min_b = 14
(14, 24)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 382 - 142)
max_c = Floor(√2023 - 1444 - 196)
max_c = Floor(√383)
max_c = Floor(19.570385790781)
max_c = 19
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 382 - 142)/2 = 191.5
When min_c = 14, then it is c2 = 196 ≥ 191.5, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 142 - 142
max_d = √2023 - 1444 - 196 - 196
max_d = √187
max_d = 13.674794331177
Since max_d = 13.674794331177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 142 - 152
max_d = √2023 - 1444 - 196 - 225
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 142 - 162
max_d = √2023 - 1444 - 196 - 256
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 142 - 172
max_d = √2023 - 1444 - 196 - 289
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 142 - 182
max_d = √2023 - 1444 - 196 - 324
max_d = √59
max_d = 7.6811457478686
Since max_d = 7.6811457478686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 142 - 192
max_d = √2023 - 1444 - 196 - 361
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 382 - 152)
max_c = Floor(√2023 - 1444 - 225)
max_c = Floor(√354)
max_c = Floor(18.814887722227)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 382 - 152)/2 = 177
When min_c = 14, then it is c2 = 196 ≥ 177, so min_c = 14
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 152 - 142
max_d = √2023 - 1444 - 225 - 196
max_d = √158
max_d = 12.569805089977
Since max_d = 12.569805089977 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 152 - 152
max_d = √2023 - 1444 - 225 - 225
max_d = √129
max_d = 11.357816691601
Since max_d = 11.357816691601 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 152 - 162
max_d = √2023 - 1444 - 225 - 256
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 152 - 172
max_d = √2023 - 1444 - 225 - 289
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 152 - 182
max_d = √2023 - 1444 - 225 - 324
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 382 - 162)
max_c = Floor(√2023 - 1444 - 256)
max_c = Floor(√323)
max_c = Floor(17.972200755611)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 382 - 162)/2 = 161.5
When min_c = 13, then it is c2 = 169 ≥ 161.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 162 - 132
max_d = √2023 - 1444 - 256 - 169
max_d = √154
max_d = 12.409673645991
Since max_d = 12.409673645991 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 162 - 142
max_d = √2023 - 1444 - 256 - 196
max_d = √127
max_d = 11.269427669585
Since max_d = 11.269427669585 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 162 - 152
max_d = √2023 - 1444 - 256 - 225
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 162 - 162
max_d = √2023 - 1444 - 256 - 256
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 162 - 172
max_d = √2023 - 1444 - 256 - 289
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 382 - 172)
max_c = Floor(√2023 - 1444 - 289)
max_c = Floor(√290)
max_c = Floor(17.029386365926)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 382 - 172)/2 = 145
When min_c = 13, then it is c2 = 169 ≥ 145, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 172 - 132
max_d = √2023 - 1444 - 289 - 169
max_d = √121
max_d = 11
Since max_d = 11, then (a, b, c, d) = (38, 17, 13, 11) is an integer solution proven below
382 + 172 + 132 + 112 → 1444 + 289 + 169 + 121 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 172 - 142
max_d = √2023 - 1444 - 289 - 196
max_d = √94
max_d = 9.6953597148327
Since max_d = 9.6953597148327 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 172 - 152
max_d = √2023 - 1444 - 289 - 225
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 172 - 162
max_d = √2023 - 1444 - 289 - 256
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 172 - 172
max_d = √2023 - 1444 - 289 - 289
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (38, 17, 17, 1) is an integer solution proven below
382 + 172 + 172 + 12 → 1444 + 289 + 289 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 382 - 182)
max_c = Floor(√2023 - 1444 - 324)
max_c = Floor(√255)
max_c = Floor(15.968719422671)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 382 - 182)/2 = 127.5
When min_c = 12, then it is c2 = 144 ≥ 127.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 182 - 122
max_d = √2023 - 1444 - 324 - 144
max_d = √111
max_d = 10.535653752853
Since max_d = 10.535653752853 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 182 - 132
max_d = √2023 - 1444 - 324 - 169
max_d = √86
max_d = 9.2736184954957
Since max_d = 9.2736184954957 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 182 - 142
max_d = √2023 - 1444 - 324 - 196
max_d = √59
max_d = 7.6811457478686
Since max_d = 7.6811457478686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 182 - 152
max_d = √2023 - 1444 - 324 - 225
max_d = √30
max_d = 5.4772255750517
Since max_d = 5.4772255750517 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 382 - 192)
max_c = Floor(√2023 - 1444 - 361)
max_c = Floor(√218)
max_c = Floor(14.764823060233)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 382 - 192)/2 = 109
When min_c = 11, then it is c2 = 121 ≥ 109, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 192 - 112
max_d = √2023 - 1444 - 361 - 121
max_d = √97
