Enter Number

Show the Lagrange Four Square Theorem for

2023

Lagrange Four Square Definition

For any natural number (p), we write as

p = a2 + b2 + c2 + d2

Determine max_a:

Floor(√2023) = Floor(44.977772288098)

Floor(44.977772288098) = 44
This is called max_a

Determine min_a:

Find the first value of a such that
a2 ≥ n/4

Start with min_a = 0 and increase by 1

Continue until we reach or breach n/4 → 2023/4 = 505.75

When min_a = 23, then it is a2 = 529 ≥ 505.75, so min_a = 23

Find a in the range of (min_a, max_a)

(0, 44)

a = 0

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 02)

max_b = Floor(√2023 - 0)

max_b = Floor(√2023)

max_b = Floor(44.977772288098)

max_b = 44

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 02)/3 = 674.33333333333

When min_b = 26, then it is b2 = 676 ≥ 674.33333333333, so min_b = 26

Test values for b in the range of (min_b, max_b)

(26, 44)

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 262)

max_c = Floor(√2023 - 0 - 676)

max_c = Floor(√1347)

max_c = Floor(36.701498607005)

max_c = 36

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 262)/2 = 673.5

When min_c = 26, then it is c2 = 676 ≥ 673.5, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 262 - 262

max_d = √2023 - 0 - 676 - 676

max_d = √671

max_d = 25.903667693977

Since max_d = 25.903667693977 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 262 - 272

max_d = √2023 - 0 - 676 - 729

max_d = √618

max_d = 24.859605789312

Since max_d = 24.859605789312 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 262 - 282

max_d = √2023 - 0 - 676 - 784

max_d = √563

max_d = 23.727621035409

Since max_d = 23.727621035409 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 262 - 292

max_d = √2023 - 0 - 676 - 841

max_d = √506

max_d = 22.494443758404

Since max_d = 22.494443758404 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 262 - 302

max_d = √2023 - 0 - 676 - 900

max_d = √447

max_d = 21.142374511866

Since max_d = 21.142374511866 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 262 - 312

max_d = √2023 - 0 - 676 - 961

max_d = √386

max_d = 19.646882704388

Since max_d = 19.646882704388 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 262 - 322

max_d = √2023 - 0 - 676 - 1024

max_d = √323

max_d = 17.972200755611

Since max_d = 17.972200755611 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 262 - 332

max_d = √2023 - 0 - 676 - 1089

max_d = √258

max_d = 16.062378404209

Since max_d = 16.062378404209 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 262 - 342

max_d = √2023 - 0 - 676 - 1156

max_d = √191

max_d = 13.820274961085

Since max_d = 13.820274961085 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 262 - 352

max_d = √2023 - 0 - 676 - 1225

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 36

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 262 - 362

max_d = √2023 - 0 - 676 - 1296

max_d = √51

max_d = 7.1414284285429

Since max_d = 7.1414284285429 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 272)

max_c = Floor(√2023 - 0 - 729)

max_c = Floor(√1294)

max_c = Floor(35.97221149721)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 272)/2 = 647

When min_c = 26, then it is c2 = 676 ≥ 647, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 272 - 262

max_d = √2023 - 0 - 729 - 676

max_d = √618

max_d = 24.859605789312

Since max_d = 24.859605789312 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 272 - 272

max_d = √2023 - 0 - 729 - 729

max_d = √565

max_d = 23.769728648009

Since max_d = 23.769728648009 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 272 - 282

max_d = √2023 - 0 - 729 - 784

max_d = √510

max_d = 22.583179581272

Since max_d = 22.583179581272 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 272 - 292

max_d = √2023 - 0 - 729 - 841

max_d = √453

max_d = 21.283796653793

Since max_d = 21.283796653793 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 272 - 302

max_d = √2023 - 0 - 729 - 900

max_d = √394

max_d = 19.849433241279

Since max_d = 19.849433241279 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 272 - 312

max_d = √2023 - 0 - 729 - 961

max_d = √333

max_d = 18.248287590895

Since max_d = 18.248287590895 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 272 - 322

max_d = √2023 - 0 - 729 - 1024

max_d = √270

max_d = 16.431676725155

Since max_d = 16.431676725155 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 272 - 332

max_d = √2023 - 0 - 729 - 1089

max_d = √205

max_d = 14.317821063276

Since max_d = 14.317821063276 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 272 - 342

max_d = √2023 - 0 - 729 - 1156

max_d = √138

max_d = 11.747340124471

Since max_d = 11.747340124471 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 272 - 352

max_d = √2023 - 0 - 729 - 1225

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 282)

max_c = Floor(√2023 - 0 - 784)

max_c = Floor(√1239)

max_c = Floor(35.199431813596)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 282)/2 = 619.5

When min_c = 25, then it is c2 = 625 ≥ 619.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 282 - 252

max_d = √2023 - 0 - 784 - 625

max_d = √614

max_d = 24.779023386728

Since max_d = 24.779023386728 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 282 - 262

max_d = √2023 - 0 - 784 - 676

max_d = √563

max_d = 23.727621035409

Since max_d = 23.727621035409 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 282 - 272

max_d = √2023 - 0 - 784 - 729

max_d = √510

max_d = 22.583179581272

Since max_d = 22.583179581272 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 282 - 282

max_d = √2023 - 0 - 784 - 784

max_d = √455

max_d = 21.330729007702

Since max_d = 21.330729007702 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 282 - 292

max_d = √2023 - 0 - 784 - 841

max_d = √398

max_d = 19.94993734326

Since max_d = 19.94993734326 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 282 - 302

max_d = √2023 - 0 - 784 - 900

max_d = √339

max_d = 18.411952639522

Since max_d = 18.411952639522 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 282 - 312

max_d = √2023 - 0 - 784 - 961

max_d = √278

max_d = 16.673332000533

Since max_d = 16.673332000533 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 282 - 322

max_d = √2023 - 0 - 784 - 1024

max_d = √215

max_d = 14.662878298615

Since max_d = 14.662878298615 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 282 - 332

max_d = √2023 - 0 - 784 - 1089

max_d = √150

max_d = 12.247448713916

Since max_d = 12.247448713916 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 282 - 342

max_d = √2023 - 0 - 784 - 1156

max_d = √83

max_d = 9.1104335791443

Since max_d = 9.1104335791443 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 282 - 352

max_d = √2023 - 0 - 784 - 1225

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 292)

max_c = Floor(√2023 - 0 - 841)

max_c = Floor(√1182)

max_c = Floor(34.380226875342)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 292)/2 = 591

When min_c = 25, then it is c2 = 625 ≥ 591, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 292 - 252

max_d = √2023 - 0 - 841 - 625

max_d = √557

max_d = 23.600847442412

Since max_d = 23.600847442412 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 292 - 262

max_d = √2023 - 0 - 841 - 676

max_d = √506

max_d = 22.494443758404

Since max_d = 22.494443758404 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 292 - 272

max_d = √2023 - 0 - 841 - 729

max_d = √453

max_d = 21.283796653793

Since max_d = 21.283796653793 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 292 - 282

max_d = √2023 - 0 - 841 - 784

max_d = √398

max_d = 19.94993734326

Since max_d = 19.94993734326 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 292 - 292

max_d = √2023 - 0 - 841 - 841

max_d = √341

max_d = 18.466185312619

Since max_d = 18.466185312619 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 292 - 302

max_d = √2023 - 0 - 841 - 900

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 292 - 312

max_d = √2023 - 0 - 841 - 961

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 292 - 322

max_d = √2023 - 0 - 841 - 1024

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 292 - 332

max_d = √2023 - 0 - 841 - 1089

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 292 - 342

max_d = √2023 - 0 - 841 - 1156

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 302)

max_c = Floor(√2023 - 0 - 900)

max_c = Floor(√1123)

max_c = Floor(33.511192160232)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 302)/2 = 561.5

When min_c = 24, then it is c2 = 576 ≥ 561.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 302 - 242

max_d = √2023 - 0 - 900 - 576

max_d = √547

max_d = 23.388031127053

Since max_d = 23.388031127053 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 302 - 252

max_d = √2023 - 0 - 900 - 625

max_d = √498

max_d = 22.315913604421

Since max_d = 22.315913604421 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 302 - 262

max_d = √2023 - 0 - 900 - 676

max_d = √447

max_d = 21.142374511866

Since max_d = 21.142374511866 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 302 - 272

max_d = √2023 - 0 - 900 - 729

max_d = √394

max_d = 19.849433241279

Since max_d = 19.849433241279 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 302 - 282

max_d = √2023 - 0 - 900 - 784

max_d = √339

max_d = 18.411952639522

Since max_d = 18.411952639522 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 302 - 292

max_d = √2023 - 0 - 900 - 841

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 302 - 302

max_d = √2023 - 0 - 900 - 900

max_d = √223

max_d = 14.933184523068

Since max_d = 14.933184523068 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 302 - 312

max_d = √2023 - 0 - 900 - 961

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 302 - 322

max_d = √2023 - 0 - 900 - 1024

max_d = √99

max_d = 9.9498743710662

Since max_d = 9.9498743710662 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 302 - 332

max_d = √2023 - 0 - 900 - 1089

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 312)

max_c = Floor(√2023 - 0 - 961)

max_c = Floor(√1062)

max_c = Floor(32.588341473601)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 312)/2 = 531

When min_c = 24, then it is c2 = 576 ≥ 531, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 312 - 242

max_d = √2023 - 0 - 961 - 576

max_d = √486

max_d = 22.045407685049

Since max_d = 22.045407685049 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 312 - 252

max_d = √2023 - 0 - 961 - 625

max_d = √437

max_d = 20.904544960367

Since max_d = 20.904544960367 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 312 - 262

max_d = √2023 - 0 - 961 - 676

max_d = √386

max_d = 19.646882704388

Since max_d = 19.646882704388 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 312 - 272

max_d = √2023 - 0 - 961 - 729

max_d = √333

max_d = 18.248287590895

Since max_d = 18.248287590895 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 312 - 282

max_d = √2023 - 0 - 961 - 784

max_d = √278

max_d = 16.673332000533

Since max_d = 16.673332000533 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 312 - 292

max_d = √2023 - 0 - 961 - 841

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 312 - 302

max_d = √2023 - 0 - 961 - 900

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 312 - 312

max_d = √2023 - 0 - 961 - 961

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 312 - 322

max_d = √2023 - 0 - 961 - 1024

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 322)

max_c = Floor(√2023 - 0 - 1024)

max_c = Floor(√999)

max_c = Floor(31.606961258558)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 322)/2 = 499.5

When min_c = 23, then it is c2 = 529 ≥ 499.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 322 - 232

max_d = √2023 - 0 - 1024 - 529

max_d = √470

max_d = 21.679483388679

Since max_d = 21.679483388679 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 322 - 242

max_d = √2023 - 0 - 1024 - 576

max_d = √423

max_d = 20.566963801203

Since max_d = 20.566963801203 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 322 - 252

max_d = √2023 - 0 - 1024 - 625

max_d = √374

max_d = 19.339079605814

Since max_d = 19.339079605814 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 322 - 262

max_d = √2023 - 0 - 1024 - 676

max_d = √323

max_d = 17.972200755611

Since max_d = 17.972200755611 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 322 - 272

max_d = √2023 - 0 - 1024 - 729

max_d = √270

max_d = 16.431676725155

Since max_d = 16.431676725155 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 322 - 282

max_d = √2023 - 0 - 1024 - 784

max_d = √215

max_d = 14.662878298615

Since max_d = 14.662878298615 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 322 - 292

max_d = √2023 - 0 - 1024 - 841

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 322 - 302

max_d = √2023 - 0 - 1024 - 900

max_d = √99

max_d = 9.9498743710662

Since max_d = 9.9498743710662 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 322 - 312

max_d = √2023 - 0 - 1024 - 961

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 332)

max_c = Floor(√2023 - 0 - 1089)

max_c = Floor(√934)

max_c = Floor(30.561413579872)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 332)/2 = 467

When min_c = 22, then it is c2 = 484 ≥ 467, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 332 - 222

max_d = √2023 - 0 - 1089 - 484

max_d = √450

max_d = 21.213203435596

Since max_d = 21.213203435596 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 332 - 232

max_d = √2023 - 0 - 1089 - 529

max_d = √405

max_d = 20.124611797498

Since max_d = 20.124611797498 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 332 - 242

max_d = √2023 - 0 - 1089 - 576

max_d = √358

max_d = 18.920887928425

Since max_d = 18.920887928425 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 332 - 252

max_d = √2023 - 0 - 1089 - 625

max_d = √309

max_d = 17.578395831247

Since max_d = 17.578395831247 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 332 - 262

max_d = √2023 - 0 - 1089 - 676

max_d = √258

max_d = 16.062378404209

Since max_d = 16.062378404209 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 332 - 272

max_d = √2023 - 0 - 1089 - 729

max_d = √205

max_d = 14.317821063276

Since max_d = 14.317821063276 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 332 - 282

max_d = √2023 - 0 - 1089 - 784

max_d = √150

max_d = 12.247448713916

Since max_d = 12.247448713916 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 332 - 292

max_d = √2023 - 0 - 1089 - 841

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 332 - 302

max_d = √2023 - 0 - 1089 - 900

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 342)

max_c = Floor(√2023 - 0 - 1156)

max_c = Floor(√867)

max_c = Floor(29.444863728671)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 342)/2 = 433.5

When min_c = 21, then it is c2 = 441 ≥ 433.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 342 - 212

max_d = √2023 - 0 - 1156 - 441

max_d = √426

max_d = 20.63976744055

Since max_d = 20.63976744055 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 342 - 222

max_d = √2023 - 0 - 1156 - 484

max_d = √383

max_d = 19.570385790781

Since max_d = 19.570385790781 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 342 - 232

max_d = √2023 - 0 - 1156 - 529

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 342 - 242

max_d = √2023 - 0 - 1156 - 576

max_d = √291

max_d = 17.058722109232

Since max_d = 17.058722109232 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 342 - 252

max_d = √2023 - 0 - 1156 - 625

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 342 - 262

max_d = √2023 - 0 - 1156 - 676

max_d = √191

max_d = 13.820274961085

Since max_d = 13.820274961085 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 342 - 272

max_d = √2023 - 0 - 1156 - 729

max_d = √138

max_d = 11.747340124471

Since max_d = 11.747340124471 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 342 - 282

max_d = √2023 - 0 - 1156 - 784

max_d = √83

max_d = 9.1104335791443

Since max_d = 9.1104335791443 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 342 - 292

max_d = √2023 - 0 - 1156 - 841

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 352)

max_c = Floor(√2023 - 0 - 1225)

max_c = Floor(√798)

max_c = Floor(28.248893783651)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 352)/2 = 399

When min_c = 20, then it is c2 = 400 ≥ 399, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 352 - 202

max_d = √2023 - 0 - 1225 - 400

max_d = √398

max_d = 19.94993734326

Since max_d = 19.94993734326 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 352 - 212

max_d = √2023 - 0 - 1225 - 441

max_d = √357

max_d = 18.894443627691

Since max_d = 18.894443627691 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 352 - 222

max_d = √2023 - 0 - 1225 - 484

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 352 - 232

max_d = √2023 - 0 - 1225 - 529

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 352 - 242

max_d = √2023 - 0 - 1225 - 576

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 352 - 252

max_d = √2023 - 0 - 1225 - 625

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 352 - 262

max_d = √2023 - 0 - 1225 - 676

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 352 - 272

max_d = √2023 - 0 - 1225 - 729

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 352 - 282

max_d = √2023 - 0 - 1225 - 784

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 362)

max_c = Floor(√2023 - 0 - 1296)

max_c = Floor(√727)

max_c = Floor(26.962937525426)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 362)/2 = 363.5

When min_c = 20, then it is c2 = 400 ≥ 363.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 362 - 202

max_d = √2023 - 0 - 1296 - 400

max_d = √327

max_d = 18.083141320025

Since max_d = 18.083141320025 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 362 - 212

max_d = √2023 - 0 - 1296 - 441

max_d = √286

max_d = 16.911534525288

Since max_d = 16.911534525288 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 362 - 222

max_d = √2023 - 0 - 1296 - 484

max_d = √243

max_d = 15.58845726812

Since max_d = 15.58845726812 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 362 - 232

max_d = √2023 - 0 - 1296 - 529

max_d = √198

max_d = 14.07124727947

Since max_d = 14.07124727947 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 362 - 242

max_d = √2023 - 0 - 1296 - 576

max_d = √151

max_d = 12.288205727445

Since max_d = 12.288205727445 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 362 - 252

max_d = √2023 - 0 - 1296 - 625

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 362 - 262

max_d = √2023 - 0 - 1296 - 676

max_d = √51

max_d = 7.1414284285429

Since max_d = 7.1414284285429 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 372)

max_c = Floor(√2023 - 0 - 1369)

max_c = Floor(√654)

max_c = Floor(25.573423705089)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 372)/2 = 327

When min_c = 19, then it is c2 = 361 ≥ 327, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 372 - 192

max_d = √2023 - 0 - 1369 - 361

max_d = √293

max_d = 17.117242768624

Since max_d = 17.117242768624 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 372 - 202

max_d = √2023 - 0 - 1369 - 400

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 372 - 212

max_d = √2023 - 0 - 1369 - 441

max_d = √213

max_d = 14.594519519326

Since max_d = 14.594519519326 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 372 - 222

max_d = √2023 - 0 - 1369 - 484

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 372 - 232

max_d = √2023 - 0 - 1369 - 529

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 372 - 242

max_d = √2023 - 0 - 1369 - 576

max_d = √78

max_d = 8.8317608663278

Since max_d = 8.8317608663278 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 372 - 252

max_d = √2023 - 0 - 1369 - 625

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 382)

max_c = Floor(√2023 - 0 - 1444)

max_c = Floor(√579)

max_c = Floor(24.062418831032)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 382)/2 = 289.5

When min_c = 18, then it is c2 = 324 ≥ 289.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 382 - 182

max_d = √2023 - 0 - 1444 - 324

max_d = √255

max_d = 15.968719422671

Since max_d = 15.968719422671 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 382 - 192

max_d = √2023 - 0 - 1444 - 361

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 382 - 202

max_d = √2023 - 0 - 1444 - 400

max_d = √179

max_d = 13.37908816026

Since max_d = 13.37908816026 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 382 - 212

max_d = √2023 - 0 - 1444 - 441

max_d = √138

max_d = 11.747340124471

Since max_d = 11.747340124471 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 382 - 222

max_d = √2023 - 0 - 1444 - 484

max_d = √95

max_d = 9.746794344809

Since max_d = 9.746794344809 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 382 - 232

max_d = √2023 - 0 - 1444 - 529

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 382 - 242

max_d = √2023 - 0 - 1444 - 576

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 392)

max_c = Floor(√2023 - 0 - 1521)

max_c = Floor(√502)

max_c = Floor(22.405356502408)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 392)/2 = 251