max_d = 9.8488578017961
Since max_d = 9.8488578017961 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 192 - 122
max_d = √2023 - 1444 - 361 - 144
max_d = √74
max_d = 8.6023252670426
Since max_d = 8.6023252670426 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 192 - 132
max_d = √2023 - 1444 - 361 - 169
max_d = √49
max_d = 7
Since max_d = 7, then (a, b, c, d) = (38, 19, 13, 7) is an integer solution proven below
382 + 192 + 132 + 72 → 1444 + 361 + 169 + 49 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 192 - 142
max_d = √2023 - 1444 - 361 - 196
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 382 - 202)
max_c = Floor(√2023 - 1444 - 400)
max_c = Floor(√179)
max_c = Floor(13.37908816026)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 382 - 202)/2 = 89.5
When min_c = 10, then it is c2 = 100 ≥ 89.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 202 - 102
max_d = √2023 - 1444 - 400 - 100
max_d = √79
max_d = 8.8881944173156
Since max_d = 8.8881944173156 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 202 - 112
max_d = √2023 - 1444 - 400 - 121
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 202 - 122
max_d = √2023 - 1444 - 400 - 144
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 202 - 132
max_d = √2023 - 1444 - 400 - 169
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 382 - 212)
max_c = Floor(√2023 - 1444 - 441)
max_c = Floor(√138)
max_c = Floor(11.747340124471)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 382 - 212)/2 = 69
When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 212 - 92
max_d = √2023 - 1444 - 441 - 81
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 212 - 102
max_d = √2023 - 1444 - 441 - 100
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 212 - 112
max_d = √2023 - 1444 - 441 - 121
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 382 - 222)
max_c = Floor(√2023 - 1444 - 484)
max_c = Floor(√95)
max_c = Floor(9.746794344809)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 382 - 222)/2 = 47.5
When min_c = 7, then it is c2 = 49 ≥ 47.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 222 - 72
max_d = √2023 - 1444 - 484 - 49
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 222 - 82
max_d = √2023 - 1444 - 484 - 64
max_d = √31
max_d = 5.56776436283
Since max_d = 5.56776436283 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 222 - 92
max_d = √2023 - 1444 - 484 - 81
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 382 - 232)
max_c = Floor(√2023 - 1444 - 529)
max_c = Floor(√50)
max_c = Floor(7.0710678118655)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 382 - 232)/2 = 25
When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 232 - 52
max_d = √2023 - 1444 - 529 - 25
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (38, 23, 5, 5) is an integer solution proven below
382 + 232 + 52 + 52 → 1444 + 529 + 25 + 25 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 232 - 62
max_d = √2023 - 1444 - 529 - 36
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 382 - 232 - 72
max_d = √2023 - 1444 - 529 - 49
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (38, 23, 7, 1) is an integer solution proven below
382 + 232 + 72 + 12 → 1444 + 529 + 49 + 1 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 382 - 242)
max_c = Floor(√2023 - 1444 - 576)
max_c = Floor(√3)
max_c = Floor(1.7320508075689)
max_c = 1
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 382 - 242)/2 = 1.5
When min_c = 2, then it is c2 = 4 ≥ 1.5, so min_c = 2
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 392)
max_b = Floor(√2023 - 1521)
max_b = Floor(√502)
max_b = Floor(22.405356502408)
max_b = 22
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 392)/3 = 167.33333333333
When min_b = 13, then it is b2 = 169 ≥ 167.33333333333, so min_b = 13
(13, 22)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 392 - 132)
max_c = Floor(√2023 - 1521 - 169)
max_c = Floor(√333)
max_c = Floor(18.248287590895)
max_c = 18
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 392 - 132)/2 = 166.5
When min_c = 13, then it is c2 = 169 ≥ 166.5, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 132 - 132
max_d = √2023 - 1521 - 169 - 169
max_d = √164
max_d = 12.806248474866
Since max_d = 12.806248474866 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 132 - 142
max_d = √2023 - 1521 - 169 - 196
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 132 - 152
max_d = √2023 - 1521 - 169 - 225
max_d = √108
max_d = 10.392304845413
Since max_d = 10.392304845413 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 132 - 162
max_d = √2023 - 1521 - 169 - 256
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 132 - 172
max_d = √2023 - 1521 - 169 - 289
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 132 - 182
max_d = √2023 - 1521 - 169 - 324
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (39, 13, 18, 3) is an integer solution proven below
392 + 132 + 182 + 32 → 1521 + 169 + 324 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 392 - 142)
max_c = Floor(√2023 - 1521 - 196)
max_c = Floor(√306)
max_c = Floor(17.492855684536)
max_c = 17
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 392 - 142)/2 = 153
When min_c = 13, then it is c2 = 169 ≥ 153, so min_c = 13
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 142 - 132
max_d = √2023 - 1521 - 196 - 169
max_d = √137
max_d = 11.70469991072
Since max_d = 11.70469991072 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 142 - 142
max_d = √2023 - 1521 - 196 - 196
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 142 - 152
max_d = √2023 - 1521 - 196 - 225
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (39, 14, 15, 9) is an integer solution proven below
392 + 142 + 152 + 92 → 1521 + 196 + 225 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 142 - 162
max_d = √2023 - 1521 - 196 - 256
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 142 - 172
max_d = √2023 - 1521 - 196 - 289
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 392 - 152)
max_c = Floor(√2023 - 1521 - 225)
max_c = Floor(√277)
max_c = Floor(16.643316977093)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 392 - 152)/2 = 138.5
When min_c = 12, then it is c2 = 144 ≥ 138.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 152 - 122
max_d = √2023 - 1521 - 225 - 144
max_d = √133
max_d = 11.532562594671
Since max_d = 11.532562594671 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 152 - 132
max_d = √2023 - 1521 - 225 - 169
max_d = √108
max_d = 10.392304845413
Since max_d = 10.392304845413 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 152 - 142
max_d = √2023 - 1521 - 225 - 196
max_d = √81
max_d = 9
Since max_d = 9, then (a, b, c, d) = (39, 15, 14, 9) is an integer solution proven below
392 + 152 + 142 + 92 → 1521 + 225 + 196 + 81 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 152 - 152
max_d = √2023 - 1521 - 225 - 225
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 152 - 162
max_d = √2023 - 1521 - 225 - 256
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 392 - 162)
max_c = Floor(√2023 - 1521 - 256)
max_c = Floor(√246)
max_c = Floor(15.684387141358)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 392 - 162)/2 = 123
When min_c = 12, then it is c2 = 144 ≥ 123, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 162 - 122
max_d = √2023 - 1521 - 256 - 144
max_d = √102
max_d = 10.099504938362
Since max_d = 10.099504938362 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 162 - 132
max_d = √2023 - 1521 - 256 - 169
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 162 - 142
max_d = √2023 - 1521 - 256 - 196
max_d = √50
max_d = 7.0710678118655
Since max_d = 7.0710678118655 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 162 - 152
max_d = √2023 - 1521 - 256 - 225
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 392 - 172)
max_c = Floor(√2023 - 1521 - 289)
max_c = Floor(√213)
max_c = Floor(14.594519519326)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 392 - 172)/2 = 106.5
When min_c = 11, then it is c2 = 121 ≥ 106.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 172 - 112
max_d = √2023 - 1521 - 289 - 121
max_d = √92
max_d = 9.5916630466254
Since max_d = 9.5916630466254 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 172 - 122
max_d = √2023 - 1521 - 289 - 144
max_d = √69
max_d = 8.3066238629181
Since max_d = 8.3066238629181 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 172 - 132
max_d = √2023 - 1521 - 289 - 169
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 172 - 142
max_d = √2023 - 1521 - 289 - 196
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 392 - 182)
max_c = Floor(√2023 - 1521 - 324)
max_c = Floor(√178)
max_c = Floor(13.341664064126)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 392 - 182)/2 = 89
When min_c = 10, then it is c2 = 100 ≥ 89, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 182 - 102
max_d = √2023 - 1521 - 324 - 100
max_d = √78
max_d = 8.8317608663278
Since max_d = 8.8317608663278 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 182 - 112
max_d = √2023 - 1521 - 324 - 121
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 182 - 122
max_d = √2023 - 1521 - 324 - 144
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 182 - 132
max_d = √2023 - 1521 - 324 - 169
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (39, 18, 13, 3) is an integer solution proven below
392 + 182 + 132 + 32 → 1521 + 324 + 169 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 392 - 192)
max_c = Floor(√2023 - 1521 - 361)
max_c = Floor(√141)
max_c = Floor(11.874342087038)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 392 - 192)/2 = 70.5
When min_c = 9, then it is c2 = 81 ≥ 70.5, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 192 - 92
max_d = √2023 - 1521 - 361 - 81
max_d = √60
max_d = 7.7459666924148
Since max_d = 7.7459666924148 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 192 - 102
max_d = √2023 - 1521 - 361 - 100
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 192 - 112
max_d = √2023 - 1521 - 361 - 121
max_d = √20
max_d = 4.4721359549996
Since max_d = 4.4721359549996 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 392 - 202)
max_c = Floor(√2023 - 1521 - 400)
max_c = Floor(√102)
max_c = Floor(10.099504938362)
max_c = 10
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 392 - 202)/2 = 51
When min_c = 8, then it is c2 = 64 ≥ 51, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 202 - 82