When min_c = 16, then it is c2 = 256 ≥ 251, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 392 - 162

max_d = √2023 - 0 - 1521 - 256

max_d = √246

max_d = 15.684387141358

Since max_d = 15.684387141358 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 392 - 172

max_d = √2023 - 0 - 1521 - 289

max_d = √213

max_d = 14.594519519326

Since max_d = 14.594519519326 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 392 - 182

max_d = √2023 - 0 - 1521 - 324

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 392 - 192

max_d = √2023 - 0 - 1521 - 361

max_d = √141

max_d = 11.874342087038

Since max_d = 11.874342087038 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 392 - 202

max_d = √2023 - 0 - 1521 - 400

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 392 - 212

max_d = √2023 - 0 - 1521 - 441

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 392 - 222

max_d = √2023 - 0 - 1521 - 484

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 402)

max_c = Floor(√2023 - 0 - 1600)

max_c = Floor(√423)

max_c = Floor(20.566963801203)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 402)/2 = 211.5

When min_c = 15, then it is c2 = 225 ≥ 211.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 402 - 152

max_d = √2023 - 0 - 1600 - 225

max_d = √198

max_d = 14.07124727947

Since max_d = 14.07124727947 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 402 - 162

max_d = √2023 - 0 - 1600 - 256

max_d = √167

max_d = 12.92284798332

Since max_d = 12.92284798332 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 402 - 172

max_d = √2023 - 0 - 1600 - 289

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 402 - 182

max_d = √2023 - 0 - 1600 - 324

max_d = √99

max_d = 9.9498743710662

Since max_d = 9.9498743710662 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 402 - 192

max_d = √2023 - 0 - 1600 - 361

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 402 - 202

max_d = √2023 - 0 - 1600 - 400

max_d = √23

max_d = 4.7958315233127

Since max_d = 4.7958315233127 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 412)

max_c = Floor(√2023 - 0 - 1681)

max_c = Floor(√342)

max_c = Floor(18.493242008907)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 412)/2 = 171

When min_c = 14, then it is c2 = 196 ≥ 171, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 412 - 142

max_d = √2023 - 0 - 1681 - 196

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 412 - 152

max_d = √2023 - 0 - 1681 - 225

max_d = √117

max_d = 10.816653826392

Since max_d = 10.816653826392 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 412 - 162

max_d = √2023 - 0 - 1681 - 256

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 412 - 172

max_d = √2023 - 0 - 1681 - 289

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 412 - 182

max_d = √2023 - 0 - 1681 - 324

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 422)

max_c = Floor(√2023 - 0 - 1764)

max_c = Floor(√259)

max_c = Floor(16.093476939431)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 422)/2 = 129.5

When min_c = 12, then it is c2 = 144 ≥ 129.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 422 - 122

max_d = √2023 - 0 - 1764 - 144

max_d = √115

max_d = 10.723805294764

Since max_d = 10.723805294764 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 422 - 132

max_d = √2023 - 0 - 1764 - 169

max_d = √90

max_d = 9.4868329805051

Since max_d = 9.4868329805051 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 422 - 142

max_d = √2023 - 0 - 1764 - 196

max_d = √63

max_d = 7.9372539331938

Since max_d = 7.9372539331938 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 422 - 152

max_d = √2023 - 0 - 1764 - 225

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 422 - 162

max_d = √2023 - 0 - 1764 - 256

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 432)

max_c = Floor(√2023 - 0 - 1849)

max_c = Floor(√174)

max_c = Floor(13.190905958273)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 432)/2 = 87

When min_c = 10, then it is c2 = 100 ≥ 87, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 432 - 102

max_d = √2023 - 0 - 1849 - 100

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 432 - 112

max_d = √2023 - 0 - 1849 - 121

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 432 - 122

max_d = √2023 - 0 - 1849 - 144

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 432 - 132

max_d = √2023 - 0 - 1849 - 169

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 44

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 02 - 442)

max_c = Floor(√2023 - 0 - 1936)

max_c = Floor(√87)

max_c = Floor(9.3273790530888)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 02 - 442)/2 = 43.5

When min_c = 7, then it is c2 = 49 ≥ 43.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 442 - 72

max_d = √2023 - 0 - 1936 - 49

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 442 - 82

max_d = √2023 - 0 - 1936 - 64

max_d = √23

max_d = 4.7958315233127

Since max_d = 4.7958315233127 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 02 - 442 - 92

max_d = √2023 - 0 - 1936 - 81

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

a = 1

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 12)

max_b = Floor(√2023 - 1)

max_b = Floor(√2022)

max_b = Floor(44.966654311834)

max_b = 44

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 12)/3 = 674

When min_b = 26, then it is b2 = 676 ≥ 674, so min_b = 26

Test values for b in the range of (min_b, max_b)

(26, 44)

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 262)

max_c = Floor(√2023 - 1 - 676)

max_c = Floor(√1346)

max_c = Floor(36.687872655688)

max_c = 36

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 262)/2 = 673

When min_c = 26, then it is c2 = 676 ≥ 673, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 262 - 262

max_d = √2023 - 1 - 676 - 676

max_d = √670

max_d = 25.88435821109

Since max_d = 25.88435821109 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 262 - 272

max_d = √2023 - 1 - 676 - 729

max_d = √617

max_d = 24.839484696748

Since max_d = 24.839484696748 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 262 - 282

max_d = √2023 - 1 - 676 - 784

max_d = √562

max_d = 23.706539182259

Since max_d = 23.706539182259 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 262 - 292

max_d = √2023 - 1 - 676 - 841

max_d = √505

max_d = 22.472205054244

Since max_d = 22.472205054244 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 262 - 302

max_d = √2023 - 1 - 676 - 900

max_d = √446

max_d = 21.118712081943

Since max_d = 21.118712081943 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 262 - 312

max_d = √2023 - 1 - 676 - 961

max_d = √385

max_d = 19.621416870349

Since max_d = 19.621416870349 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 262 - 322

max_d = √2023 - 1 - 676 - 1024

max_d = √322

max_d = 17.944358444926

Since max_d = 17.944358444926 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 262 - 332

max_d = √2023 - 1 - 676 - 1089

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 262 - 342

max_d = √2023 - 1 - 676 - 1156

max_d = √190

max_d = 13.78404875209

Since max_d = 13.78404875209 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 262 - 352

max_d = √2023 - 1 - 676 - 1225

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (1, 26, 35, 11) is an integer solution proven below

12 + 262 + 352 + 112 → 1 + 676 + 1225 + 121 = 2023

c = 36

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 262 - 362

max_d = √2023 - 1 - 676 - 1296

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 272)

max_c = Floor(√2023 - 1 - 729)

max_c = Floor(√1293)

max_c = Floor(35.95830919273)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 272)/2 = 646.5

When min_c = 26, then it is c2 = 676 ≥ 646.5, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 272 - 262

max_d = √2023 - 1 - 729 - 676

max_d = √617

max_d = 24.839484696748

Since max_d = 24.839484696748 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 272 - 272

max_d = √2023 - 1 - 729 - 729

max_d = √564

max_d = 23.748684174076

Since max_d = 23.748684174076 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 272 - 282

max_d = √2023 - 1 - 729 - 784

max_d = √509

max_d = 22.561028345357

Since max_d = 22.561028345357 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 272 - 292

max_d = √2023 - 1 - 729 - 841

max_d = √452

max_d = 21.260291625469

Since max_d = 21.260291625469 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 272 - 302

max_d = √2023 - 1 - 729 - 900

max_d = √393

max_d = 19.824227601599

Since max_d = 19.824227601599 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 272 - 312

max_d = √2023 - 1 - 729 - 961

max_d = √332

max_d = 18.220867158289

Since max_d = 18.220867158289 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 272 - 322

max_d = √2023 - 1 - 729 - 1024

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 272 - 332

max_d = √2023 - 1 - 729 - 1089

max_d = √204

max_d = 14.282856857086

Since max_d = 14.282856857086 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 272 - 342

max_d = √2023 - 1 - 729 - 1156

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 272 - 352

max_d = √2023 - 1 - 729 - 1225

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 282)

max_c = Floor(√2023 - 1 - 784)

max_c = Floor(√1238)

max_c = Floor(35.185224171518)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 282)/2 = 619

When min_c = 25, then it is c2 = 625 ≥ 619, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 282 - 252

max_d = √2023 - 1 - 784 - 625

max_d = √613

max_d = 24.75883680628

Since max_d = 24.75883680628 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 282 - 262

max_d = √2023 - 1 - 784 - 676

max_d = √562

max_d = 23.706539182259

Since max_d = 23.706539182259 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 282 - 272

max_d = √2023 - 1 - 784 - 729

max_d = √509

max_d = 22.561028345357

Since max_d = 22.561028345357 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 282 - 282

max_d = √2023 - 1 - 784 - 784

max_d = √454

max_d = 21.307275752663

Since max_d = 21.307275752663 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 282 - 292

max_d = √2023 - 1 - 784 - 841

max_d = √397

max_d = 19.924858845171

Since max_d = 19.924858845171 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 282 - 302

max_d = √2023 - 1 - 784 - 900

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 282 - 312

max_d = √2023 - 1 - 784 - 961

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 282 - 322

max_d = √2023 - 1 - 784 - 1024

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 282 - 332

max_d = √2023 - 1 - 784 - 1089

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 282 - 342

max_d = √2023 - 1 - 784 - 1156

max_d = √82

max_d = 9.0553851381374

Since max_d = 9.0553851381374 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 282 - 352

max_d = √2023 - 1 - 784 - 1225

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 292)

max_c = Floor(√2023 - 1 - 841)

max_c = Floor(√1181)

max_c = Floor(34.365680554879)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 292)/2 = 590.5

When min_c = 25, then it is c2 = 625 ≥ 590.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 292 - 252

max_d = √2023 - 1 - 841 - 625

max_d = √556

max_d = 23.579652245103

Since max_d = 23.579652245103 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 292 - 262

max_d = √2023 - 1 - 841 - 676

max_d = √505

max_d = 22.472205054244

Since max_d = 22.472205054244 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 292 - 272

max_d = √2023 - 1 - 841 - 729

max_d = √452

max_d = 21.260291625469

Since max_d = 21.260291625469 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 292 - 282

max_d = √2023 - 1 - 841 - 784

max_d = √397

max_d = 19.924858845171

Since max_d = 19.924858845171 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 292 - 292

max_d = √2023 - 1 - 841 - 841

max_d = √340

max_d = 18.439088914586

Since max_d = 18.439088914586 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 292 - 302

max_d = √2023 - 1 - 841 - 900

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 292 - 312

max_d = √2023 - 1 - 841 - 961

max_d = √220

max_d = 14.832396974191

Since max_d = 14.832396974191 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 292 - 322

max_d = √2023 - 1 - 841 - 1024

max_d = √157

max_d = 12.529964086142

Since max_d = 12.529964086142 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 292 - 332

max_d = √2023 - 1 - 841 - 1089

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 292 - 342

max_d = √2023 - 1 - 841 - 1156

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (1, 29, 34, 5) is an integer solution proven below

12 + 292 + 342 + 52 → 1 + 841 + 1156 + 25 = 2023

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 302)

max_c = Floor(√2023 - 1 - 900)

max_c = Floor(√1122)

max_c = Floor(33.496268448888)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 302)/2 = 561

When min_c = 24, then it is c2 = 576 ≥ 561, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 302 - 242

max_d = √2023 - 1 - 900 - 576

max_d = √546

max_d = 23.366642891096

Since max_d = 23.366642891096 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 302 - 252

max_d = √2023 - 1 - 900 - 625

max_d = √497

max_d = 22.293496809608

Since max_d = 22.293496809608 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 302 - 262

max_d = √2023 - 1 - 900 - 676

max_d = √446

max_d = 21.118712081943

Since max_d = 21.118712081943 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 302 - 272

max_d = √2023 - 1 - 900 - 729

max_d = √393

max_d = 19.824227601599

Since max_d = 19.824227601599 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 302 - 282

max_d = √2023 - 1 - 900 - 784

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 302 - 292

max_d = √2023 - 1 - 900 - 841

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 302 - 302

max_d = √2023 - 1 - 900 - 900

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 302 - 312

max_d = √2023 - 1 - 900 - 961

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 302 - 322

max_d = √2023 - 1 - 900 - 1024

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 302 - 332

max_d = √2023 - 1 - 900 - 1089

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 312)

max_c = Floor(√2023 - 1 - 961)

max_c = Floor(√1061)

max_c = Floor(32.572994949805)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 312)/2 = 530.5

When min_c = 24, then it is c2 = 576 ≥ 530.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 312 - 242

max_d = √2023 - 1 - 961 - 576

max_d = √485

max_d = 22.022715545545

Since max_d = 22.022715545545 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 312 - 252

max_d = √2023 - 1 - 961 - 625

max_d = √436

max_d = 20.880613017821

Since max_d = 20.880613017821 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 312 - 262

max_d = √2023 - 1 - 961 - 676

max_d = √385

max_d = 19.621416870349

Since max_d = 19.621416870349 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 312 - 272

max_d = √2023 - 1 - 961 - 729

max_d = √332

max_d = 18.220867158289

Since max_d = 18.220867158289 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 312 - 282

max_d = √2023 - 1 - 961 - 784

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 312 - 292

max_d = √2023 - 1 - 961 - 841

max_d = √220

max_d = 14.832396974191

Since max_d = 14.832396974191 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 312 - 302

max_d = √2023 - 1 - 961 - 900

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 312 - 312

max_d = √2023 - 1 - 961 - 961

max_d = √100

max_d = 10

Since max_d = 10, then (a, b, c, d) = (1, 31, 31, 10) is an integer solution proven below

12 + 312 + 312 + 102 → 1 + 961 + 961 + 100 = 2023

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 312 - 322

max_d = √2023 - 1 - 961 - 1024

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 322)

max_c = Floor(√2023 - 1 - 1024)

max_c = Floor(√998)

max_c = Floor(31.591137997863)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 322)/2 = 499

When min_c = 23, then it is c2 = 529 ≥ 499, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 322 - 232

max_d = √2023 - 1 - 1024 - 529

max_d = √469

max_d = 21.656407827708

Since max_d = 21.656407827708 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 322 - 242

max_d = √2023 - 1 - 1024 - 576

max_d = √422

max_d = 20.542638584174

Since max_d = 20.542638584174 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 322 - 252

max_d = √2023 - 1 - 1024 - 625

max_d = √373

max_d = 19.313207915828

Since max_d = 19.313207915828 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 322 - 262

max_d = √2023 - 1 - 1024 - 676

max_d = √322

max_d = 17.944358444926

Since max_d = 17.944358444926 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 322 - 272

max_d = √2023 - 1 - 1024 - 729

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 322 - 282

max_d = √2023 - 1 - 1024 - 784

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 322 - 292

max_d = √2023 - 1 - 1024 - 841

max_d = √157

max_d = 12.529964086142

Since max_d = 12.529964086142 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 322 - 302

max_d = √2023 - 1 - 1024 - 900

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 322 - 312

max_d = √2023 - 1 - 1024 - 961

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 332)

max_c = Floor(√2023 - 1 - 1089)

max_c = Floor(√933)

max_c = Floor(30.545048698603)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 332)/2 = 466.5

When min_c = 22, then it is c2 = 484 ≥ 466.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 332 - 222

max_d = √2023 - 1 - 1089 - 484

max_d = √449

max_d = 21.189620100417

Since max_d = 21.189620100417 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 332 - 232

max_d = √2023 - 1 - 1089 - 529

max_d = √404

max_d = 20.099751242242

Since max_d = 20.099751242242 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 332 - 242

max_d = √2023 - 1 - 1089 - 576

max_d = √357

max_d = 18.894443627691

Since max_d = 18.894443627691 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 332 - 252

max_d = √2023 - 1 - 1089 - 625

max_d = √308

max_d = 17.549928774784

Since max_d = 17.549928774784 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 332 - 262

max_d = √2023 - 1 - 1089 - 676

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 332 - 272

max_d = √2023 - 1 - 1089 - 729

max_d = √204

max_d = 14.282856857086

Since max_d = 14.282856857086 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 332 - 282

max_d = √2023 - 1 - 1089 - 784

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 332 - 292

max_d = √2023 - 1 - 1089 - 841

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 332 - 302

max_d = √2023 - 1 - 1089 - 900

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 342)

max_c = Floor(√2023 - 1 - 1156)

max_c = Floor(√866)

max_c = Floor(29.427877939124)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 342)/2 = 433

When min_c = 21, then it is c2 = 441 ≥ 433, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 342 - 212

max_d = √2023 - 1 - 1156 - 441

max_d = √425

max_d = 20.615528128088

Since max_d = 20.615528128088 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 342 - 222

max_d = √2023 - 1 - 1156 - 484

max_d = √382

max_d = 19.544820285692

Since max_d = 19.544820285692 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 342 - 232

max_d = √2023 - 1 - 1156 - 529

max_d = √337

max_d = 18.357559750686

Since max_d = 18.357559750686 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 342 - 242

max_d = √2023 - 1 - 1156 - 576

max_d = √290

max_d = 17.029386365926

Since max_d = 17.029386365926 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 342 - 252

max_d = √2023 - 1 - 1156 - 625

max_d = √241

max_d = 15.52417469626

Since max_d = 15.52417469626 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 342 - 262

max_d = √2023 - 1 - 1156 - 676

max_d = √190

max_d = 13.78404875209

Since max_d = 13.78404875209 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 342 - 272

max_d = √2023 - 1 - 1156 - 729

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 342 - 282

max_d = √2023 - 1 - 1156 - 784

max_d = √82

max_d = 9.0553851381374

Since max_d = 9.0553851381374 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 342 - 292

max_d = √2023 - 1 - 1156 - 841

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (1, 34, 29, 5) is an integer solution proven below

12 + 342 + 292 + 52 → 1 + 1156 + 841 + 25 = 2023

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 352)

max_c = Floor(√2023 - 1 - 1225)

max_c = Floor(√797)

max_c = Floor(28.231188426986)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 352)/2 = 398.5

When min_c = 20, then it is c2 = 400 ≥ 398.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 352 - 202

max_d = √2023 - 1 - 1225 - 400

max_d = √397

max_d = 19.924858845171

Since max_d = 19.924858845171 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 352 - 212

max_d = √2023 - 1 - 1225 - 441

max_d = √356

max_d = 18.867962264113

Since max_d = 18.867962264113 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 352 - 222

max_d = √2023 - 1 - 1225 - 484

max_d = √313

max_d = 17.691806012954

Since max_d = 17.691806012954 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 352 - 232

max_d = √2023 - 1 - 1225 - 529

max_d = √268

max_d = 16.370705543745

Since max_d = 16.370705543745 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 352 - 242

max_d = √2023 - 1 - 1225 - 576

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 352 - 252

max_d = √2023 - 1 - 1225 - 625

max_d = √172

max_d = 13.114877048604

Since max_d = 13.114877048604 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 352 - 262

max_d = √2023 - 1 - 1225 - 676

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (1, 35, 26, 11) is an integer solution proven below

12 + 352 + 262 + 112 → 1 + 1225 + 676 + 121 = 2023

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 352 - 272

max_d = √2023 - 1 - 1225 - 729

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 352 - 282

max_d = √2023 - 1 - 1225 - 784

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 362)

max_c = Floor(√2023 - 1 - 1296)

max_c = Floor(√726)

max_c = Floor(26.944387170615)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 362)/2 = 363

When min_c = 20, then it is c2 = 400 ≥ 363, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 362 - 202

max_d = √2023 - 1 - 1296 - 400

max_d = √326

max_d = 18.055470085268

Since max_d = 18.055470085268 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 362 - 212

max_d = √2023 - 1 - 1296 - 441

max_d = √285

max_d = 16.881943016134

Since max_d = 16.881943016134 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 362 - 222

max_d = √2023 - 1 - 1296 - 484

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 362 - 232

max_d = √2023 - 1 - 1296 - 529

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 362 - 242

max_d = √2023 - 1 - 1296 - 576

max_d = √150

max_d = 12.247448713916

Since max_d = 12.247448713916 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 362 - 252

max_d = √2023 - 1 - 1296 - 625

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 362 - 262

max_d = √2023 - 1 - 1296 - 676

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 372)

max_c = Floor(√2023 - 1 - 1369)

max_c = Floor(√653)

max_c = Floor(25.553864678361)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 372)/2 = 326.5

When min_c = 19, then it is c2 = 361 ≥ 326.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 372 - 192

max_d = √2023 - 1 - 1369 - 361

max_d = √292

max_d = 17.088007490635

Since max_d = 17.088007490635 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 372 - 202

max_d = √2023 - 1 - 1369 - 400

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 372 - 212

max_d = √2023 - 1 - 1369 - 441

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 372 - 222

max_d = √2023 - 1 - 1369 - 484

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (1, 37, 22, 13) is an integer solution proven below

12 + 372 + 222 + 132 → 1 + 1369 + 484 + 169 = 2023

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 372 - 232

max_d = √2023 - 1 - 1369 - 529

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 372 - 242

max_d = √2023 - 1 - 1369 - 576

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 372 - 252

max_d = √2023 - 1 - 1369 - 625

max_d = √28

max_d = 5.2915026221292

Since max_d = 5.2915026221292 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 382)

max_c = Floor(√2023 - 1 - 1444)

max_c = Floor(√578)

max_c = Floor(24.041630560343)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 382)/2 = 289

When min_c = 17, then it is c2 = 289 ≥ 289, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 382 - 172

max_d = √2023 - 1 - 1444 - 289

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (1, 38, 17, 17) is an integer solution proven below

12 + 382 + 172 + 172 → 1 + 1444 + 289 + 289 = 2023

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 382 - 182

max_d = √2023 - 1 - 1444 - 324

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 382 - 192

max_d = √2023 - 1 - 1444 - 361

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 382 - 202

max_d = √2023 - 1 - 1444 - 400

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 382 - 212

max_d = √2023 - 1 - 1444 - 441

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 382 - 222

max_d = √2023 - 1 - 1444 - 484

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 382 - 232

max_d = √2023 - 1 - 1444 - 529

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (1, 38, 23, 7) is an integer solution proven below

12 + 382 + 232 + 72 → 1 + 1444 + 529 + 49 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 382 - 242

max_d = √2023 - 1 - 1444 - 576

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 392)

max_c = Floor(√2023 - 1 - 1521)

max_c = Floor(√501)

max_c = Floor(22.383029285599)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 392)/2 = 250.5

When min_c = 16, then it is c2 = 256 ≥ 250.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 392 - 162

max_d = √2023 - 1 - 1521 - 256

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 392 - 172

max_d = √2023 - 1 - 1521 - 289

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 392 - 182

max_d = √2023 - 1 - 1521 - 324

max_d = √177

max_d = 13.30413469565

Since max_d = 13.30413469565 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 392 - 192

max_d = √2023 - 1 - 1521 - 361

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 392 - 202

max_d = √2023 - 1 - 1521 - 400

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 392 - 212

max_d = √2023 - 1 - 1521 - 441

max_d = √60

max_d = 7.7459666924148

Since max_d = 7.7459666924148 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 392 - 222

max_d = √2023 - 1 - 1521 - 484

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 402)

max_c = Floor(√2023 - 1 - 1600)

max_c = Floor(√422)

max_c = Floor(20.542638584174)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 402)/2 = 211

When min_c = 15, then it is c2 = 225 ≥ 211, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 402 - 152

max_d = √2023 - 1 - 1600 - 225

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 402 - 162

max_d = √2023 - 1 - 1600 - 256

max_d = √166

max_d = 12.884098726725

Since max_d = 12.884098726725 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 402 - 172

max_d = √2023 - 1 - 1600 - 289

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 402 - 182

max_d = √2023 - 1 - 1600 - 324

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 402 - 192

max_d = √2023 - 1 - 1600 - 361

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 402 - 202

max_d = √2023 - 1 - 1600 - 400

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 412)

max_c = Floor(√2023 - 1 - 1681)

max_c = Floor(√341)

max_c = Floor(18.466185312619)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 412)/2 = 170.5

When min_c = 14, then it is c2 = 196 ≥ 170.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 412 - 142

max_d = √2023 - 1 - 1681 - 196

max_d = √145

max_d = 12.041594578792

Since max_d = 12.041594578792 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 412 - 152

max_d = √2023 - 1 - 1681 - 225

max_d = √116

max_d = 10.770329614269

Since max_d = 10.770329614269 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 412 - 162

max_d = √2023 - 1 - 1681 - 256

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 412 - 172

max_d = √2023 - 1 - 1681 - 289

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 412 - 182

max_d = √2023 - 1 - 1681 - 324

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 422)

max_c = Floor(√2023 - 1 - 1764)

max_c = Floor(√258)

max_c = Floor(16.062378404209)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 422)/2 = 129

When min_c = 12, then it is c2 = 144 ≥ 129, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 422 - 122

max_d = √2023 - 1 - 1764 - 144

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 422 - 132

max_d = √2023 - 1 - 1764 - 169

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 422 - 142

max_d = √2023 - 1 - 1764 - 196

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 422 - 152

max_d = √2023 - 1 - 1764 - 225

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 422 - 162

max_d = √2023 - 1 - 1764 - 256

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 432)

max_c = Floor(√2023 - 1 - 1849)

max_c = Floor(√173)

max_c = Floor(13.152946437966)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 432)/2 = 86.5

When min_c = 10, then it is c2 = 100 ≥ 86.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 432 - 102

max_d = √2023 - 1 - 1849 - 100

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 432 - 112

max_d = √2023 - 1 - 1849 - 121

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 432 - 122

max_d = √2023 - 1 - 1849 - 144

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 432 - 132

max_d = √2023 - 1 - 1849 - 169

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (1, 43, 13, 2) is an integer solution proven below

12 + 432 + 132 + 22 → 1 + 1849 + 169 + 4 = 2023

b = 44

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 12 - 442)

max_c = Floor(√2023 - 1 - 1936)

max_c = Floor(√86)

max_c = Floor(9.2736184954957)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 12 - 442)/2 = 43

When min_c = 7, then it is c2 = 49 ≥ 43, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 442 - 72

max_d = √2023 - 1 - 1936 - 49

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 442 - 82

max_d = √2023 - 1 - 1936 - 64

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 12 - 442 - 92

max_d = √2023 - 1 - 1936 - 81

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

a = 2

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 22)

max_b = Floor(√2023 - 4)

max_b = Floor(√2019)

max_b = Floor(44.933283877322)

max_b = 44

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 22)/3 = 673

When min_b = 26, then it is b2 = 676 ≥ 673, so min_b = 26

Test values for b in the range of (min_b, max_b)

(26, 44)

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 262)

max_c = Floor(√2023 - 4 - 676)

max_c = Floor(√1343)

max_c = Floor(36.646964403617)

max_c = 36

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 262)/2 = 671.5

When min_c = 26, then it is c2 = 676 ≥ 671.5, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 262 - 262

max_d = √2023 - 4 - 676 - 676

max_d = √667

max_d = 25.82634314029

Since max_d = 25.82634314029 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 262 - 272

max_d = √2023 - 4 - 676 - 729

max_d = √614

max_d = 24.779023386728

Since max_d = 24.779023386728 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 262 - 282

max_d = √2023 - 4 - 676 - 784

max_d = √559

max_d = 23.643180835074

Since max_d = 23.643180835074 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 262 - 292

max_d = √2023 - 4 - 676 - 841

max_d = √502

max_d = 22.405356502408

Since max_d = 22.405356502408 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 262 - 302

max_d = √2023 - 4 - 676 - 900

max_d = √443

max_d = 21.047565179849

Since max_d = 21.047565179849 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 262 - 312

max_d = √2023 - 4 - 676 - 961

max_d = √382

max_d = 19.544820285692

Since max_d = 19.544820285692 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 262 - 322

max_d = √2023 - 4 - 676 - 1024

max_d = √319

max_d = 17.860571099492

Since max_d = 17.860571099492 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 262 - 332

max_d = √2023 - 4 - 676 - 1089

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 262 - 342

max_d = √2023 - 4 - 676 - 1156

max_d = √187

max_d = 13.674794331177

Since max_d = 13.674794331177 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 262 - 352

max_d = √2023 - 4 - 676 - 1225

max_d = √118

max_d = 10.8627804912

Since max_d = 10.8627804912 is not an integer, this is not a solution

c = 36

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 262 - 362

max_d = √2023 - 4 - 676 - 1296

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 272)

max_c = Floor(√2023 - 4 - 729)

max_c = Floor(√1290)

max_c = Floor(35.916569992136)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 272)/2 = 645

When min_c = 26, then it is c2 = 676 ≥ 645, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 272 - 262

max_d = √2023 - 4 - 729 - 676

max_d = √614

max_d = 24.779023386728

Since max_d = 24.779023386728 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 272 - 272

max_d = √2023 - 4 - 729 - 729

max_d = √561

max_d = 23.685438564654

Since max_d = 23.685438564654 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 272 - 282

max_d = √2023 - 4 - 729 - 784

max_d = √506

max_d = 22.494443758404

Since max_d = 22.494443758404 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 272 - 292

max_d = √2023 - 4 - 729 - 841

max_d = √449

max_d = 21.189620100417

Since max_d = 21.189620100417 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 272 - 302

max_d = √2023 - 4 - 729 - 900

max_d = √390

max_d = 19.748417658131

Since max_d = 19.748417658131 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 272 - 312

max_d = √2023 - 4 - 729 - 961

max_d = √329

max_d = 18.138357147217

Since max_d = 18.138357147217 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 272 - 322

max_d = √2023 - 4 - 729 - 1024

max_d = √266

max_d = 16.3095064303

Since max_d = 16.3095064303 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 272 - 332

max_d = √2023 - 4 - 729 - 1089

max_d = √201

max_d = 14.177446878758

Since max_d = 14.177446878758 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 272 - 342

max_d = √2023 - 4 - 729 - 1156

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 272 - 352

max_d = √2023 - 4 - 729 - 1225

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 282)

max_c = Floor(√2023 - 4 - 784)

max_c = Floor(√1235)

max_c = Floor(35.142566781611)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 282)/2 = 617.5

When min_c = 25, then it is c2 = 625 ≥ 617.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 282 - 252

max_d = √2023 - 4 - 784 - 625

max_d = √610

max_d = 24.698178070457

Since max_d = 24.698178070457 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 282 - 262

max_d = √2023 - 4 - 784 - 676

max_d = √559

max_d = 23.643180835074

Since max_d = 23.643180835074 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 282 - 272

max_d = √2023 - 4 - 784 - 729

max_d = √506

max_d = 22.494443758404

Since max_d = 22.494443758404 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 282 - 282

max_d = √2023 - 4 - 784 - 784

max_d = √451

max_d = 21.236760581595

Since max_d = 21.236760581595 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 282 - 292

max_d = √2023 - 4 - 784 - 841

max_d = √394

max_d = 19.849433241279

Since max_d = 19.849433241279 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 282 - 302

max_d = √2023 - 4 - 784 - 900

max_d = √335

max_d = 18.303005217723

Since max_d = 18.303005217723 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 282 - 312

max_d = √2023 - 4 - 784 - 961

max_d = √274

max_d = 16.552945357247

Since max_d = 16.552945357247 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 282 - 322

max_d = √2023 - 4 - 784 - 1024

max_d = √211

max_d = 14.525839046334

Since max_d = 14.525839046334 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 282 - 332

max_d = √2023 - 4 - 784 - 1089

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 282 - 342

max_d = √2023 - 4 - 784 - 1156

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 282 - 352

max_d = √2023 - 4 - 784 - 1225

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 292)

max_c = Floor(√2023 - 4 - 841)

max_c = Floor(√1178)

max_c = Floor(34.322004603461)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 292)/2 = 589

When min_c = 25, then it is c2 = 625 ≥ 589, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 292 - 252

max_d = √2023 - 4 - 841 - 625

max_d = √553

max_d = 23.51595203261

Since max_d = 23.51595203261 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 292 - 262

max_d = √2023 - 4 - 841 - 676

max_d = √502

max_d = 22.405356502408

Since max_d = 22.405356502408 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 292 - 272

max_d = √2023 - 4 - 841 - 729

max_d = √449

max_d = 21.189620100417

Since max_d = 21.189620100417 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 292 - 282

max_d = √2023 - 4 - 841 - 784

max_d = √394

max_d = 19.849433241279

Since max_d = 19.849433241279 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 292 - 292

max_d = √2023 - 4 - 841 - 841

max_d = √337

max_d = 18.357559750686

Since max_d = 18.357559750686 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 292 - 302

max_d = √2023 - 4 - 841 - 900

max_d = √278

max_d = 16.673332000533

Since max_d = 16.673332000533 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 292 - 312

max_d = √2023 - 4 - 841 - 961

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 292 - 322

max_d = √2023 - 4 - 841 - 1024

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 292 - 332

max_d = √2023 - 4 - 841 - 1089

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 292 - 342

max_d = √2023 - 4 - 841 - 1156

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 302)

max_c = Floor(√2023 - 4 - 900)

max_c = Floor(√1119)

max_c = Floor(33.451457367355)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 302)/2 = 559.5

When min_c = 24, then it is c2 = 576 ≥ 559.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 302 - 242

max_d = √2023 - 4 - 900 - 576

max_d = √543

max_d = 23.302360395462

Since max_d = 23.302360395462 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 302 - 252

max_d = √2023 - 4 - 900 - 625

max_d = √494

max_d = 22.226110770893

Since max_d = 22.226110770893 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 302 - 262

max_d = √2023 - 4 - 900 - 676

max_d = √443

max_d = 21.047565179849

Since max_d = 21.047565179849 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 302 - 272

max_d = √2023 - 4 - 900 - 729

max_d = √390

max_d = 19.748417658131

Since max_d = 19.748417658131 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 302 - 282

max_d = √2023 - 4 - 900 - 784

max_d = √335

max_d = 18.303005217723

Since max_d = 18.303005217723 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 302 - 292

max_d = √2023 - 4 - 900 - 841

max_d = √278

max_d = 16.673332000533

Since max_d = 16.673332000533 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 302 - 302

max_d = √2023 - 4 - 900 - 900

max_d = √219

max_d = 14.798648586949

Since max_d = 14.798648586949 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 302 - 312

max_d = √2023 - 4 - 900 - 961

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 302 - 322

max_d = √2023 - 4 - 900 - 1024

max_d = √95

max_d = 9.746794344809

Since max_d = 9.746794344809 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 302 - 332

max_d = √2023 - 4 - 900 - 1089

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 312)

max_c = Floor(√2023 - 4 - 961)

max_c = Floor(√1058)

max_c = Floor(32.526911934581)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 312)/2 = 529

When min_c = 23, then it is c2 = 529 ≥ 529, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 312 - 232

max_d = √2023 - 4 - 961 - 529

max_d = √529

max_d = 23

Since max_d = 23, then (a, b, c, d) = (2, 31, 23, 23) is an integer solution proven below

22 + 312 + 232 + 232 → 4 + 961 + 529 + 529 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 312 - 242

max_d = √2023 - 4 - 961 - 576

max_d = √482

max_d = 21.9544984001

Since max_d = 21.9544984001 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 312 - 252

max_d = √2023 - 4 - 961 - 625

max_d = √433

max_d = 20.808652046685

Since max_d = 20.808652046685 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 312 - 262

max_d = √2023 - 4 - 961 - 676

max_d = √382

max_d = 19.544820285692

Since max_d = 19.544820285692 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 312 - 272

max_d = √2023 - 4 - 961 - 729

max_d = √329

max_d = 18.138357147217

Since max_d = 18.138357147217 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 312 - 282

max_d = √2023 - 4 - 961 - 784

max_d = √274

max_d = 16.552945357247

Since max_d = 16.552945357247 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 312 - 292

max_d = √2023 - 4 - 961 - 841

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 312 - 302

max_d = √2023 - 4 - 961 - 900

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 312 - 312

max_d = √2023 - 4 - 961 - 961

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 312 - 322

max_d = √2023 - 4 - 961 - 1024

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 322)

max_c = Floor(√2023 - 4 - 1024)

max_c = Floor(√995)

max_c = Floor(31.543620591175)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 322)/2 = 497.5

When min_c = 23, then it is c2 = 529 ≥ 497.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 322 - 232

max_d = √2023 - 4 - 1024 - 529

max_d = √466

max_d = 21.587033144923

Since max_d = 21.587033144923 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 322 - 242

max_d = √2023 - 4 - 1024 - 576

max_d = √419

max_d = 20.469489490459

Since max_d = 20.469489490459 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 322 - 252

max_d = √2023 - 4 - 1024 - 625

max_d = √370

max_d = 19.235384061671

Since max_d = 19.235384061671 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 322 - 262

max_d = √2023 - 4 - 1024 - 676

max_d = √319

max_d = 17.860571099492

Since max_d = 17.860571099492 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 322 - 272

max_d = √2023 - 4 - 1024 - 729

max_d = √266

max_d = 16.3095064303

Since max_d = 16.3095064303 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 322 - 282

max_d = √2023 - 4 - 1024 - 784

max_d = √211

max_d = 14.525839046334

Since max_d = 14.525839046334 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 322 - 292

max_d = √2023 - 4 - 1024 - 841

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 322 - 302

max_d = √2023 - 4 - 1024 - 900

max_d = √95

max_d = 9.746794344809

Since max_d = 9.746794344809 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 322 - 312

max_d = √2023 - 4 - 1024 - 961

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 332)

max_c = Floor(√2023 - 4 - 1089)

max_c = Floor(√930)

max_c = Floor(30.495901363954)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 332)/2 = 465