max_d = √2023 - 1521 - 400 - 64
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 202 - 92
max_d = √2023 - 1521 - 400 - 81
max_d = √21
max_d = 4.5825756949558
Since max_d = 4.5825756949558 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 202 - 102
max_d = √2023 - 1521 - 400 - 100
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 392 - 212)
max_c = Floor(√2023 - 1521 - 441)
max_c = Floor(√61)
max_c = Floor(7.8102496759067)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 392 - 212)/2 = 30.5
When min_c = 6, then it is c2 = 36 ≥ 30.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 212 - 62
max_d = √2023 - 1521 - 441 - 36
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (39, 21, 6, 5) is an integer solution proven below
392 + 212 + 62 + 52 → 1521 + 441 + 36 + 25 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 212 - 72
max_d = √2023 - 1521 - 441 - 49
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 392 - 222)
max_c = Floor(√2023 - 1521 - 484)
max_c = Floor(√18)
max_c = Floor(4.2426406871193)
max_c = 4
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 392 - 222)/2 = 9
When min_c = 3, then it is c2 = 9 ≥ 9, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 222 - 32
max_d = √2023 - 1521 - 484 - 9
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (39, 22, 3, 3) is an integer solution proven below
392 + 222 + 32 + 32 → 1521 + 484 + 9 + 9 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 392 - 222 - 42
max_d = √2023 - 1521 - 484 - 16
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 402)
max_b = Floor(√2023 - 1600)
max_b = Floor(√423)
max_b = Floor(20.566963801203)
max_b = 20
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 402)/3 = 141
When min_b = 12, then it is b2 = 144 ≥ 141, so min_b = 12
(12, 20)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 402 - 122)
max_c = Floor(√2023 - 1600 - 144)
max_c = Floor(√279)
max_c = Floor(16.70329308849)
max_c = 16
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 402 - 122)/2 = 139.5
When min_c = 12, then it is c2 = 144 ≥ 139.5, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 122 - 122
max_d = √2023 - 1600 - 144 - 144
max_d = √135
max_d = 11.618950038622
Since max_d = 11.618950038622 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 122 - 132
max_d = √2023 - 1600 - 144 - 169
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 122 - 142
max_d = √2023 - 1600 - 144 - 196
max_d = √83
max_d = 9.1104335791443
Since max_d = 9.1104335791443 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 122 - 152
max_d = √2023 - 1600 - 144 - 225
max_d = √54
max_d = 7.3484692283495
Since max_d = 7.3484692283495 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 122 - 162
max_d = √2023 - 1600 - 144 - 256
max_d = √23
max_d = 4.7958315233127
Since max_d = 4.7958315233127 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 402 - 132)
max_c = Floor(√2023 - 1600 - 169)
max_c = Floor(√254)
max_c = Floor(15.937377450509)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 402 - 132)/2 = 127
When min_c = 12, then it is c2 = 144 ≥ 127, so min_c = 12
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 132 - 122
max_d = √2023 - 1600 - 169 - 144
max_d = √110
max_d = 10.488088481702
Since max_d = 10.488088481702 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 132 - 132
max_d = √2023 - 1600 - 169 - 169
max_d = √85
max_d = 9.2195444572929
Since max_d = 9.2195444572929 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 132 - 142
max_d = √2023 - 1600 - 169 - 196
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 132 - 152
max_d = √2023 - 1600 - 169 - 225
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 402 - 142)
max_c = Floor(√2023 - 1600 - 196)
max_c = Floor(√227)
max_c = Floor(15.066519173319)
max_c = 15
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 402 - 142)/2 = 113.5
When min_c = 11, then it is c2 = 121 ≥ 113.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 142 - 112
max_d = √2023 - 1600 - 196 - 121
max_d = √106
max_d = 10.295630140987
Since max_d = 10.295630140987 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 142 - 122
max_d = √2023 - 1600 - 196 - 144
max_d = √83
max_d = 9.1104335791443
Since max_d = 9.1104335791443 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 142 - 132
max_d = √2023 - 1600 - 196 - 169
max_d = √58
max_d = 7.6157731058639
Since max_d = 7.6157731058639 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 142 - 142
max_d = √2023 - 1600 - 196 - 196
max_d = √31
max_d = 5.56776436283
Since max_d = 5.56776436283 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 142 - 152
max_d = √2023 - 1600 - 196 - 225
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 402 - 152)
max_c = Floor(√2023 - 1600 - 225)
max_c = Floor(√198)
max_c = Floor(14.07124727947)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 402 - 152)/2 = 99
When min_c = 10, then it is c2 = 100 ≥ 99, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 152 - 102
max_d = √2023 - 1600 - 225 - 100
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 152 - 112
max_d = √2023 - 1600 - 225 - 121
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 152 - 122
max_d = √2023 - 1600 - 225 - 144
max_d = √54
max_d = 7.3484692283495