When min_c = 22, then it is c2 = 484 ≥ 465, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 332 - 222

max_d = √2023 - 4 - 1089 - 484

max_d = √446

max_d = 21.118712081943

Since max_d = 21.118712081943 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 332 - 232

max_d = √2023 - 4 - 1089 - 529

max_d = √401

max_d = 20.024984394501

Since max_d = 20.024984394501 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 332 - 242

max_d = √2023 - 4 - 1089 - 576

max_d = √354

max_d = 18.814887722227

Since max_d = 18.814887722227 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 332 - 252

max_d = √2023 - 4 - 1089 - 625

max_d = √305

max_d = 17.464249196573

Since max_d = 17.464249196573 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 332 - 262

max_d = √2023 - 4 - 1089 - 676

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 332 - 272

max_d = √2023 - 4 - 1089 - 729

max_d = √201

max_d = 14.177446878758

Since max_d = 14.177446878758 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 332 - 282

max_d = √2023 - 4 - 1089 - 784

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 332 - 292

max_d = √2023 - 4 - 1089 - 841

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 332 - 302

max_d = √2023 - 4 - 1089 - 900

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 342)

max_c = Floor(√2023 - 4 - 1156)

max_c = Floor(√863)

max_c = Floor(29.376861643137)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 342)/2 = 431.5

When min_c = 21, then it is c2 = 441 ≥ 431.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 342 - 212

max_d = √2023 - 4 - 1156 - 441

max_d = √422

max_d = 20.542638584174

Since max_d = 20.542638584174 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 342 - 222

max_d = √2023 - 4 - 1156 - 484

max_d = √379

max_d = 19.467922333932

Since max_d = 19.467922333932 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 342 - 232

max_d = √2023 - 4 - 1156 - 529

max_d = √334

max_d = 18.275666882497

Since max_d = 18.275666882497 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 342 - 242

max_d = √2023 - 4 - 1156 - 576

max_d = √287

max_d = 16.941074346097

Since max_d = 16.941074346097 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 342 - 252

max_d = √2023 - 4 - 1156 - 625

max_d = √238

max_d = 15.427248620542

Since max_d = 15.427248620542 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 342 - 262

max_d = √2023 - 4 - 1156 - 676

max_d = √187

max_d = 13.674794331177

Since max_d = 13.674794331177 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 342 - 272

max_d = √2023 - 4 - 1156 - 729

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 342 - 282

max_d = √2023 - 4 - 1156 - 784

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 342 - 292

max_d = √2023 - 4 - 1156 - 841

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 352)

max_c = Floor(√2023 - 4 - 1225)

max_c = Floor(√794)

max_c = Floor(28.178005607211)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 352)/2 = 397

When min_c = 20, then it is c2 = 400 ≥ 397, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 352 - 202

max_d = √2023 - 4 - 1225 - 400

max_d = √394

max_d = 19.849433241279

Since max_d = 19.849433241279 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 352 - 212

max_d = √2023 - 4 - 1225 - 441

max_d = √353

max_d = 18.788294228056

Since max_d = 18.788294228056 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 352 - 222

max_d = √2023 - 4 - 1225 - 484

max_d = √310

max_d = 17.606816861659

Since max_d = 17.606816861659 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 352 - 232

max_d = √2023 - 4 - 1225 - 529

max_d = √265

max_d = 16.2788205961

Since max_d = 16.2788205961 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 352 - 242

max_d = √2023 - 4 - 1225 - 576

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 352 - 252

max_d = √2023 - 4 - 1225 - 625

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (2, 35, 25, 13) is an integer solution proven below

22 + 352 + 252 + 132 → 4 + 1225 + 625 + 169 = 2023

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 352 - 262

max_d = √2023 - 4 - 1225 - 676

max_d = √118

max_d = 10.8627804912

Since max_d = 10.8627804912 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 352 - 272

max_d = √2023 - 4 - 1225 - 729

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 352 - 282

max_d = √2023 - 4 - 1225 - 784

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 362)

max_c = Floor(√2023 - 4 - 1296)

max_c = Floor(√723)

max_c = Floor(26.888659319498)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 362)/2 = 361.5

When min_c = 20, then it is c2 = 400 ≥ 361.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 362 - 202

max_d = √2023 - 4 - 1296 - 400

max_d = √323

max_d = 17.972200755611

Since max_d = 17.972200755611 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 362 - 212

max_d = √2023 - 4 - 1296 - 441

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 362 - 222

max_d = √2023 - 4 - 1296 - 484

max_d = √239

max_d = 15.45962483374

Since max_d = 15.45962483374 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 362 - 232

max_d = √2023 - 4 - 1296 - 529

max_d = √194

max_d = 13.928388277184

Since max_d = 13.928388277184 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 362 - 242

max_d = √2023 - 4 - 1296 - 576

max_d = √147

max_d = 12.124355652982

Since max_d = 12.124355652982 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 362 - 252

max_d = √2023 - 4 - 1296 - 625

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 362 - 262

max_d = √2023 - 4 - 1296 - 676

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 372)

max_c = Floor(√2023 - 4 - 1369)

max_c = Floor(√650)

max_c = Floor(25.495097567964)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 372)/2 = 325

When min_c = 19, then it is c2 = 361 ≥ 325, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 372 - 192

max_d = √2023 - 4 - 1369 - 361

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (2, 37, 19, 17) is an integer solution proven below

22 + 372 + 192 + 172 → 4 + 1369 + 361 + 289 = 2023

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 372 - 202

max_d = √2023 - 4 - 1369 - 400

max_d = √250

max_d = 15.811388300842

Since max_d = 15.811388300842 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 372 - 212

max_d = √2023 - 4 - 1369 - 441

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 372 - 222

max_d = √2023 - 4 - 1369 - 484

max_d = √166

max_d = 12.884098726725

Since max_d = 12.884098726725 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 372 - 232

max_d = √2023 - 4 - 1369 - 529

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (2, 37, 23, 11) is an integer solution proven below

22 + 372 + 232 + 112 → 4 + 1369 + 529 + 121 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 372 - 242

max_d = √2023 - 4 - 1369 - 576

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 372 - 252

max_d = √2023 - 4 - 1369 - 625

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (2, 37, 25, 5) is an integer solution proven below

22 + 372 + 252 + 52 → 4 + 1369 + 625 + 25 = 2023

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 382)

max_c = Floor(√2023 - 4 - 1444)

max_c = Floor(√575)

max_c = Floor(23.979157616564)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 382)/2 = 287.5

When min_c = 17, then it is c2 = 289 ≥ 287.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 382 - 172

max_d = √2023 - 4 - 1444 - 289

max_d = √286

max_d = 16.911534525288

Since max_d = 16.911534525288 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 382 - 182

max_d = √2023 - 4 - 1444 - 324

max_d = √251

max_d = 15.842979517755

Since max_d = 15.842979517755 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 382 - 192

max_d = √2023 - 4 - 1444 - 361

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 382 - 202

max_d = √2023 - 4 - 1444 - 400

max_d = √175

max_d = 13.228756555323

Since max_d = 13.228756555323 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 382 - 212

max_d = √2023 - 4 - 1444 - 441

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 382 - 222

max_d = √2023 - 4 - 1444 - 484

max_d = √91

max_d = 9.5393920141695

Since max_d = 9.5393920141695 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 382 - 232

max_d = √2023 - 4 - 1444 - 529

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 392)

max_c = Floor(√2023 - 4 - 1521)

max_c = Floor(√498)

max_c = Floor(22.315913604421)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 392)/2 = 249

When min_c = 16, then it is c2 = 256 ≥ 249, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 392 - 162

max_d = √2023 - 4 - 1521 - 256

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 392 - 172

max_d = √2023 - 4 - 1521 - 289

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 392 - 182

max_d = √2023 - 4 - 1521 - 324

max_d = √174

max_d = 13.190905958273

Since max_d = 13.190905958273 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 392 - 192

max_d = √2023 - 4 - 1521 - 361

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 392 - 202

max_d = √2023 - 4 - 1521 - 400

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 392 - 212

max_d = √2023 - 4 - 1521 - 441

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 392 - 222

max_d = √2023 - 4 - 1521 - 484

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 402)

max_c = Floor(√2023 - 4 - 1600)

max_c = Floor(√419)

max_c = Floor(20.469489490459)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 402)/2 = 209.5

When min_c = 15, then it is c2 = 225 ≥ 209.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 402 - 152

max_d = √2023 - 4 - 1600 - 225

max_d = √194

max_d = 13.928388277184

Since max_d = 13.928388277184 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 402 - 162

max_d = √2023 - 4 - 1600 - 256

max_d = √163

max_d = 12.767145334804

Since max_d = 12.767145334804 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 402 - 172

max_d = √2023 - 4 - 1600 - 289

max_d = √130

max_d = 11.401754250991

Since max_d = 11.401754250991 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 402 - 182

max_d = √2023 - 4 - 1600 - 324

max_d = √95

max_d = 9.746794344809

Since max_d = 9.746794344809 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 402 - 192

max_d = √2023 - 4 - 1600 - 361

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 402 - 202

max_d = √2023 - 4 - 1600 - 400

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 412)

max_c = Floor(√2023 - 4 - 1681)

max_c = Floor(√338)

max_c = Floor(18.38477631085)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 412)/2 = 169

When min_c = 13, then it is c2 = 169 ≥ 169, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 412 - 132

max_d = √2023 - 4 - 1681 - 169

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (2, 41, 13, 13) is an integer solution proven below

22 + 412 + 132 + 132 → 4 + 1681 + 169 + 169 = 2023

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 412 - 142

max_d = √2023 - 4 - 1681 - 196

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 412 - 152

max_d = √2023 - 4 - 1681 - 225

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 412 - 162

max_d = √2023 - 4 - 1681 - 256

max_d = √82

max_d = 9.0553851381374

Since max_d = 9.0553851381374 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 412 - 172

max_d = √2023 - 4 - 1681 - 289

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (2, 41, 17, 7) is an integer solution proven below

22 + 412 + 172 + 72 → 4 + 1681 + 289 + 49 = 2023

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 412 - 182

max_d = √2023 - 4 - 1681 - 324

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 422)

max_c = Floor(√2023 - 4 - 1764)

max_c = Floor(√255)

max_c = Floor(15.968719422671)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 422)/2 = 127.5

When min_c = 12, then it is c2 = 144 ≥ 127.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 422 - 122

max_d = √2023 - 4 - 1764 - 144

max_d = √111

max_d = 10.535653752853

Since max_d = 10.535653752853 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 422 - 132

max_d = √2023 - 4 - 1764 - 169

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 422 - 142

max_d = √2023 - 4 - 1764 - 196

max_d = √59

max_d = 7.6811457478686

Since max_d = 7.6811457478686 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 422 - 152

max_d = √2023 - 4 - 1764 - 225

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 432)

max_c = Floor(√2023 - 4 - 1849)

max_c = Floor(√170)

max_c = Floor(13.038404810405)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 432)/2 = 85

When min_c = 10, then it is c2 = 100 ≥ 85, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 432 - 102

max_d = √2023 - 4 - 1849 - 100

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 432 - 112

max_d = √2023 - 4 - 1849 - 121

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (2, 43, 11, 7) is an integer solution proven below

22 + 432 + 112 + 72 → 4 + 1849 + 121 + 49 = 2023

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 432 - 122

max_d = √2023 - 4 - 1849 - 144

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 432 - 132

max_d = √2023 - 4 - 1849 - 169

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (2, 43, 13, 1) is an integer solution proven below

22 + 432 + 132 + 12 → 4 + 1849 + 169 + 1 = 2023

b = 44

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 22 - 442)

max_c = Floor(√2023 - 4 - 1936)

max_c = Floor(√83)

max_c = Floor(9.1104335791443)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 22 - 442)/2 = 41.5

When min_c = 7, then it is c2 = 49 ≥ 41.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 442 - 72

max_d = √2023 - 4 - 1936 - 49

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 442 - 82

max_d = √2023 - 4 - 1936 - 64

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 22 - 442 - 92

max_d = √2023 - 4 - 1936 - 81

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 3

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 32)

max_b = Floor(√2023 - 9)

max_b = Floor(√2014)

max_b = Floor(44.877611344634)

max_b = 44

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 32)/3 = 671.33333333333

When min_b = 26, then it is b2 = 676 ≥ 671.33333333333, so min_b = 26

Test values for b in the range of (min_b, max_b)

(26, 44)

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 262)

max_c = Floor(√2023 - 9 - 676)

max_c = Floor(√1338)

max_c = Floor(36.578682316344)

max_c = 36

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 262)/2 = 669

When min_c = 26, then it is c2 = 676 ≥ 669, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 262 - 262

max_d = √2023 - 9 - 676 - 676

max_d = √662

max_d = 25.729360660537

Since max_d = 25.729360660537 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 262 - 272

max_d = √2023 - 9 - 676 - 729

max_d = √609

max_d = 24.677925358506

Since max_d = 24.677925358506 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 262 - 282

max_d = √2023 - 9 - 676 - 784

max_d = √554

max_d = 23.53720459188

Since max_d = 23.53720459188 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 262 - 292

max_d = √2023 - 9 - 676 - 841

max_d = √497

max_d = 22.293496809608

Since max_d = 22.293496809608 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 262 - 302

max_d = √2023 - 9 - 676 - 900

max_d = √438

max_d = 20.928449536456

Since max_d = 20.928449536456 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 262 - 312

max_d = √2023 - 9 - 676 - 961

max_d = √377

max_d = 19.416487838948

Since max_d = 19.416487838948 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 262 - 322

max_d = √2023 - 9 - 676 - 1024

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 262 - 332

max_d = √2023 - 9 - 676 - 1089

max_d = √249

max_d = 15.779733838059

Since max_d = 15.779733838059 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 262 - 342

max_d = √2023 - 9 - 676 - 1156

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 262 - 352

max_d = √2023 - 9 - 676 - 1225

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 36

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 262 - 362

max_d = √2023 - 9 - 676 - 1296

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 272)

max_c = Floor(√2023 - 9 - 729)

max_c = Floor(√1285)

max_c = Floor(35.84689665787)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 272)/2 = 642.5

When min_c = 26, then it is c2 = 676 ≥ 642.5, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 272 - 262

max_d = √2023 - 9 - 729 - 676

max_d = √609

max_d = 24.677925358506

Since max_d = 24.677925358506 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 272 - 272

max_d = √2023 - 9 - 729 - 729

max_d = √556

max_d = 23.579652245103

Since max_d = 23.579652245103 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 272 - 282

max_d = √2023 - 9 - 729 - 784

max_d = √501

max_d = 22.383029285599

Since max_d = 22.383029285599 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 272 - 292

max_d = √2023 - 9 - 729 - 841

max_d = √444

max_d = 21.071307505705

Since max_d = 21.071307505705 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 272 - 302

max_d = √2023 - 9 - 729 - 900

max_d = √385

max_d = 19.621416870349

Since max_d = 19.621416870349 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 272 - 312

max_d = √2023 - 9 - 729 - 961

max_d = √324

max_d = 18

Since max_d = 18, then (a, b, c, d) = (3, 27, 31, 18) is an integer solution proven below

32 + 272 + 312 + 182 → 9 + 729 + 961 + 324 = 2023

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 272 - 322

max_d = √2023 - 9 - 729 - 1024

max_d = √261

max_d = 16.155494421404

Since max_d = 16.155494421404 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 272 - 332

max_d = √2023 - 9 - 729 - 1089

max_d = √196

max_d = 14

Since max_d = 14, then (a, b, c, d) = (3, 27, 33, 14) is an integer solution proven below

32 + 272 + 332 + 142 → 9 + 729 + 1089 + 196 = 2023

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 272 - 342

max_d = √2023 - 9 - 729 - 1156

max_d = √129

max_d = 11.357816691601

Since max_d = 11.357816691601 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 272 - 352

max_d = √2023 - 9 - 729 - 1225

max_d = √60

max_d = 7.7459666924148

Since max_d = 7.7459666924148 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 282)

max_c = Floor(√2023 - 9 - 784)

max_c = Floor(√1230)

max_c = Floor(35.0713558335)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 282)/2 = 615

When min_c = 25, then it is c2 = 625 ≥ 615, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 282 - 252

max_d = √2023 - 9 - 784 - 625

max_d = √605

max_d = 24.596747752498

Since max_d = 24.596747752498 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 282 - 262

max_d = √2023 - 9 - 784 - 676

max_d = √554

max_d = 23.53720459188

Since max_d = 23.53720459188 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 282 - 272

max_d = √2023 - 9 - 784 - 729

max_d = √501

max_d = 22.383029285599

Since max_d = 22.383029285599 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 282 - 282

max_d = √2023 - 9 - 784 - 784

max_d = √446

max_d = 21.118712081943

Since max_d = 21.118712081943 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 282 - 292

max_d = √2023 - 9 - 784 - 841

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 282 - 302

max_d = √2023 - 9 - 784 - 900

max_d = √330

max_d = 18.165902124585

Since max_d = 18.165902124585 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 282 - 312

max_d = √2023 - 9 - 784 - 961

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 282 - 322

max_d = √2023 - 9 - 784 - 1024

max_d = √206

max_d = 14.352700094407

Since max_d = 14.352700094407 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 282 - 332

max_d = √2023 - 9 - 784 - 1089

max_d = √141

max_d = 11.874342087038

Since max_d = 11.874342087038 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 282 - 342

max_d = √2023 - 9 - 784 - 1156

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 282 - 352

max_d = √2023 - 9 - 784 - 1225

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 292)

max_c = Floor(√2023 - 9 - 841)

max_c = Floor(√1173)

max_c = Floor(34.249087579087)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 292)/2 = 586.5

When min_c = 25, then it is c2 = 625 ≥ 586.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 292 - 252

max_d = √2023 - 9 - 841 - 625

max_d = √548

max_d = 23.409399821439

Since max_d = 23.409399821439 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 292 - 262

max_d = √2023 - 9 - 841 - 676

max_d = √497

max_d = 22.293496809608

Since max_d = 22.293496809608 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 292 - 272

max_d = √2023 - 9 - 841 - 729

max_d = √444

max_d = 21.071307505705

Since max_d = 21.071307505705 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 292 - 282

max_d = √2023 - 9 - 841 - 784

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 292 - 292

max_d = √2023 - 9 - 841 - 841

max_d = √332

max_d = 18.220867158289

Since max_d = 18.220867158289 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 292 - 302

max_d = √2023 - 9 - 841 - 900

max_d = √273

max_d = 16.522711641858

Since max_d = 16.522711641858 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 292 - 312

max_d = √2023 - 9 - 841 - 961

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 292 - 322

max_d = √2023 - 9 - 841 - 1024

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 292 - 332

max_d = √2023 - 9 - 841 - 1089

max_d = √84

max_d = 9.1651513899117

Since max_d = 9.1651513899117 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 292 - 342

max_d = √2023 - 9 - 841 - 1156

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 302)

max_c = Floor(√2023 - 9 - 900)

max_c = Floor(√1114)

max_c = Floor(33.376638536557)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 302)/2 = 557

When min_c = 24, then it is c2 = 576 ≥ 557, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 302 - 242

max_d = √2023 - 9 - 900 - 576

max_d = √538

max_d = 23.194827009486

Since max_d = 23.194827009486 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 302 - 252

max_d = √2023 - 9 - 900 - 625

max_d = √489

max_d = 22.113344387496

Since max_d = 22.113344387496 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 302 - 262

max_d = √2023 - 9 - 900 - 676

max_d = √438

max_d = 20.928449536456

Since max_d = 20.928449536456 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 302 - 272

max_d = √2023 - 9 - 900 - 729

max_d = √385

max_d = 19.621416870349

Since max_d = 19.621416870349 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 302 - 282

max_d = √2023 - 9 - 900 - 784

max_d = √330

max_d = 18.165902124585

Since max_d = 18.165902124585 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 302 - 292

max_d = √2023 - 9 - 900 - 841

max_d = √273

max_d = 16.522711641858

Since max_d = 16.522711641858 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 302 - 302

max_d = √2023 - 9 - 900 - 900

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 302 - 312

max_d = √2023 - 9 - 900 - 961

max_d = √153

max_d = 12.369316876853

Since max_d = 12.369316876853 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 302 - 322

max_d = √2023 - 9 - 900 - 1024

max_d = √90

max_d = 9.4868329805051

Since max_d = 9.4868329805051 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 302 - 332

max_d = √2023 - 9 - 900 - 1089

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (3, 30, 33, 5) is an integer solution proven below

32 + 302 + 332 + 52 → 9 + 900 + 1089 + 25 = 2023

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 312)

max_c = Floor(√2023 - 9 - 961)

max_c = Floor(√1053)

max_c = Floor(32.449961479176)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 312)/2 = 526.5

When min_c = 23, then it is c2 = 529 ≥ 526.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 312 - 232

max_d = √2023 - 9 - 961 - 529

max_d = √524

max_d = 22.891046284519

Since max_d = 22.891046284519 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 312 - 242

max_d = √2023 - 9 - 961 - 576

max_d = √477

max_d = 21.840329667842

Since max_d = 21.840329667842 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 312 - 252

max_d = √2023 - 9 - 961 - 625

max_d = √428

max_d = 20.688160865577

Since max_d = 20.688160865577 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 312 - 262

max_d = √2023 - 9 - 961 - 676

max_d = √377

max_d = 19.416487838948

Since max_d = 19.416487838948 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 312 - 272

max_d = √2023 - 9 - 961 - 729

max_d = √324

max_d = 18

Since max_d = 18, then (a, b, c, d) = (3, 31, 27, 18) is an integer solution proven below

32 + 312 + 272 + 182 → 9 + 961 + 729 + 324 = 2023

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 312 - 282

max_d = √2023 - 9 - 961 - 784

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 312 - 292

max_d = √2023 - 9 - 961 - 841

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 312 - 302

max_d = √2023 - 9 - 961 - 900

max_d = √153

max_d = 12.369316876853

Since max_d = 12.369316876853 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 312 - 312

max_d = √2023 - 9 - 961 - 961

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 312 - 322

max_d = √2023 - 9 - 961 - 1024

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 322)

max_c = Floor(√2023 - 9 - 1024)

max_c = Floor(√990)

max_c = Floor(31.464265445105)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 322)/2 = 495

When min_c = 23, then it is c2 = 529 ≥ 495, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 322 - 232

max_d = √2023 - 9 - 1024 - 529

max_d = √461

max_d = 21.470910553584

Since max_d = 21.470910553584 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 322 - 242

max_d = √2023 - 9 - 1024 - 576

max_d = √414

max_d = 20.346989949376

Since max_d = 20.346989949376 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 322 - 252

max_d = √2023 - 9 - 1024 - 625

max_d = √365

max_d = 19.104973174543

Since max_d = 19.104973174543 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 322 - 262

max_d = √2023 - 9 - 1024 - 676

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 322 - 272

max_d = √2023 - 9 - 1024 - 729

max_d = √261

max_d = 16.155494421404

Since max_d = 16.155494421404 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 322 - 282

max_d = √2023 - 9 - 1024 - 784

max_d = √206

max_d = 14.352700094407

Since max_d = 14.352700094407 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 322 - 292

max_d = √2023 - 9 - 1024 - 841

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 322 - 302

max_d = √2023 - 9 - 1024 - 900

max_d = √90

max_d = 9.4868329805051

Since max_d = 9.4868329805051 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 322 - 312

max_d = √2023 - 9 - 1024 - 961

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 332)

max_c = Floor(√2023 - 9 - 1089)

max_c = Floor(√925)

max_c = Floor(30.413812651491)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 332)/2 = 462.5

When min_c = 22, then it is c2 = 484 ≥ 462.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 332 - 222

max_d = √2023 - 9 - 1089 - 484

max_d = √441

max_d = 21

Since max_d = 21, then (a, b, c, d) = (3, 33, 22, 21) is an integer solution proven below

32 + 332 + 222 + 212 → 9 + 1089 + 484 + 441 = 2023

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 332 - 232

max_d = √2023 - 9 - 1089 - 529

max_d = √396

max_d = 19.899748742132

Since max_d = 19.899748742132 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 332 - 242

max_d = √2023 - 9 - 1089 - 576

max_d = √349

max_d = 18.681541692269

Since max_d = 18.681541692269 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 332 - 252

max_d = √2023 - 9 - 1089 - 625

max_d = √300

max_d = 17.320508075689

Since max_d = 17.320508075689 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 332 - 262

max_d = √2023 - 9 - 1089 - 676

max_d = √249

max_d = 15.779733838059

Since max_d = 15.779733838059 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 332 - 272

max_d = √2023 - 9 - 1089 - 729

max_d = √196

max_d = 14

Since max_d = 14, then (a, b, c, d) = (3, 33, 27, 14) is an integer solution proven below

32 + 332 + 272 + 142 → 9 + 1089 + 729 + 196 = 2023

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 332 - 282

max_d = √2023 - 9 - 1089 - 784

max_d = √141

max_d = 11.874342087038

Since max_d = 11.874342087038 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 332 - 292

max_d = √2023 - 9 - 1089 - 841

max_d = √84

max_d = 9.1651513899117

Since max_d = 9.1651513899117 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 332 - 302

max_d = √2023 - 9 - 1089 - 900

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (3, 33, 30, 5) is an integer solution proven below

32 + 332 + 302 + 52 → 9 + 1089 + 900 + 25 = 2023

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 342)

max_c = Floor(√2023 - 9 - 1156)

max_c = Floor(√858)

max_c = Floor(29.291637031754)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 342)/2 = 429

When min_c = 21, then it is c2 = 441 ≥ 429, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 342 - 212

max_d = √2023 - 9 - 1156 - 441

max_d = √417

max_d = 20.420577856662

Since max_d = 20.420577856662 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 342 - 222

max_d = √2023 - 9 - 1156 - 484

max_d = √374

max_d = 19.339079605814

Since max_d = 19.339079605814 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 342 - 232

max_d = √2023 - 9 - 1156 - 529

max_d = √329

max_d = 18.138357147217

Since max_d = 18.138357147217 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 342 - 242

max_d = √2023 - 9 - 1156 - 576

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 342 - 252

max_d = √2023 - 9 - 1156 - 625

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 342 - 262

max_d = √2023 - 9 - 1156 - 676

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 342 - 272

max_d = √2023 - 9 - 1156 - 729

max_d = √129

max_d = 11.357816691601

Since max_d = 11.357816691601 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 342 - 282

max_d = √2023 - 9 - 1156 - 784

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 342 - 292

max_d = √2023 - 9 - 1156 - 841

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 352)

max_c = Floor(√2023 - 9 - 1225)

max_c = Floor(√789)

max_c = Floor(28.089143810376)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 352)/2 = 394.5

When min_c = 20, then it is c2 = 400 ≥ 394.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 352 - 202

max_d = √2023 - 9 - 1225 - 400

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 352 - 212

max_d = √2023 - 9 - 1225 - 441

max_d = √348

max_d = 18.654758106178

Since max_d = 18.654758106178 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 352 - 222

max_d = √2023 - 9 - 1225 - 484

max_d = √305

max_d = 17.464249196573

Since max_d = 17.464249196573 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 352 - 232

max_d = √2023 - 9 - 1225 - 529

max_d = √260

max_d = 16.124515496597

Since max_d = 16.124515496597 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 352 - 242

max_d = √2023 - 9 - 1225 - 576

max_d = √213

max_d = 14.594519519326

Since max_d = 14.594519519326 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 352 - 252

max_d = √2023 - 9 - 1225 - 625

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 352 - 262

max_d = √2023 - 9 - 1225 - 676

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 352 - 272

max_d = √2023 - 9 - 1225 - 729

max_d = √60

max_d = 7.7459666924148

Since max_d = 7.7459666924148 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 352 - 282

max_d = √2023 - 9 - 1225 - 784

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 362)

max_c = Floor(√2023 - 9 - 1296)

max_c = Floor(√718)

max_c = Floor(26.795522013949)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 362)/2 = 359

When min_c = 19, then it is c2 = 361 ≥ 359, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 362 - 192

max_d = √2023 - 9 - 1296 - 361

max_d = √357

max_d = 18.894443627691

Since max_d = 18.894443627691 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 362 - 202

max_d = √2023 - 9 - 1296 - 400

max_d = √318

max_d = 17.832554500127

Since max_d = 17.832554500127 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 362 - 212

max_d = √2023 - 9 - 1296 - 441

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 362 - 222

max_d = √2023 - 9 - 1296 - 484

max_d = √234

max_d = 15.297058540778

Since max_d = 15.297058540778 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 362 - 232

max_d = √2023 - 9 - 1296 - 529

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 362 - 242

max_d = √2023 - 9 - 1296 - 576

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 362 - 252

max_d = √2023 - 9 - 1296 - 625

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 362 - 262

max_d = √2023 - 9 - 1296 - 676

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 372)

max_c = Floor(√2023 - 9 - 1369)

max_c = Floor(√645)

max_c = Floor(25.396850198401)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 372)/2 = 322.5

When min_c = 18, then it is c2 = 324 ≥ 322.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 372 - 182

max_d = √2023 - 9 - 1369 - 324

max_d = √321

max_d = 17.916472867169

Since max_d = 17.916472867169 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 372 - 192

max_d = √2023 - 9 - 1369 - 361

max_d = √284

max_d = 16.852299546353

Since max_d = 16.852299546353 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 372 - 202

max_d = √2023 - 9 - 1369 - 400

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 372 - 212

max_d = √2023 - 9 - 1369 - 441

max_d = √204

max_d = 14.282856857086

Since max_d = 14.282856857086 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 372 - 222

max_d = √2023 - 9 - 1369 - 484

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 372 - 232

max_d = √2023 - 9 - 1369 - 529

max_d = √116

max_d = 10.770329614269

Since max_d = 10.770329614269 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 372 - 242

max_d = √2023 - 9 - 1369 - 576

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 372 - 252

max_d = √2023 - 9 - 1369 - 625

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 382)

max_c = Floor(√2023 - 9 - 1444)

max_c = Floor(√570)

max_c = Floor(23.874672772627)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 382)/2 = 285

When min_c = 17, then it is c2 = 289 ≥ 285, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 382 - 172

max_d = √2023 - 9 - 1444 - 289

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 382 - 182

max_d = √2023 - 9 - 1444 - 324

max_d = √246

max_d = 15.684387141358

Since max_d = 15.684387141358 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 382 - 192

max_d = √2023 - 9 - 1444 - 361

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 382 - 202

max_d = √2023 - 9 - 1444 - 400

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 382 - 212

max_d = √2023 - 9 - 1444 - 441

max_d = √129

max_d = 11.357816691601

Since max_d = 11.357816691601 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 382 - 222

max_d = √2023 - 9 - 1444 - 484

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 382 - 232

max_d = √2023 - 9 - 1444 - 529

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 392)

max_c = Floor(√2023 - 9 - 1521)

max_c = Floor(√493)

max_c = Floor(22.203603311175)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 392)/2 = 246.5

When min_c = 16, then it is c2 = 256 ≥ 246.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 392 - 162

max_d = √2023 - 9 - 1521 - 256

max_d = √237

max_d = 15.394804318341

Since max_d = 15.394804318341 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 392 - 172

max_d = √2023 - 9 - 1521 - 289

max_d = √204

max_d = 14.282856857086

Since max_d = 14.282856857086 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 392 - 182

max_d = √2023 - 9 - 1521 - 324

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (3, 39, 18, 13) is an integer solution proven below

32 + 392 + 182 + 132 → 9 + 1521 + 324 + 169 = 2023

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 392 - 192

max_d = √2023 - 9 - 1521 - 361

max_d = √132

max_d = 11.489125293076

Since max_d = 11.489125293076 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 392 - 202

max_d = √2023 - 9 - 1521 - 400

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 392 - 212

max_d = √2023 - 9 - 1521 - 441

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 392 - 222

max_d = √2023 - 9 - 1521 - 484

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (3, 39, 22, 3) is an integer solution proven below

32 + 392 + 222 + 32 → 9 + 1521 + 484 + 9 = 2023

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 402)

max_c = Floor(√2023 - 9 - 1600)

max_c = Floor(√414)

max_c = Floor(20.346989949376)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 402)/2 = 207

When min_c = 15, then it is c2 = 225 ≥ 207, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 402 - 152

max_d = √2023 - 9 - 1600 - 225

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 402 - 162

max_d = √2023 - 9 - 1600 - 256

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 402 - 172

max_d = √2023 - 9 - 1600 - 289

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 402 - 182

max_d = √2023 - 9 - 1600 - 324

max_d = √90

max_d = 9.4868329805051

Since max_d = 9.4868329805051 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 402 - 192

max_d = √2023 - 9 - 1600 - 361

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 402 - 202

max_d = √2023 - 9 - 1600 - 400

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 412)

max_c = Floor(√2023 - 9 - 1681)

max_c = Floor(√333)

max_c = Floor(18.248287590895)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 412)/2 = 166.5

When min_c = 13, then it is c2 = 169 ≥ 166.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 412 - 132

max_d = √2023 - 9 - 1681 - 169

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 412 - 142

max_d = √2023 - 9 - 1681 - 196

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 412 - 152

max_d = √2023 - 9 - 1681 - 225

max_d = √108

max_d = 10.392304845413

Since max_d = 10.392304845413 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 412 - 162

max_d = √2023 - 9 - 1681 - 256

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 412 - 172

max_d = √2023 - 9 - 1681 - 289

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 412 - 182

max_d = √2023 - 9 - 1681 - 324

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (3, 41, 18, 3) is an integer solution proven below

32 + 412 + 182 + 32 → 9 + 1681 + 324 + 9 = 2023

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 422)

max_c = Floor(√2023 - 9 - 1764)

max_c = Floor(√250)

max_c = Floor(15.811388300842)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 422)/2 = 125

When min_c = 12, then it is c2 = 144 ≥ 125, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 422 - 122

max_d = √2023 - 9 - 1764 - 144

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 422 - 132

max_d = √2023 - 9 - 1764 - 169

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (3, 42, 13, 9) is an integer solution proven below

32 + 422 + 132 + 92 → 9 + 1764 + 169 + 81 = 2023

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 422 - 142

max_d = √2023 - 9 - 1764 - 196

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 422 - 152

max_d = √2023 - 9 - 1764 - 225

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (3, 42, 15, 5) is an integer solution proven below

32 + 422 + 152 + 52 → 9 + 1764 + 225 + 25 = 2023

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 432)

max_c = Floor(√2023 - 9 - 1849)

max_c = Floor(√165)

max_c = Floor(12.845232578665)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 432)/2 = 82.5

When min_c = 10, then it is c2 = 100 ≥ 82.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 432 - 102

max_d = √2023 - 9 - 1849 - 100

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 432 - 112

max_d = √2023 - 9 - 1849 - 121

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 432 - 122

max_d = √2023 - 9 - 1849 - 144

max_d = √21

max_d = 4.5825756949558

Since max_d = 4.5825756949558 is not an integer, this is not a solution

b = 44

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 32 - 442)

max_c = Floor(√2023 - 9 - 1936)

max_c = Floor(√78)

max_c = Floor(8.8317608663278)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 32 - 442)/2 = 39

When min_c = 7, then it is c2 = 49 ≥ 39, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 442 - 72

max_d = √2023 - 9 - 1936 - 49

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 32 - 442 - 82

max_d = √2023 - 9 - 1936 - 64

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

a = 4

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 42)

max_b = Floor(√2023 - 16)

max_b = Floor(√2007)

max_b = Floor(44.799553569204)

max_b = 44

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 42)/3 = 669

When min_b = 26, then it is b2 = 676 ≥ 669, so min_b = 26

Test values for b in the range of (min_b, max_b)

(26, 44)

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 262)

max_c = Floor(√2023 - 16 - 676)

max_c = Floor(√1331)

max_c = Floor(36.482872693909)

max_c = 36

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 262)/2 = 665.5

When min_c = 26, then it is c2 = 676 ≥ 665.5, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 262 - 262

max_d = √2023 - 16 - 676 - 676

max_d = √655

max_d = 25.592967784139

Since max_d = 25.592967784139 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 262 - 272

max_d = √2023 - 16 - 676 - 729

max_d = √602

max_d = 24.535688292771

Since max_d = 24.535688292771 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 262 - 282

max_d = √2023 - 16 - 676 - 784

max_d = √547

max_d = 23.388031127053

Since max_d = 23.388031127053 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 262 - 292

max_d = √2023 - 16 - 676 - 841

max_d = √490

max_d = 22.135943621179

Since max_d = 22.135943621179 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 262 - 302

max_d = √2023 - 16 - 676 - 900

max_d = √431

max_d = 20.760539492027

Since max_d = 20.760539492027 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 262 - 312

max_d = √2023 - 16 - 676 - 961

max_d = √370

max_d = 19.235384061671

Since max_d = 19.235384061671 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 262 - 322

max_d = √2023 - 16 - 676 - 1024

max_d = √307

max_d = 17.521415467935

Since max_d = 17.521415467935 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 262 - 332

max_d = √2023 - 16 - 676 - 1089

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 262 - 342

max_d = √2023 - 16 - 676 - 1156

max_d = √175

max_d = 13.228756555323

Since max_d = 13.228756555323 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 262 - 352

max_d = √2023 - 16 - 676 - 1225

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 36

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 262 - 362

max_d = √2023 - 16 - 676 - 1296

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 272)

max_c = Floor(√2023 - 16 - 729)

max_c = Floor(√1278)

max_c = Floor(35.749125863439)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 272)/2 = 639