Since max_d = 7.3484692283495 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 152 - 132
max_d = √2023 - 1600 - 225 - 169
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 152 - 142
max_d = √2023 - 1600 - 225 - 196
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 402 - 162)
max_c = Floor(√2023 - 1600 - 256)
max_c = Floor(√167)
max_c = Floor(12.92284798332)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 402 - 162)/2 = 83.5
When min_c = 10, then it is c2 = 100 ≥ 83.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 162 - 102
max_d = √2023 - 1600 - 256 - 100
max_d = √67
max_d = 8.1853527718725
Since max_d = 8.1853527718725 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 162 - 112
max_d = √2023 - 1600 - 256 - 121
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 162 - 122
max_d = √2023 - 1600 - 256 - 144
max_d = √23
max_d = 4.7958315233127
Since max_d = 4.7958315233127 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 402 - 172)
max_c = Floor(√2023 - 1600 - 289)
max_c = Floor(√134)
max_c = Floor(11.57583690279)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 402 - 172)/2 = 67
When min_c = 9, then it is c2 = 81 ≥ 67, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 172 - 92
max_d = √2023 - 1600 - 289 - 81
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 172 - 102
max_d = √2023 - 1600 - 289 - 100
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 172 - 112
max_d = √2023 - 1600 - 289 - 121
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 402 - 182)
max_c = Floor(√2023 - 1600 - 324)
max_c = Floor(√99)
max_c = Floor(9.9498743710662)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 402 - 182)/2 = 49.5
When min_c = 8, then it is c2 = 64 ≥ 49.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 182 - 82
max_d = √2023 - 1600 - 324 - 64
max_d = √35
max_d = 5.9160797830996
Since max_d = 5.9160797830996 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 182 - 92
max_d = √2023 - 1600 - 324 - 81
max_d = √18
max_d = 4.2426406871193
Since max_d = 4.2426406871193 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 402 - 192)
max_c = Floor(√2023 - 1600 - 361)
max_c = Floor(√62)
max_c = Floor(7.8740078740118)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 402 - 192)/2 = 31
When min_c = 6, then it is c2 = 36 ≥ 31, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 192 - 62
max_d = √2023 - 1600 - 361 - 36
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 192 - 72
max_d = √2023 - 1600 - 361 - 49
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 402 - 202)
max_c = Floor(√2023 - 1600 - 400)
max_c = Floor(√23)
max_c = Floor(4.7958315233127)
max_c = 4
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 402 - 202)/2 = 11.5
When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 402 - 202 - 42
max_d = √2023 - 1600 - 400 - 16
max_d = √7
max_d = 2.6457513110646
Since max_d = 2.6457513110646 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 412)
max_b = Floor(√2023 - 1681)
max_b = Floor(√342)
max_b = Floor(18.493242008907)
max_b = 18
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 412)/3 = 114
When min_b = 11, then it is b2 = 121 ≥ 114, so min_b = 11
(11, 18)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 412 - 112)
max_c = Floor(√2023 - 1681 - 121)
max_c = Floor(√221)
max_c = Floor(14.866068747319)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 412 - 112)/2 = 110.5
When min_c = 11, then it is c2 = 121 ≥ 110.5, so min_c = 11
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 112 - 112
max_d = √2023 - 1681 - 121 - 121
max_d = √100
max_d = 10
Since max_d = 10, then (a, b, c, d) = (41, 11, 11, 10) is an integer solution proven below
412 + 112 + 112 + 102 → 1681 + 121 + 121 + 100 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 112 - 122
max_d = √2023 - 1681 - 121 - 144
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 112 - 132
max_d = √2023 - 1681 - 121 - 169
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 112 - 142
max_d = √2023 - 1681 - 121 - 196
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (41, 11, 14, 5) is an integer solution proven below
412 + 112 + 142 + 52 → 1681 + 121 + 196 + 25 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 412 - 122)
max_c = Floor(√2023 - 1681 - 144)
max_c = Floor(√198)
max_c = Floor(14.07124727947)
max_c = 14
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 412 - 122)/2 = 99
When min_c = 10, then it is c2 = 100 ≥ 99, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 122 - 102
max_d = √2023 - 1681 - 144 - 100
max_d = √98
max_d = 9.8994949366117
Since max_d = 9.8994949366117 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 122 - 112
max_d = √2023 - 1681 - 144 - 121
max_d = √77
max_d = 8.7749643873921
Since max_d = 8.7749643873921 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 122 - 122
max_d = √2023 - 1681 - 144 - 144
max_d = √54
max_d = 7.3484692283495
Since max_d = 7.3484692283495 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 122 - 132
max_d = √2023 - 1681 - 144 - 169
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 122 - 142
max_d = √2023 - 1681 - 144 - 196
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 412 - 132)
max_c = Floor(√2023 - 1681 - 169)