When min_c = 26, then it is c2 = 676 ≥ 639, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 272 - 262

max_d = √2023 - 16 - 729 - 676

max_d = √602

max_d = 24.535688292771

Since max_d = 24.535688292771 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 272 - 272

max_d = √2023 - 16 - 729 - 729

max_d = √549

max_d = 23.43074902772

Since max_d = 23.43074902772 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 272 - 282

max_d = √2023 - 16 - 729 - 784

max_d = √494

max_d = 22.226110770893

Since max_d = 22.226110770893 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 272 - 292

max_d = √2023 - 16 - 729 - 841

max_d = √437

max_d = 20.904544960367

Since max_d = 20.904544960367 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 272 - 302

max_d = √2023 - 16 - 729 - 900

max_d = √378

max_d = 19.442222095224

Since max_d = 19.442222095224 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 272 - 312

max_d = √2023 - 16 - 729 - 961

max_d = √317

max_d = 17.804493814765

Since max_d = 17.804493814765 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 272 - 322

max_d = √2023 - 16 - 729 - 1024

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 272 - 332

max_d = √2023 - 16 - 729 - 1089

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 272 - 342

max_d = √2023 - 16 - 729 - 1156

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 272 - 352

max_d = √2023 - 16 - 729 - 1225

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 282)

max_c = Floor(√2023 - 16 - 784)

max_c = Floor(√1223)

max_c = Floor(34.971416900091)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 282)/2 = 611.5

When min_c = 25, then it is c2 = 625 ≥ 611.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 282 - 252

max_d = √2023 - 16 - 784 - 625

max_d = √598

max_d = 24.454038521275

Since max_d = 24.454038521275 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 282 - 262

max_d = √2023 - 16 - 784 - 676

max_d = √547

max_d = 23.388031127053

Since max_d = 23.388031127053 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 282 - 272

max_d = √2023 - 16 - 784 - 729

max_d = √494

max_d = 22.226110770893

Since max_d = 22.226110770893 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 282 - 282

max_d = √2023 - 16 - 784 - 784

max_d = √439

max_d = 20.952326839757

Since max_d = 20.952326839757 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 282 - 292

max_d = √2023 - 16 - 784 - 841

max_d = √382

max_d = 19.544820285692

Since max_d = 19.544820285692 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 282 - 302

max_d = √2023 - 16 - 784 - 900

max_d = √323

max_d = 17.972200755611

Since max_d = 17.972200755611 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 282 - 312

max_d = √2023 - 16 - 784 - 961

max_d = √262

max_d = 16.186414056239

Since max_d = 16.186414056239 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 282 - 322

max_d = √2023 - 16 - 784 - 1024

max_d = √199

max_d = 14.106735979666

Since max_d = 14.106735979666 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 282 - 332

max_d = √2023 - 16 - 784 - 1089

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 282 - 342

max_d = √2023 - 16 - 784 - 1156

max_d = √67

max_d = 8.1853527718725

Since max_d = 8.1853527718725 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 292)

max_c = Floor(√2023 - 16 - 841)

max_c = Floor(√1166)

max_c = Floor(34.146742157928)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 292)/2 = 583

When min_c = 25, then it is c2 = 625 ≥ 583, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 292 - 252

max_d = √2023 - 16 - 841 - 625

max_d = √541

max_d = 23.259406699226

Since max_d = 23.259406699226 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 292 - 262

max_d = √2023 - 16 - 841 - 676

max_d = √490

max_d = 22.135943621179

Since max_d = 22.135943621179 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 292 - 272

max_d = √2023 - 16 - 841 - 729

max_d = √437

max_d = 20.904544960367

Since max_d = 20.904544960367 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 292 - 282

max_d = √2023 - 16 - 841 - 784

max_d = √382

max_d = 19.544820285692

Since max_d = 19.544820285692 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 292 - 292

max_d = √2023 - 16 - 841 - 841

max_d = √325

max_d = 18.02775637732

Since max_d = 18.02775637732 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 292 - 302

max_d = √2023 - 16 - 841 - 900

max_d = √266

max_d = 16.3095064303

Since max_d = 16.3095064303 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 292 - 312

max_d = √2023 - 16 - 841 - 961

max_d = √205

max_d = 14.317821063276

Since max_d = 14.317821063276 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 292 - 322

max_d = √2023 - 16 - 841 - 1024

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 292 - 332

max_d = √2023 - 16 - 841 - 1089

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 292 - 342

max_d = √2023 - 16 - 841 - 1156

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 302)

max_c = Floor(√2023 - 16 - 900)

max_c = Floor(√1107)

max_c = Floor(33.271609519228)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 302)/2 = 553.5

When min_c = 24, then it is c2 = 576 ≥ 553.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 302 - 242

max_d = √2023 - 16 - 900 - 576

max_d = √531

max_d = 23.043437243606

Since max_d = 23.043437243606 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 302 - 252

max_d = √2023 - 16 - 900 - 625

max_d = √482

max_d = 21.9544984001

Since max_d = 21.9544984001 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 302 - 262

max_d = √2023 - 16 - 900 - 676

max_d = √431

max_d = 20.760539492027

Since max_d = 20.760539492027 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 302 - 272

max_d = √2023 - 16 - 900 - 729

max_d = √378

max_d = 19.442222095224

Since max_d = 19.442222095224 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 302 - 282

max_d = √2023 - 16 - 900 - 784

max_d = √323

max_d = 17.972200755611

Since max_d = 17.972200755611 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 302 - 292

max_d = √2023 - 16 - 900 - 841

max_d = √266

max_d = 16.3095064303

Since max_d = 16.3095064303 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 302 - 302

max_d = √2023 - 16 - 900 - 900

max_d = √207

max_d = 14.387494569938

Since max_d = 14.387494569938 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 302 - 312

max_d = √2023 - 16 - 900 - 961

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 302 - 322

max_d = √2023 - 16 - 900 - 1024

max_d = √83

max_d = 9.1104335791443

Since max_d = 9.1104335791443 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 302 - 332

max_d = √2023 - 16 - 900 - 1089

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 312)

max_c = Floor(√2023 - 16 - 961)

max_c = Floor(√1046)

max_c = Floor(32.341923257592)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 312)/2 = 523

When min_c = 23, then it is c2 = 529 ≥ 523, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 312 - 232

max_d = √2023 - 16 - 961 - 529

max_d = √517

max_d = 22.737634001804

Since max_d = 22.737634001804 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 312 - 242

max_d = √2023 - 16 - 961 - 576

max_d = √470

max_d = 21.679483388679

Since max_d = 21.679483388679 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 312 - 252

max_d = √2023 - 16 - 961 - 625

max_d = √421

max_d = 20.518284528683

Since max_d = 20.518284528683 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 312 - 262

max_d = √2023 - 16 - 961 - 676

max_d = √370

max_d = 19.235384061671

Since max_d = 19.235384061671 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 312 - 272

max_d = √2023 - 16 - 961 - 729

max_d = √317

max_d = 17.804493814765

Since max_d = 17.804493814765 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 312 - 282

max_d = √2023 - 16 - 961 - 784

max_d = √262

max_d = 16.186414056239

Since max_d = 16.186414056239 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 312 - 292

max_d = √2023 - 16 - 961 - 841

max_d = √205

max_d = 14.317821063276

Since max_d = 14.317821063276 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 312 - 302

max_d = √2023 - 16 - 961 - 900

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 312 - 312

max_d = √2023 - 16 - 961 - 961

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 312 - 322

max_d = √2023 - 16 - 961 - 1024

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 322)

max_c = Floor(√2023 - 16 - 1024)

max_c = Floor(√983)

max_c = Floor(31.352830813182)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 322)/2 = 491.5

When min_c = 23, then it is c2 = 529 ≥ 491.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 322 - 232

max_d = √2023 - 16 - 1024 - 529

max_d = √454

max_d = 21.307275752663

Since max_d = 21.307275752663 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 322 - 242

max_d = √2023 - 16 - 1024 - 576

max_d = √407

max_d = 20.174241001832

Since max_d = 20.174241001832 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 322 - 252

max_d = √2023 - 16 - 1024 - 625

max_d = √358

max_d = 18.920887928425

Since max_d = 18.920887928425 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 322 - 262

max_d = √2023 - 16 - 1024 - 676

max_d = √307

max_d = 17.521415467935

Since max_d = 17.521415467935 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 322 - 272

max_d = √2023 - 16 - 1024 - 729

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 322 - 282

max_d = √2023 - 16 - 1024 - 784

max_d = √199

max_d = 14.106735979666

Since max_d = 14.106735979666 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 322 - 292

max_d = √2023 - 16 - 1024 - 841

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 322 - 302

max_d = √2023 - 16 - 1024 - 900

max_d = √83

max_d = 9.1104335791443

Since max_d = 9.1104335791443 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 322 - 312

max_d = √2023 - 16 - 1024 - 961

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 332)

max_c = Floor(√2023 - 16 - 1089)

max_c = Floor(√918)

max_c = Floor(30.298514815086)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 332)/2 = 459

When min_c = 22, then it is c2 = 484 ≥ 459, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 332 - 222

max_d = √2023 - 16 - 1089 - 484

max_d = √434

max_d = 20.832666656

Since max_d = 20.832666656 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 332 - 232

max_d = √2023 - 16 - 1089 - 529

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 332 - 242

max_d = √2023 - 16 - 1089 - 576

max_d = √342

max_d = 18.493242008907

Since max_d = 18.493242008907 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 332 - 252

max_d = √2023 - 16 - 1089 - 625

max_d = √293

max_d = 17.117242768624

Since max_d = 17.117242768624 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 332 - 262

max_d = √2023 - 16 - 1089 - 676

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 332 - 272

max_d = √2023 - 16 - 1089 - 729

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 332 - 282

max_d = √2023 - 16 - 1089 - 784

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 332 - 292

max_d = √2023 - 16 - 1089 - 841

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 332 - 302

max_d = √2023 - 16 - 1089 - 900

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 342)

max_c = Floor(√2023 - 16 - 1156)

max_c = Floor(√851)

max_c = Floor(29.17190429163)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 342)/2 = 425.5

When min_c = 21, then it is c2 = 441 ≥ 425.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 342 - 212

max_d = √2023 - 16 - 1156 - 441

max_d = √410

max_d = 20.248456731317

Since max_d = 20.248456731317 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 342 - 222

max_d = √2023 - 16 - 1156 - 484

max_d = √367

max_d = 19.157244060668

Since max_d = 19.157244060668 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 342 - 232

max_d = √2023 - 16 - 1156 - 529

max_d = √322

max_d = 17.944358444926

Since max_d = 17.944358444926 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 342 - 242

max_d = √2023 - 16 - 1156 - 576

max_d = √275

max_d = 16.583123951777

Since max_d = 16.583123951777 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 342 - 252

max_d = √2023 - 16 - 1156 - 625

max_d = √226

max_d = 15.033296378373

Since max_d = 15.033296378373 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 342 - 262

max_d = √2023 - 16 - 1156 - 676

max_d = √175

max_d = 13.228756555323

Since max_d = 13.228756555323 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 342 - 272

max_d = √2023 - 16 - 1156 - 729

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 342 - 282

max_d = √2023 - 16 - 1156 - 784

max_d = √67

max_d = 8.1853527718725

Since max_d = 8.1853527718725 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 342 - 292

max_d = √2023 - 16 - 1156 - 841

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 352)

max_c = Floor(√2023 - 16 - 1225)

max_c = Floor(√782)

max_c = Floor(27.964262908219)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 352)/2 = 391

When min_c = 20, then it is c2 = 400 ≥ 391, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 352 - 202

max_d = √2023 - 16 - 1225 - 400

max_d = √382

max_d = 19.544820285692

Since max_d = 19.544820285692 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 352 - 212

max_d = √2023 - 16 - 1225 - 441

max_d = √341

max_d = 18.466185312619

Since max_d = 18.466185312619 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 352 - 222

max_d = √2023 - 16 - 1225 - 484

max_d = √298

max_d = 17.262676501632

Since max_d = 17.262676501632 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 352 - 232

max_d = √2023 - 16 - 1225 - 529

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 352 - 242

max_d = √2023 - 16 - 1225 - 576

max_d = √206

max_d = 14.352700094407

Since max_d = 14.352700094407 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 352 - 252

max_d = √2023 - 16 - 1225 - 625

max_d = √157

max_d = 12.529964086142

Since max_d = 12.529964086142 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 352 - 262

max_d = √2023 - 16 - 1225 - 676

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 352 - 272

max_d = √2023 - 16 - 1225 - 729

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 362)

max_c = Floor(√2023 - 16 - 1296)

max_c = Floor(√711)

max_c = Floor(26.664583251947)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 362)/2 = 355.5

When min_c = 19, then it is c2 = 361 ≥ 355.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 362 - 192

max_d = √2023 - 16 - 1296 - 361

max_d = √350

max_d = 18.70828693387

Since max_d = 18.70828693387 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 362 - 202

max_d = √2023 - 16 - 1296 - 400

max_d = √311

max_d = 17.635192088548

Since max_d = 17.635192088548 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 362 - 212

max_d = √2023 - 16 - 1296 - 441

max_d = √270

max_d = 16.431676725155

Since max_d = 16.431676725155 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 362 - 222

max_d = √2023 - 16 - 1296 - 484

max_d = √227

max_d = 15.066519173319

Since max_d = 15.066519173319 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 362 - 232

max_d = √2023 - 16 - 1296 - 529

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 362 - 242

max_d = √2023 - 16 - 1296 - 576

max_d = √135

max_d = 11.618950038622

Since max_d = 11.618950038622 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 362 - 252

max_d = √2023 - 16 - 1296 - 625

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 362 - 262

max_d = √2023 - 16 - 1296 - 676

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 372)

max_c = Floor(√2023 - 16 - 1369)

max_c = Floor(√638)

max_c = Floor(25.25866188063)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 372)/2 = 319

When min_c = 18, then it is c2 = 324 ≥ 319, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 372 - 182

max_d = √2023 - 16 - 1369 - 324

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 372 - 192

max_d = √2023 - 16 - 1369 - 361

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 372 - 202

max_d = √2023 - 16 - 1369 - 400

max_d = √238

max_d = 15.427248620542

Since max_d = 15.427248620542 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 372 - 212

max_d = √2023 - 16 - 1369 - 441

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 372 - 222

max_d = √2023 - 16 - 1369 - 484

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 372 - 232

max_d = √2023 - 16 - 1369 - 529

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 372 - 242

max_d = √2023 - 16 - 1369 - 576

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 372 - 252

max_d = √2023 - 16 - 1369 - 625

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 382)

max_c = Floor(√2023 - 16 - 1444)

max_c = Floor(√563)

max_c = Floor(23.727621035409)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 382)/2 = 281.5

When min_c = 17, then it is c2 = 289 ≥ 281.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 382 - 172

max_d = √2023 - 16 - 1444 - 289

max_d = √274

max_d = 16.552945357247

Since max_d = 16.552945357247 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 382 - 182

max_d = √2023 - 16 - 1444 - 324

max_d = √239

max_d = 15.45962483374

Since max_d = 15.45962483374 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 382 - 192

max_d = √2023 - 16 - 1444 - 361

max_d = √202

max_d = 14.212670403552

Since max_d = 14.212670403552 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 382 - 202

max_d = √2023 - 16 - 1444 - 400

max_d = √163

max_d = 12.767145334804

Since max_d = 12.767145334804 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 382 - 212

max_d = √2023 - 16 - 1444 - 441

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 382 - 222

max_d = √2023 - 16 - 1444 - 484

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 382 - 232

max_d = √2023 - 16 - 1444 - 529

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 392)

max_c = Floor(√2023 - 16 - 1521)

max_c = Floor(√486)

max_c = Floor(22.045407685049)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 392)/2 = 243

When min_c = 16, then it is c2 = 256 ≥ 243, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 392 - 162

max_d = √2023 - 16 - 1521 - 256

max_d = √230

max_d = 15.165750888103

Since max_d = 15.165750888103 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 392 - 172

max_d = √2023 - 16 - 1521 - 289

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 392 - 182

max_d = √2023 - 16 - 1521 - 324

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 392 - 192

max_d = √2023 - 16 - 1521 - 361

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 392 - 202

max_d = √2023 - 16 - 1521 - 400

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 392 - 212

max_d = √2023 - 16 - 1521 - 441

max_d = √45

max_d = 6.7082039324994

Since max_d = 6.7082039324994 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 392 - 222

max_d = √2023 - 16 - 1521 - 484

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 402)

max_c = Floor(√2023 - 16 - 1600)

max_c = Floor(√407)

max_c = Floor(20.174241001832)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 402)/2 = 203.5

When min_c = 15, then it is c2 = 225 ≥ 203.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 402 - 152

max_d = √2023 - 16 - 1600 - 225

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 402 - 162

max_d = √2023 - 16 - 1600 - 256

max_d = √151

max_d = 12.288205727445

Since max_d = 12.288205727445 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 402 - 172

max_d = √2023 - 16 - 1600 - 289

max_d = √118

max_d = 10.8627804912

Since max_d = 10.8627804912 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 402 - 182

max_d = √2023 - 16 - 1600 - 324

max_d = √83

max_d = 9.1104335791443

Since max_d = 9.1104335791443 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 402 - 192

max_d = √2023 - 16 - 1600 - 361

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 402 - 202

max_d = √2023 - 16 - 1600 - 400

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 412)

max_c = Floor(√2023 - 16 - 1681)

max_c = Floor(√326)

max_c = Floor(18.055470085268)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 412)/2 = 163

When min_c = 13, then it is c2 = 169 ≥ 163, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 412 - 132

max_d = √2023 - 16 - 1681 - 169

max_d = √157

max_d = 12.529964086142

Since max_d = 12.529964086142 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 412 - 142

max_d = √2023 - 16 - 1681 - 196

max_d = √130

max_d = 11.401754250991

Since max_d = 11.401754250991 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 412 - 152

max_d = √2023 - 16 - 1681 - 225

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 412 - 162

max_d = √2023 - 16 - 1681 - 256

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 412 - 172

max_d = √2023 - 16 - 1681 - 289

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 412 - 182

max_d = √2023 - 16 - 1681 - 324

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 422)

max_c = Floor(√2023 - 16 - 1764)

max_c = Floor(√243)

max_c = Floor(15.58845726812)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 422)/2 = 121.5

When min_c = 12, then it is c2 = 144 ≥ 121.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 422 - 122

max_d = √2023 - 16 - 1764 - 144

max_d = √99

max_d = 9.9498743710662

Since max_d = 9.9498743710662 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 422 - 132

max_d = √2023 - 16 - 1764 - 169

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 422 - 142

max_d = √2023 - 16 - 1764 - 196

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 422 - 152

max_d = √2023 - 16 - 1764 - 225

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 432)

max_c = Floor(√2023 - 16 - 1849)

max_c = Floor(√158)

max_c = Floor(12.569805089977)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 432)/2 = 79

When min_c = 9, then it is c2 = 81 ≥ 79, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 432 - 92

max_d = √2023 - 16 - 1849 - 81

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 432 - 102

max_d = √2023 - 16 - 1849 - 100

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 432 - 112

max_d = √2023 - 16 - 1849 - 121

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 432 - 122

max_d = √2023 - 16 - 1849 - 144

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 44

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 42 - 442)

max_c = Floor(√2023 - 16 - 1936)

max_c = Floor(√71)

max_c = Floor(8.4261497731764)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 42 - 442)/2 = 35.5

When min_c = 6, then it is c2 = 36 ≥ 35.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 442 - 62

max_d = √2023 - 16 - 1936 - 36

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 442 - 72

max_d = √2023 - 16 - 1936 - 49

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 42 - 442 - 82

max_d = √2023 - 16 - 1936 - 64

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

a = 5

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 52)

max_b = Floor(√2023 - 25)

max_b = Floor(√1998)

max_b = Floor(44.698993277254)

max_b = 44

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 52)/3 = 666

When min_b = 26, then it is b2 = 676 ≥ 666, so min_b = 26

Test values for b in the range of (min_b, max_b)

(26, 44)

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 262)

max_c = Floor(√2023 - 25 - 676)

max_c = Floor(√1322)

max_c = Floor(36.359317925396)

max_c = 36

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 262)/2 = 661

When min_c = 26, then it is c2 = 676 ≥ 661, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 262 - 262

max_d = √2023 - 25 - 676 - 676

max_d = √646

max_d = 25.416530054278

Since max_d = 25.416530054278 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 262 - 272

max_d = √2023 - 25 - 676 - 729

max_d = √593

max_d = 24.351591323772

Since max_d = 24.351591323772 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 262 - 282

max_d = √2023 - 25 - 676 - 784

max_d = √538

max_d = 23.194827009486

Since max_d = 23.194827009486 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 262 - 292

max_d = √2023 - 25 - 676 - 841

max_d = √481

max_d = 21.931712199461

Since max_d = 21.931712199461 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 262 - 302

max_d = √2023 - 25 - 676 - 900

max_d = √422

max_d = 20.542638584174

Since max_d = 20.542638584174 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 262 - 312

max_d = √2023 - 25 - 676 - 961

max_d = √361

max_d = 19

Since max_d = 19, then (a, b, c, d) = (5, 26, 31, 19) is an integer solution proven below

52 + 262 + 312 + 192 → 25 + 676 + 961 + 361 = 2023

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 262 - 322

max_d = √2023 - 25 - 676 - 1024

max_d = √298

max_d = 17.262676501632

Since max_d = 17.262676501632 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 262 - 332

max_d = √2023 - 25 - 676 - 1089

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 262 - 342

max_d = √2023 - 25 - 676 - 1156

max_d = √166

max_d = 12.884098726725

Since max_d = 12.884098726725 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 262 - 352

max_d = √2023 - 25 - 676 - 1225

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 36

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 262 - 362

max_d = √2023 - 25 - 676 - 1296

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 272)

max_c = Floor(√2023 - 25 - 729)

max_c = Floor(√1269)

max_c = Floor(35.623026261114)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 272)/2 = 634.5

When min_c = 26, then it is c2 = 676 ≥ 634.5, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 272 - 262

max_d = √2023 - 25 - 729 - 676

max_d = √593

max_d = 24.351591323772

Since max_d = 24.351591323772 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 272 - 272

max_d = √2023 - 25 - 729 - 729

max_d = √540

max_d = 23.237900077245

Since max_d = 23.237900077245 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 272 - 282

max_d = √2023 - 25 - 729 - 784

max_d = √485

max_d = 22.022715545545

Since max_d = 22.022715545545 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 272 - 292

max_d = √2023 - 25 - 729 - 841

max_d = √428

max_d = 20.688160865577

Since max_d = 20.688160865577 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 272 - 302

max_d = √2023 - 25 - 729 - 900

max_d = √369

max_d = 19.209372712299

Since max_d = 19.209372712299 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 272 - 312

max_d = √2023 - 25 - 729 - 961

max_d = √308

max_d = 17.549928774784

Since max_d = 17.549928774784 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 272 - 322

max_d = √2023 - 25 - 729 - 1024

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 272 - 332

max_d = √2023 - 25 - 729 - 1089

max_d = √180

max_d = 13.416407864999

Since max_d = 13.416407864999 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 272 - 342

max_d = √2023 - 25 - 729 - 1156

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 272 - 352

max_d = √2023 - 25 - 729 - 1225

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 282)

max_c = Floor(√2023 - 25 - 784)

max_c = Floor(√1214)

max_c = Floor(34.842502780369)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 282)/2 = 607

When min_c = 25, then it is c2 = 625 ≥ 607, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 282 - 252

max_d = √2023 - 25 - 784 - 625

max_d = √589

max_d = 24.269322199023

Since max_d = 24.269322199023 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 282 - 262

max_d = √2023 - 25 - 784 - 676

max_d = √538

max_d = 23.194827009486

Since max_d = 23.194827009486 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 282 - 272

max_d = √2023 - 25 - 784 - 729

max_d = √485

max_d = 22.022715545545

Since max_d = 22.022715545545 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 282 - 282

max_d = √2023 - 25 - 784 - 784

max_d = √430

max_d = 20.736441353328

Since max_d = 20.736441353328 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 282 - 292

max_d = √2023 - 25 - 784 - 841

max_d = √373

max_d = 19.313207915828

Since max_d = 19.313207915828 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 282 - 302

max_d = √2023 - 25 - 784 - 900

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 282 - 312

max_d = √2023 - 25 - 784 - 961

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 282 - 322

max_d = √2023 - 25 - 784 - 1024

max_d = √190

max_d = 13.78404875209

Since max_d = 13.78404875209 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 282 - 332

max_d = √2023 - 25 - 784 - 1089

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 282 - 342

max_d = √2023 - 25 - 784 - 1156

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 292)

max_c = Floor(√2023 - 25 - 841)

max_c = Floor(√1157)

max_c = Floor(34.01470270339)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 292)/2 = 578.5

When min_c = 25, then it is c2 = 625 ≥ 578.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 292 - 252

max_d = √2023 - 25 - 841 - 625

max_d = √532

max_d = 23.065125189342

Since max_d = 23.065125189342 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 292 - 262

max_d = √2023 - 25 - 841 - 676

max_d = √481

max_d = 21.931712199461

Since max_d = 21.931712199461 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 292 - 272

max_d = √2023 - 25 - 841 - 729

max_d = √428

max_d = 20.688160865577

Since max_d = 20.688160865577 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 292 - 282

max_d = √2023 - 25 - 841 - 784

max_d = √373

max_d = 19.313207915828

Since max_d = 19.313207915828 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 292 - 292

max_d = √2023 - 25 - 841 - 841

max_d = √316

max_d = 17.776388834631

Since max_d = 17.776388834631 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 292 - 302

max_d = √2023 - 25 - 841 - 900

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 292 - 312

max_d = √2023 - 25 - 841 - 961

max_d = √196

max_d = 14

Since max_d = 14, then (a, b, c, d) = (5, 29, 31, 14) is an integer solution proven below

52 + 292 + 312 + 142 → 25 + 841 + 961 + 196 = 2023

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 292 - 322

max_d = √2023 - 25 - 841 - 1024

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 292 - 332

max_d = √2023 - 25 - 841 - 1089

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 292 - 342

max_d = √2023 - 25 - 841 - 1156

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (5, 29, 34, 1) is an integer solution proven below

52 + 292 + 342 + 12 → 25 + 841 + 1156 + 1 = 2023

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 302)

max_c = Floor(√2023 - 25 - 900)

max_c = Floor(√1098)

max_c = Floor(33.136083051562)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 302)/2 = 549

When min_c = 24, then it is c2 = 576 ≥ 549, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 302 - 242

max_d = √2023 - 25 - 900 - 576

max_d = √522

max_d = 22.847319317592

Since max_d = 22.847319317592 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 302 - 252

max_d = √2023 - 25 - 900 - 625

max_d = √473

max_d = 21.748563170932

Since max_d = 21.748563170932 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 302 - 262

max_d = √2023 - 25 - 900 - 676

max_d = √422

max_d = 20.542638584174

Since max_d = 20.542638584174 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 302 - 272

max_d = √2023 - 25 - 900 - 729

max_d = √369

max_d = 19.209372712299

Since max_d = 19.209372712299 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 302 - 282

max_d = √2023 - 25 - 900 - 784

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 302 - 292

max_d = √2023 - 25 - 900 - 841

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 302 - 302

max_d = √2023 - 25 - 900 - 900

max_d = √198

max_d = 14.07124727947

Since max_d = 14.07124727947 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 302 - 312

max_d = √2023 - 25 - 900 - 961

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 302 - 322

max_d = √2023 - 25 - 900 - 1024

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 302 - 332

max_d = √2023 - 25 - 900 - 1089

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (5, 30, 33, 3) is an integer solution proven below

52 + 302 + 332 + 32 → 25 + 900 + 1089 + 9 = 2023

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 312)

max_c = Floor(√2023 - 25 - 961)

max_c = Floor(√1037)

max_c = Floor(32.202484376209)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 312)/2 = 518.5

When min_c = 23, then it is c2 = 529 ≥ 518.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 312 - 232

max_d = √2023 - 25 - 961 - 529

max_d = √508

max_d = 22.538855339169

Since max_d = 22.538855339169 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 312 - 242

max_d = √2023 - 25 - 961 - 576

max_d = √461

max_d = 21.470910553584

Since max_d = 21.470910553584 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 312 - 252

max_d = √2023 - 25 - 961 - 625

max_d = √412

max_d = 20.297783130184

Since max_d = 20.297783130184 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 312 - 262

max_d = √2023 - 25 - 961 - 676

max_d = √361

max_d = 19

Since max_d = 19, then (a, b, c, d) = (5, 31, 26, 19) is an integer solution proven below

52 + 312 + 262 + 192 → 25 + 961 + 676 + 361 = 2023

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 312 - 272

max_d = √2023 - 25 - 961 - 729

max_d = √308

max_d = 17.549928774784

Since max_d = 17.549928774784 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 312 - 282

max_d = √2023 - 25 - 961 - 784

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 312 - 292

max_d = √2023 - 25 - 961 - 841

max_d = √196

max_d = 14

Since max_d = 14, then (a, b, c, d) = (5, 31, 29, 14) is an integer solution proven below

52 + 312 + 292 + 142 → 25 + 961 + 841 + 196 = 2023

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 312 - 302

max_d = √2023 - 25 - 961 - 900

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 312 - 312

max_d = √2023 - 25 - 961 - 961

max_d = √76

max_d = 8.7177978870813

Since max_d = 8.7177978870813 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 312 - 322

max_d = √2023 - 25 - 961 - 1024

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 322)

max_c = Floor(√2023 - 25 - 1024)

max_c = Floor(√974)

max_c = Floor(31.208973068654)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 322)/2 = 487

When min_c = 23, then it is c2 = 529 ≥ 487, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 322 - 232

max_d = √2023 - 25 - 1024 - 529

max_d = √445

max_d = 21.095023109729

Since max_d = 21.095023109729 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 322 - 242

max_d = √2023 - 25 - 1024 - 576

max_d = √398

max_d = 19.94993734326

Since max_d = 19.94993734326 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 322 - 252

max_d = √2023 - 25 - 1024 - 625

max_d = √349

max_d = 18.681541692269

Since max_d = 18.681541692269 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 322 - 262

max_d = √2023 - 25 - 1024 - 676

max_d = √298

max_d = 17.262676501632

Since max_d = 17.262676501632 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 322 - 272

max_d = √2023 - 25 - 1024 - 729

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 322 - 282

max_d = √2023 - 25 - 1024 - 784

max_d = √190

max_d = 13.78404875209

Since max_d = 13.78404875209 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 322 - 292

max_d = √2023 - 25 - 1024 - 841

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 322 - 302

max_d = √2023 - 25 - 1024 - 900

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 322 - 312

max_d = √2023 - 25 - 1024 - 961

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 332)

max_c = Floor(√2023 - 25 - 1089)

max_c = Floor(√909)

max_c = Floor(30.149626863363)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 332)/2 = 454.5

When min_c = 22, then it is c2 = 484 ≥ 454.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 332 - 222

max_d = √2023 - 25 - 1089 - 484

max_d = √425

max_d = 20.615528128088

Since max_d = 20.615528128088 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 332 - 232

max_d = √2023 - 25 - 1089 - 529

max_d = √380

max_d = 19.493588689618

Since max_d = 19.493588689618 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 332 - 242

max_d = √2023 - 25 - 1089 - 576

max_d = √333

max_d = 18.248287590895

Since max_d = 18.248287590895 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 332 - 252

max_d = √2023 - 25 - 1089 - 625

max_d = √284

max_d = 16.852299546353

Since max_d = 16.852299546353 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 332 - 262

max_d = √2023 - 25 - 1089 - 676

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 332 - 272

max_d = √2023 - 25 - 1089 - 729

max_d = √180

max_d = 13.416407864999

Since max_d = 13.416407864999 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 332 - 282

max_d = √2023 - 25 - 1089 - 784

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 332 - 292

max_d = √2023 - 25 - 1089 - 841

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 332 - 302

max_d = √2023 - 25 - 1089 - 900

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (5, 33, 30, 3) is an integer solution proven below

52 + 332 + 302 + 32 → 25 + 1089 + 900 + 9 = 2023

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 342)

max_c = Floor(√2023 - 25 - 1156)

max_c = Floor(√842)

max_c = Floor(29.017236257094)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 342)/2 = 421

When min_c = 21, then it is c2 = 441 ≥ 421, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 342 - 212

max_d = √2023 - 25 - 1156 - 441

max_d = √401

max_d = 20.024984394501

Since max_d = 20.024984394501 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 342 - 222

max_d = √2023 - 25 - 1156 - 484

max_d = √358

max_d = 18.920887928425

Since max_d = 18.920887928425 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 342 - 232

max_d = √2023 - 25 - 1156 - 529

max_d = √313

max_d = 17.691806012954

Since max_d = 17.691806012954 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 342 - 242

max_d = √2023 - 25 - 1156 - 576

max_d = √266

max_d = 16.3095064303

Since max_d = 16.3095064303 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 342 - 252

max_d = √2023 - 25 - 1156 - 625

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 342 - 262

max_d = √2023 - 25 - 1156 - 676

max_d = √166

max_d = 12.884098726725

Since max_d = 12.884098726725 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 342 - 272

max_d = √2023 - 25 - 1156 - 729

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 342 - 282

max_d = √2023 - 25 - 1156 - 784

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 342 - 292

max_d = √2023 - 25 - 1156 - 841

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (5, 34, 29, 1) is an integer solution proven below

52 + 342 + 292 + 12 → 25 + 1156 + 841 + 1 = 2023

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 352)

max_c = Floor(√2023 - 25 - 1225)

max_c = Floor(√773)

max_c = Floor(27.802877548916)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 352)/2 = 386.5

When min_c = 20, then it is c2 = 400 ≥ 386.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 352 - 202

max_d = √2023 - 25 - 1225 - 400

max_d = √373

max_d = 19.313207915828

Since max_d = 19.313207915828 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 352 - 212

max_d = √2023 - 25 - 1225 - 441

max_d = √332

max_d = 18.220867158289

Since max_d = 18.220867158289 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 352 - 222

max_d = √2023 - 25 - 1225 - 484

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (5, 35, 22, 17) is an integer solution proven below

52 + 352 + 222 + 172 → 25 + 1225 + 484 + 289 = 2023

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 352 - 232

max_d = √2023 - 25 - 1225 - 529

max_d = √244

max_d = 15.620499351813

Since max_d = 15.620499351813 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 352 - 242

max_d = √2023 - 25 - 1225 - 576

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 352 - 252

max_d = √2023 - 25 - 1225 - 625

max_d = √148

max_d = 12.165525060596

Since max_d = 12.165525060596 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 352 - 262

max_d = √2023 - 25 - 1225 - 676

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 352 - 272

max_d = √2023 - 25 - 1225 - 729

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 362)

max_c = Floor(√2023 - 25 - 1296)

max_c = Floor(√702)

max_c = Floor(26.495282598984)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 362)/2 = 351

When min_c = 19, then it is c2 = 361 ≥ 351, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 362 - 192

max_d = √2023 - 25 - 1296 - 361

max_d = √341

max_d = 18.466185312619

Since max_d = 18.466185312619 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 362 - 202

max_d = √2023 - 25 - 1296 - 400

max_d = √302

max_d = 17.378147196983

Since max_d = 17.378147196983 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 362 - 212

max_d = √2023 - 25 - 1296 - 441

max_d = √261

max_d = 16.155494421404

Since max_d = 16.155494421404 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 362 - 222

max_d = √2023 - 25 - 1296 - 484

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 362 - 232

max_d = √2023 - 25 - 1296 - 529

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 362 - 242

max_d = √2023 - 25 - 1296 - 576

max_d = √126

max_d = 11.224972160322

Since max_d = 11.224972160322 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 362 - 252

max_d = √2023 - 25 - 1296 - 625

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 362 - 262

max_d = √2023 - 25 - 1296 - 676

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 372)

max_c = Floor(√2023 - 25 - 1369)

max_c = Floor(√629)

max_c = Floor(25.079872407969)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 372)/2 = 314.5

When min_c = 18, then it is c2 = 324 ≥ 314.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 372 - 182

max_d = √2023 - 25 - 1369 - 324

max_d = √305

max_d = 17.464249196573

Since max_d = 17.464249196573 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 372 - 192

max_d = √2023 - 25 - 1369 - 361

max_d = √268

max_d = 16.370705543745

Since max_d = 16.370705543745 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 372 - 202

max_d = √2023 - 25 - 1369 - 400

max_d = √229

max_d = 15.132745950422

Since max_d = 15.132745950422 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 372 - 212

max_d = √2023 - 25 - 1369 - 441

max_d = √188

max_d = 13.711309200802

Since max_d = 13.711309200802 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 372 - 222

max_d = √2023 - 25 - 1369 - 484

max_d = √145

max_d = 12.041594578792

Since max_d = 12.041594578792 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 372 - 232

max_d = √2023 - 25 - 1369 - 529

max_d = √100

max_d = 10

Since max_d = 10, then (a, b, c, d) = (5, 37, 23, 10) is an integer solution proven below

52 + 372 + 232 + 102 → 25 + 1369 + 529 + 100 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 372 - 242

max_d = √2023 - 25 - 1369 - 576

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 372 - 252

max_d = √2023 - 25 - 1369 - 625

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (5, 37, 25, 2) is an integer solution proven below