max_c = Floor(√173)
max_c = Floor(13.152946437966)
max_c = 13
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 412 - 132)/2 = 86.5
When min_c = 10, then it is c2 = 100 ≥ 86.5, so min_c = 10
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 132 - 102
max_d = √2023 - 1681 - 169 - 100
max_d = √73
max_d = 8.5440037453175
Since max_d = 8.5440037453175 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 132 - 112
max_d = √2023 - 1681 - 169 - 121
max_d = √52
max_d = 7.211102550928
Since max_d = 7.211102550928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 132 - 122
max_d = √2023 - 1681 - 169 - 144
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 132 - 132
max_d = √2023 - 1681 - 169 - 169
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (41, 13, 13, 2) is an integer solution proven below
412 + 132 + 132 + 22 → 1681 + 169 + 169 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 412 - 142)
max_c = Floor(√2023 - 1681 - 196)
max_c = Floor(√146)
max_c = Floor(12.083045973595)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 412 - 142)/2 = 73
When min_c = 9, then it is c2 = 81 ≥ 73, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 142 - 92
max_d = √2023 - 1681 - 196 - 81
max_d = √65
max_d = 8.0622577482985
Since max_d = 8.0622577482985 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 142 - 102
max_d = √2023 - 1681 - 196 - 100
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 142 - 112
max_d = √2023 - 1681 - 196 - 121
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (41, 14, 11, 5) is an integer solution proven below
412 + 142 + 112 + 52 → 1681 + 196 + 121 + 25 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 142 - 122
max_d = √2023 - 1681 - 196 - 144
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 412 - 152)
max_c = Floor(√2023 - 1681 - 225)
max_c = Floor(√117)
max_c = Floor(10.816653826392)
max_c = 10
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 412 - 152)/2 = 58.5
When min_c = 8, then it is c2 = 64 ≥ 58.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 152 - 82
max_d = √2023 - 1681 - 225 - 64
max_d = √53
max_d = 7.2801098892805
Since max_d = 7.2801098892805 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 152 - 92
max_d = √2023 - 1681 - 225 - 81
max_d = √36
max_d = 6
Since max_d = 6, then (a, b, c, d) = (41, 15, 9, 6) is an integer solution proven below
412 + 152 + 92 + 62 → 1681 + 225 + 81 + 36 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 152 - 102
max_d = √2023 - 1681 - 225 - 100
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 412 - 162)
max_c = Floor(√2023 - 1681 - 256)
max_c = Floor(√86)
max_c = Floor(9.2736184954957)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 412 - 162)/2 = 43
When min_c = 7, then it is c2 = 49 ≥ 43, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 162 - 72
max_d = √2023 - 1681 - 256 - 49
max_d = √37
max_d = 6.0827625302982
Since max_d = 6.0827625302982 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 162 - 82
max_d = √2023 - 1681 - 256 - 64
max_d = √22
max_d = 4.6904157598234
Since max_d = 4.6904157598234 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 162 - 92
max_d = √2023 - 1681 - 256 - 81
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 412 - 172)
max_c = Floor(√2023 - 1681 - 289)
max_c = Floor(√53)
max_c = Floor(7.2801098892805)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 412 - 172)/2 = 26.5
When min_c = 6, then it is c2 = 36 ≥ 26.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 172 - 62
max_d = √2023 - 1681 - 289 - 36
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 172 - 72
max_d = √2023 - 1681 - 289 - 49
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (41, 17, 7, 2) is an integer solution proven below
412 + 172 + 72 + 22 → 1681 + 289 + 49 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 412 - 182)
max_c = Floor(√2023 - 1681 - 324)
max_c = Floor(√18)
max_c = Floor(4.2426406871193)
max_c = 4
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 412 - 182)/2 = 9
When min_c = 3, then it is c2 = 9 ≥ 9, so min_c = 3
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 182 - 32
max_d = √2023 - 1681 - 324 - 9
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (41, 18, 3, 3) is an integer solution proven below
412 + 182 + 32 + 32 → 1681 + 324 + 9 + 9 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 412 - 182 - 42
max_d = √2023 - 1681 - 324 - 16
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 422)
max_b = Floor(√2023 - 1764)
max_b = Floor(√259)
max_b = Floor(16.093476939431)
max_b = 16
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 422)/3 = 86.333333333333
When min_b = 10, then it is b2 = 100 ≥ 86.333333333333, so min_b = 10
(10, 16)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 422 - 102)
max_c = Floor(√2023 - 1764 - 100)
max_c = Floor(√159)
max_c = Floor(12.609520212918)
max_c = 12
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 422 - 102)/2 = 79.5
When min_c = 9, then it is c2 = 81 ≥ 79.5, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 102 - 92
max_d = √2023 - 1764 - 100 - 81
max_d = √78
max_d = 8.8317608663278
Since max_d = 8.8317608663278 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 102 - 102
max_d = √2023 - 1764 - 100 - 100
max_d = √59
max_d = 7.6811457478686
Since max_d = 7.6811457478686 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 102 - 112
max_d = √2023 - 1764 - 100 - 121
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 102 - 122
max_d = √2023 - 1764 - 100 - 144
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 422 - 112)
max_c = Floor(√2023 - 1764 - 121)
max_c = Floor(√138)
max_c = Floor(11.747340124471)
max_c = 11
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 422 - 112)/2 = 69
When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 112 - 92
max_d = √2023 - 1764 - 121 - 81
max_d = √57
max_d = 7.5498344352707
Since max_d = 7.5498344352707 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 112 - 102
max_d = √2023 - 1764 - 121 - 100
max_d = √38
max_d = 6.164414002969
Since max_d = 6.164414002969 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 112 - 112
max_d = √2023 - 1764 - 121 - 121
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 422 - 122)
max_c = Floor(√2023 - 1764 - 144)
max_c = Floor(√115)
max_c = Floor(10.723805294764)
max_c = 10
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 422 - 122)/2 = 57.5
When min_c = 8, then it is c2 = 64 ≥ 57.5, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 122 - 82
max_d = √2023 - 1764 - 144 - 64
max_d = √51
max_d = 7.1414284285429
Since max_d = 7.1414284285429 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 122 - 92
max_d = √2023 - 1764 - 144 - 81
max_d = √34
max_d = 5.8309518948453
Since max_d = 5.8309518948453 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 122 - 102
max_d = √2023 - 1764 - 144 - 100
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 422 - 132)
max_c = Floor(√2023 - 1764 - 169)
max_c = Floor(√90)
max_c = Floor(9.4868329805051)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 422 - 132)/2 = 45
When min_c = 7, then it is c2 = 49 ≥ 45, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 132 - 72
max_d = √2023 - 1764 - 169 - 49
max_d = √41
max_d = 6.4031242374328
Since max_d = 6.4031242374328 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 132 - 82
max_d = √2023 - 1764 - 169 - 64
max_d = √26
max_d = 5.0990195135928
Since max_d = 5.0990195135928 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 132 - 92
max_d = √2023 - 1764 - 169 - 81
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (42, 13, 9, 3) is an integer solution proven below
422 + 132 + 92 + 32 → 1764 + 169 + 81 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 422 - 142)
max_c = Floor(√2023 - 1764 - 196)
max_c = Floor(√63)
max_c = Floor(7.9372539331938)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 422 - 142)/2 = 31.5
When min_c = 6, then it is c2 = 36 ≥ 31.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 142 - 62
max_d = √2023 - 1764 - 196 - 36
max_d = √27
max_d = 5.1961524227066
Since max_d = 5.1961524227066 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 142 - 72
max_d = √2023 - 1764 - 196 - 49
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 422 - 152)
max_c = Floor(√2023 - 1764 - 225)
max_c = Floor(√34)
max_c = Floor(5.8309518948453)
max_c = 5
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 422 - 152)/2 = 17
When min_c = 5, then it is c2 = 25 ≥ 17, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 422 - 152 - 52
max_d = √2023 - 1764 - 225 - 25
max_d = √9
max_d = 3
Since max_d = 3, then (a, b, c, d) = (42, 15, 5, 3) is an integer solution proven below
422 + 152 + 52 + 32 → 1764 + 225 + 25 + 9 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 422 - 162)
max_c = Floor(√2023 - 1764 - 256)
max_c = Floor(√3)
max_c = Floor(1.7320508075689)
max_c = 1
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 422 - 162)/2 = 1.5
When min_c = 2, then it is c2 = 4 ≥ 1.5, so min_c = 2
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 432)
max_b = Floor(√2023 - 1849)
max_b = Floor(√174)
max_b = Floor(13.190905958273)
max_b = 13
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 432)/3 = 58
When min_b = 8, then it is b2 = 64 ≥ 58, so min_b = 8
(8, 13)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 432 - 82)
max_c = Floor(√2023 - 1849 - 64)
max_c = Floor(√110)
max_c = Floor(10.488088481702)
max_c = 10
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 432 - 82)/2 = 55
When min_c = 8, then it is c2 = 64 ≥ 55, so min_c = 8
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 432 - 82 - 82
max_d = √2023 - 1849 - 64 - 64
max_d = √46
max_d = 6.7823299831253
Since max_d = 6.7823299831253 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 432 - 82 - 92
max_d = √2023 - 1849 - 64 - 81
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 432 - 82 - 102
max_d = √2023 - 1849 - 64 - 100
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 432 - 92)
max_c = Floor(√2023 - 1849 - 81)
max_c = Floor(√93)
max_c = Floor(9.643650760993)
max_c = 9
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 432 - 92)/2 = 46.5
When min_c = 7, then it is c2 = 49 ≥ 46.5, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 432 - 92 - 72
max_d = √2023 - 1849 - 81 - 49
max_d = √44
max_d = 6.6332495807108
Since max_d = 6.6332495807108 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 432 - 92 - 82
max_d = √2023 - 1849 - 81 - 64
max_d = √29
max_d = 5.3851648071345
Since max_d = 5.3851648071345 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 432 - 92 - 92
max_d = √2023 - 1849 - 81 - 81
max_d = √12
max_d = 3.4641016151378
Since max_d = 3.4641016151378 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 432 - 102)
max_c = Floor(√2023 - 1849 - 100)
max_c = Floor(√74)
max_c = Floor(8.6023252670426)
max_c = 8
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 432 - 102)/2 = 37
When min_c = 7, then it is c2 = 49 ≥ 37, so min_c = 7
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 432 - 102 - 72
max_d = √2023 - 1849 - 100 - 49
max_d = √25
max_d = 5
Since max_d = 5, then (a, b, c, d) = (43, 10, 7, 5) is an integer solution proven below
432 + 102 + 72 + 52 → 1849 + 100 + 49 + 25 = 2023
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 432 - 102 - 82
max_d = √2023 - 1849 - 100 - 64
max_d = √10
max_d = 3.1622776601684
Since max_d = 3.1622776601684 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 432 - 112)
max_c = Floor(√2023 - 1849 - 121)
max_c = Floor(√53)
max_c = Floor(7.2801098892805)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 432 - 112)/2 = 26.5
When min_c = 6, then it is c2 = 36 ≥ 26.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 432 - 112 - 62
max_d = √2023 - 1849 - 121 - 36
max_d = √17
max_d = 4.1231056256177
Since max_d = 4.1231056256177 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 432 - 112 - 72
max_d = √2023 - 1849 - 121 - 49
max_d = √4
max_d = 2
Since max_d = 2, then (a, b, c, d) = (43, 11, 7, 2) is an integer solution proven below
432 + 112 + 72 + 22 → 1849 + 121 + 49 + 4 = 2023
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 432 - 122)
max_c = Floor(√2023 - 1849 - 144)
max_c = Floor(√30)
max_c = Floor(5.4772255750517)
max_c = 5
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 432 - 122)/2 = 15
When min_c = 4, then it is c2 = 16 ≥ 15, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 432 - 122 - 42
max_d = √2023 - 1849 - 144 - 16
max_d = √14
max_d = 3.7416573867739
Since max_d = 3.7416573867739 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 432 - 122 - 52
max_d = √2023 - 1849 - 144 - 25
max_d = √5
max_d = 2.2360679774998
Since max_d = 2.2360679774998 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 432 - 132)
max_c = Floor(√2023 - 1849 - 169)
max_c = Floor(√5)
max_c = Floor(2.2360679774998)
max_c = 2
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 432 - 132)/2 = 2.5
When min_c = 2, then it is c2 = 4 ≥ 2.5, so min_c = 2
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 432 - 132 - 22
max_d = √2023 - 1849 - 169 - 4
max_d = √1
max_d = 1
Since max_d = 1, then (a, b, c, d) = (43, 13, 2, 1) is an integer solution proven below
432 + 132 + 22 + 12 → 1849 + 169 + 4 + 1 = 2023
Find max_b which is Floor(√n - a2)
max_b = Floor(√2023 - 442)
max_b = Floor(√2023 - 1936)
max_b = Floor(√87)
max_b = Floor(9.3273790530888)
max_b = 9
Find b such that b2 ≥ (n - a2)/3
Call it min_b
Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 442)/3 = 29
When min_b = 6, then it is b2 = 36 ≥ 29, so min_b = 6
(6, 9)
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 442 - 62)
max_c = Floor(√2023 - 1936 - 36)
max_c = Floor(√51)
max_c = Floor(7.1414284285429)
max_c = 7
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 442 - 62)/2 = 25.5
When min_c = 6, then it is c2 = 36 ≥ 25.5, so min_c = 6
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 442 - 62 - 62
max_d = √2023 - 1936 - 36 - 36
max_d = √15
max_d = 3.8729833462074
Since max_d = 3.8729833462074 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 442 - 62 - 72
max_d = √2023 - 1936 - 36 - 49
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 442 - 72)
max_c = Floor(√2023 - 1936 - 49)
max_c = Floor(√38)
max_c = Floor(6.164414002969)
max_c = 6
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 442 - 72)/2 = 19
When min_c = 5, then it is c2 = 25 ≥ 19, so min_c = 5
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 442 - 72 - 52
max_d = √2023 - 1936 - 49 - 25
max_d = √13
max_d = 3.605551275464
Since max_d = 3.605551275464 is not an integer, this is not a solution
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 442 - 72 - 62
max_d = √2023 - 1936 - 49 - 36
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 442 - 82)
max_c = Floor(√2023 - 1936 - 64)
max_c = Floor(√23)
max_c = Floor(4.7958315233127)
max_c = 4
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 442 - 82)/2 = 11.5
When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 442 - 82 - 42
max_d = √2023 - 1936 - 64 - 16
max_d = √7
max_d = 2.6457513110646
Since max_d = 2.6457513110646 is not an integer, this is not a solution
Determine max_c =Floor(√n - a2 - b2)
max_c = Floor(√2023 - 442 - 92)
max_c = Floor(√2023 - 1936 - 81)
max_c = Floor(√6)
max_c = Floor(2.4494897427832)
max_c = 2
Call it min_b
Start with min_c = 0 and increase by 1
Go until (n - a2 - b2 )/2 → (2023 - 442 - 92)/2 = 3
When min_c = 2, then it is c2 = 4 ≥ 3, so min_c = 2
See if d is an integer solution which is √n - a2 - b2
max_d = √2023 - 442 - 92 - 22
max_d = √2023 - 1936 - 81 - 4
max_d = √2
max_d = 1.4142135623731
Since max_d = 1.4142135623731 is not an integer, this is not a solution