52 + 372 + 252 + 22 → 25 + 1369 + 625 + 4 = 2023

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 382)

max_c = Floor(√2023 - 25 - 1444)

max_c = Floor(√554)

max_c = Floor(23.53720459188)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 382)/2 = 277

When min_c = 17, then it is c2 = 289 ≥ 277, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 382 - 172

max_d = √2023 - 25 - 1444 - 289

max_d = √265

max_d = 16.2788205961

Since max_d = 16.2788205961 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 382 - 182

max_d = √2023 - 25 - 1444 - 324

max_d = √230

max_d = 15.165750888103

Since max_d = 15.165750888103 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 382 - 192

max_d = √2023 - 25 - 1444 - 361

max_d = √193

max_d = 13.89244398945

Since max_d = 13.89244398945 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 382 - 202

max_d = √2023 - 25 - 1444 - 400

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 382 - 212

max_d = √2023 - 25 - 1444 - 441

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 382 - 222

max_d = √2023 - 25 - 1444 - 484

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 382 - 232

max_d = √2023 - 25 - 1444 - 529

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (5, 38, 23, 5) is an integer solution proven below

52 + 382 + 232 + 52 → 25 + 1444 + 529 + 25 = 2023

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 392)

max_c = Floor(√2023 - 25 - 1521)

max_c = Floor(√477)

max_c = Floor(21.840329667842)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 392)/2 = 238.5

When min_c = 16, then it is c2 = 256 ≥ 238.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 392 - 162

max_d = √2023 - 25 - 1521 - 256

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 392 - 172

max_d = √2023 - 25 - 1521 - 289

max_d = √188

max_d = 13.711309200802

Since max_d = 13.711309200802 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 392 - 182

max_d = √2023 - 25 - 1521 - 324

max_d = √153

max_d = 12.369316876853

Since max_d = 12.369316876853 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 392 - 192

max_d = √2023 - 25 - 1521 - 361

max_d = √116

max_d = 10.770329614269

Since max_d = 10.770329614269 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 392 - 202

max_d = √2023 - 25 - 1521 - 400

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 392 - 212

max_d = √2023 - 25 - 1521 - 441

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (5, 39, 21, 6) is an integer solution proven below

52 + 392 + 212 + 62 → 25 + 1521 + 441 + 36 = 2023

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 402)

max_c = Floor(√2023 - 25 - 1600)

max_c = Floor(√398)

max_c = Floor(19.94993734326)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 402)/2 = 199

When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 402 - 152

max_d = √2023 - 25 - 1600 - 225

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 402 - 162

max_d = √2023 - 25 - 1600 - 256

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 402 - 172

max_d = √2023 - 25 - 1600 - 289

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 402 - 182

max_d = √2023 - 25 - 1600 - 324

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 402 - 192

max_d = √2023 - 25 - 1600 - 361

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 412)

max_c = Floor(√2023 - 25 - 1681)

max_c = Floor(√317)

max_c = Floor(17.804493814765)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 412)/2 = 158.5

When min_c = 13, then it is c2 = 169 ≥ 158.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 412 - 132

max_d = √2023 - 25 - 1681 - 169

max_d = √148

max_d = 12.165525060596

Since max_d = 12.165525060596 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 412 - 142

max_d = √2023 - 25 - 1681 - 196

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (5, 41, 14, 11) is an integer solution proven below

52 + 412 + 142 + 112 → 25 + 1681 + 196 + 121 = 2023

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 412 - 152

max_d = √2023 - 25 - 1681 - 225

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 412 - 162

max_d = √2023 - 25 - 1681 - 256

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 412 - 172

max_d = √2023 - 25 - 1681 - 289

max_d = √28

max_d = 5.2915026221292

Since max_d = 5.2915026221292 is not an integer, this is not a solution

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 422)

max_c = Floor(√2023 - 25 - 1764)

max_c = Floor(√234)

max_c = Floor(15.297058540778)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 422)/2 = 117

When min_c = 11, then it is c2 = 121 ≥ 117, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 422 - 112

max_d = √2023 - 25 - 1764 - 121

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 422 - 122

max_d = √2023 - 25 - 1764 - 144

max_d = √90

max_d = 9.4868329805051

Since max_d = 9.4868329805051 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 422 - 132

max_d = √2023 - 25 - 1764 - 169

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 422 - 142

max_d = √2023 - 25 - 1764 - 196

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 422 - 152

max_d = √2023 - 25 - 1764 - 225

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (5, 42, 15, 3) is an integer solution proven below

52 + 422 + 152 + 32 → 25 + 1764 + 225 + 9 = 2023

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 432)

max_c = Floor(√2023 - 25 - 1849)

max_c = Floor(√149)

max_c = Floor(12.206555615734)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 432)/2 = 74.5

When min_c = 9, then it is c2 = 81 ≥ 74.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 432 - 92

max_d = √2023 - 25 - 1849 - 81

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 432 - 102

max_d = √2023 - 25 - 1849 - 100

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (5, 43, 10, 7) is an integer solution proven below

52 + 432 + 102 + 72 → 25 + 1849 + 100 + 49 = 2023

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 432 - 112

max_d = √2023 - 25 - 1849 - 121

max_d = √28

max_d = 5.2915026221292

Since max_d = 5.2915026221292 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 432 - 122

max_d = √2023 - 25 - 1849 - 144

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 44

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 52 - 442)

max_c = Floor(√2023 - 25 - 1936)

max_c = Floor(√62)

max_c = Floor(7.8740078740118)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 52 - 442)/2 = 31

When min_c = 6, then it is c2 = 36 ≥ 31, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 442 - 62

max_d = √2023 - 25 - 1936 - 36

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 52 - 442 - 72

max_d = √2023 - 25 - 1936 - 49

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

a = 6

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 62)

max_b = Floor(√2023 - 36)

max_b = Floor(√1987)

max_b = Floor(44.575778176045)

max_b = 44

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 62)/3 = 662.33333333333

When min_b = 26, then it is b2 = 676 ≥ 662.33333333333, so min_b = 26

Test values for b in the range of (min_b, max_b)

(26, 44)

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 262)

max_c = Floor(√2023 - 36 - 676)

max_c = Floor(√1311)

max_c = Floor(36.207733980463)

max_c = 36

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 262)/2 = 655.5

When min_c = 26, then it is c2 = 676 ≥ 655.5, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 262 - 262

max_d = √2023 - 36 - 676 - 676

max_d = √635

max_d = 25.199206336708

Since max_d = 25.199206336708 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 262 - 272

max_d = √2023 - 36 - 676 - 729

max_d = √582

max_d = 24.12467616363

Since max_d = 24.12467616363 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 262 - 282

max_d = √2023 - 36 - 676 - 784

max_d = √527

max_d = 22.956480566498

Since max_d = 22.956480566498 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 262 - 292

max_d = √2023 - 36 - 676 - 841

max_d = √470

max_d = 21.679483388679

Since max_d = 21.679483388679 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 262 - 302

max_d = √2023 - 36 - 676 - 900

max_d = √411

max_d = 20.273134932713

Since max_d = 20.273134932713 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 262 - 312

max_d = √2023 - 36 - 676 - 961

max_d = √350

max_d = 18.70828693387

Since max_d = 18.70828693387 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 262 - 322

max_d = √2023 - 36 - 676 - 1024

max_d = √287

max_d = 16.941074346097

Since max_d = 16.941074346097 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 262 - 332

max_d = √2023 - 36 - 676 - 1089

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 262 - 342

max_d = √2023 - 36 - 676 - 1156

max_d = √155

max_d = 12.449899597989

Since max_d = 12.449899597989 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 262 - 352

max_d = √2023 - 36 - 676 - 1225

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 36

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 262 - 362

max_d = √2023 - 36 - 676 - 1296

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 272)

max_c = Floor(√2023 - 36 - 729)

max_c = Floor(√1258)

max_c = Floor(35.468295701936)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 272)/2 = 629

When min_c = 26, then it is c2 = 676 ≥ 629, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 272 - 262

max_d = √2023 - 36 - 729 - 676

max_d = √582

max_d = 24.12467616363

Since max_d = 24.12467616363 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 272 - 272

max_d = √2023 - 36 - 729 - 729

max_d = √529

max_d = 23

Since max_d = 23, then (a, b, c, d) = (6, 27, 27, 23) is an integer solution proven below

62 + 272 + 272 + 232 → 36 + 729 + 729 + 529 = 2023

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 272 - 282

max_d = √2023 - 36 - 729 - 784

max_d = √474

max_d = 21.771541057077

Since max_d = 21.771541057077 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 272 - 292

max_d = √2023 - 36 - 729 - 841

max_d = √417

max_d = 20.420577856662

Since max_d = 20.420577856662 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 272 - 302

max_d = √2023 - 36 - 729 - 900

max_d = √358

max_d = 18.920887928425

Since max_d = 18.920887928425 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 272 - 312

max_d = √2023 - 36 - 729 - 961

max_d = √297

max_d = 17.233687939614

Since max_d = 17.233687939614 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 272 - 322

max_d = √2023 - 36 - 729 - 1024

max_d = √234

max_d = 15.297058540778

Since max_d = 15.297058540778 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 272 - 332

max_d = √2023 - 36 - 729 - 1089

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (6, 27, 33, 13) is an integer solution proven below

62 + 272 + 332 + 132 → 36 + 729 + 1089 + 169 = 2023

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 272 - 342

max_d = √2023 - 36 - 729 - 1156

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 272 - 352

max_d = √2023 - 36 - 729 - 1225

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 282)

max_c = Floor(√2023 - 36 - 784)

max_c = Floor(√1203)

max_c = Floor(34.684290392049)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 282)/2 = 601.5

When min_c = 25, then it is c2 = 625 ≥ 601.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 282 - 252

max_d = √2023 - 36 - 784 - 625

max_d = √578

max_d = 24.041630560343

Since max_d = 24.041630560343 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 282 - 262

max_d = √2023 - 36 - 784 - 676

max_d = √527

max_d = 22.956480566498

Since max_d = 22.956480566498 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 282 - 272

max_d = √2023 - 36 - 784 - 729

max_d = √474

max_d = 21.771541057077

Since max_d = 21.771541057077 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 282 - 282

max_d = √2023 - 36 - 784 - 784

max_d = √419

max_d = 20.469489490459

Since max_d = 20.469489490459 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 282 - 292

max_d = √2023 - 36 - 784 - 841

max_d = √362

max_d = 19.02629759044

Since max_d = 19.02629759044 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 282 - 302

max_d = √2023 - 36 - 784 - 900

max_d = √303

max_d = 17.406895185529

Since max_d = 17.406895185529 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 282 - 312

max_d = √2023 - 36 - 784 - 961

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 282 - 322

max_d = √2023 - 36 - 784 - 1024

max_d = √179

max_d = 13.37908816026

Since max_d = 13.37908816026 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 282 - 332

max_d = √2023 - 36 - 784 - 1089

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 282 - 342

max_d = √2023 - 36 - 784 - 1156

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 292)

max_c = Floor(√2023 - 36 - 841)

max_c = Floor(√1146)

max_c = Floor(33.852621759622)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 292)/2 = 573

When min_c = 24, then it is c2 = 576 ≥ 573, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 292 - 242

max_d = √2023 - 36 - 841 - 576

max_d = √570

max_d = 23.874672772627

Since max_d = 23.874672772627 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 292 - 252

max_d = √2023 - 36 - 841 - 625

max_d = √521

max_d = 22.825424421027

Since max_d = 22.825424421027 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 292 - 262

max_d = √2023 - 36 - 841 - 676

max_d = √470

max_d = 21.679483388679

Since max_d = 21.679483388679 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 292 - 272

max_d = √2023 - 36 - 841 - 729

max_d = √417

max_d = 20.420577856662

Since max_d = 20.420577856662 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 292 - 282

max_d = √2023 - 36 - 841 - 784

max_d = √362

max_d = 19.02629759044

Since max_d = 19.02629759044 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 292 - 292

max_d = √2023 - 36 - 841 - 841

max_d = √305

max_d = 17.464249196573

Since max_d = 17.464249196573 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 292 - 302

max_d = √2023 - 36 - 841 - 900

max_d = √246

max_d = 15.684387141358

Since max_d = 15.684387141358 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 292 - 312

max_d = √2023 - 36 - 841 - 961

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 292 - 322

max_d = √2023 - 36 - 841 - 1024

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 292 - 332

max_d = √2023 - 36 - 841 - 1089

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 302)

max_c = Floor(√2023 - 36 - 900)

max_c = Floor(√1087)

max_c = Floor(32.969683043669)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 302)/2 = 543.5

When min_c = 24, then it is c2 = 576 ≥ 543.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 302 - 242

max_d = √2023 - 36 - 900 - 576

max_d = √511

max_d = 22.605309110915

Since max_d = 22.605309110915 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 302 - 252

max_d = √2023 - 36 - 900 - 625

max_d = √462

max_d = 21.494185260205

Since max_d = 21.494185260205 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 302 - 262

max_d = √2023 - 36 - 900 - 676

max_d = √411

max_d = 20.273134932713

Since max_d = 20.273134932713 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 302 - 272

max_d = √2023 - 36 - 900 - 729

max_d = √358

max_d = 18.920887928425

Since max_d = 18.920887928425 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 302 - 282

max_d = √2023 - 36 - 900 - 784

max_d = √303

max_d = 17.406895185529

Since max_d = 17.406895185529 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 302 - 292

max_d = √2023 - 36 - 900 - 841

max_d = √246

max_d = 15.684387141358

Since max_d = 15.684387141358 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 302 - 302

max_d = √2023 - 36 - 900 - 900

max_d = √187

max_d = 13.674794331177

Since max_d = 13.674794331177 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 302 - 312

max_d = √2023 - 36 - 900 - 961

max_d = √126

max_d = 11.224972160322

Since max_d = 11.224972160322 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 302 - 322

max_d = √2023 - 36 - 900 - 1024

max_d = √63

max_d = 7.9372539331938

Since max_d = 7.9372539331938 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 312)

max_c = Floor(√2023 - 36 - 961)

max_c = Floor(√1026)

max_c = Floor(32.031234756094)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 312)/2 = 513

When min_c = 23, then it is c2 = 529 ≥ 513, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 312 - 232

max_d = √2023 - 36 - 961 - 529

max_d = √497

max_d = 22.293496809608

Since max_d = 22.293496809608 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 312 - 242

max_d = √2023 - 36 - 961 - 576

max_d = √450

max_d = 21.213203435596

Since max_d = 21.213203435596 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 312 - 252

max_d = √2023 - 36 - 961 - 625

max_d = √401

max_d = 20.024984394501

Since max_d = 20.024984394501 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 312 - 262

max_d = √2023 - 36 - 961 - 676

max_d = √350

max_d = 18.70828693387

Since max_d = 18.70828693387 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 312 - 272

max_d = √2023 - 36 - 961 - 729

max_d = √297

max_d = 17.233687939614

Since max_d = 17.233687939614 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 312 - 282

max_d = √2023 - 36 - 961 - 784

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 312 - 292

max_d = √2023 - 36 - 961 - 841

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 312 - 302

max_d = √2023 - 36 - 961 - 900

max_d = √126

max_d = 11.224972160322

Since max_d = 11.224972160322 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 312 - 312

max_d = √2023 - 36 - 961 - 961

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 312 - 322

max_d = √2023 - 36 - 961 - 1024

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 322)

max_c = Floor(√2023 - 36 - 1024)

max_c = Floor(√963)

max_c = Floor(31.032241298366)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 322)/2 = 481.5

When min_c = 22, then it is c2 = 484 ≥ 481.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 322 - 222

max_d = √2023 - 36 - 1024 - 484

max_d = √479

max_d = 21.886068628239

Since max_d = 21.886068628239 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 322 - 232

max_d = √2023 - 36 - 1024 - 529

max_d = √434

max_d = 20.832666656

Since max_d = 20.832666656 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 322 - 242

max_d = √2023 - 36 - 1024 - 576

max_d = √387

max_d = 19.672315572906

Since max_d = 19.672315572906 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 322 - 252

max_d = √2023 - 36 - 1024 - 625

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 322 - 262

max_d = √2023 - 36 - 1024 - 676

max_d = √287

max_d = 16.941074346097

Since max_d = 16.941074346097 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 322 - 272

max_d = √2023 - 36 - 1024 - 729

max_d = √234

max_d = 15.297058540778

Since max_d = 15.297058540778 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 322 - 282

max_d = √2023 - 36 - 1024 - 784

max_d = √179

max_d = 13.37908816026

Since max_d = 13.37908816026 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 322 - 292

max_d = √2023 - 36 - 1024 - 841

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 322 - 302

max_d = √2023 - 36 - 1024 - 900

max_d = √63

max_d = 7.9372539331938

Since max_d = 7.9372539331938 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 322 - 312

max_d = √2023 - 36 - 1024 - 961

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 332)

max_c = Floor(√2023 - 36 - 1089)

max_c = Floor(√898)

max_c = Floor(29.966648127543)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 332)/2 = 449

When min_c = 22, then it is c2 = 484 ≥ 449, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 332 - 222

max_d = √2023 - 36 - 1089 - 484

max_d = √414

max_d = 20.346989949376

Since max_d = 20.346989949376 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 332 - 232

max_d = √2023 - 36 - 1089 - 529

max_d = √369

max_d = 19.209372712299

Since max_d = 19.209372712299 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 332 - 242

max_d = √2023 - 36 - 1089 - 576

max_d = √322

max_d = 17.944358444926

Since max_d = 17.944358444926 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 332 - 252

max_d = √2023 - 36 - 1089 - 625

max_d = √273

max_d = 16.522711641858

Since max_d = 16.522711641858 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 332 - 262

max_d = √2023 - 36 - 1089 - 676

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 332 - 272

max_d = √2023 - 36 - 1089 - 729

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (6, 33, 27, 13) is an integer solution proven below

62 + 332 + 272 + 132 → 36 + 1089 + 729 + 169 = 2023

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 332 - 282

max_d = √2023 - 36 - 1089 - 784

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 332 - 292

max_d = √2023 - 36 - 1089 - 841

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 342)

max_c = Floor(√2023 - 36 - 1156)

max_c = Floor(√831)

max_c = Floor(28.827070610799)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 342)/2 = 415.5

When min_c = 21, then it is c2 = 441 ≥ 415.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 342 - 212

max_d = √2023 - 36 - 1156 - 441

max_d = √390

max_d = 19.748417658131

Since max_d = 19.748417658131 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 342 - 222

max_d = √2023 - 36 - 1156 - 484

max_d = √347

max_d = 18.627936010197

Since max_d = 18.627936010197 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 342 - 232

max_d = √2023 - 36 - 1156 - 529

max_d = √302

max_d = 17.378147196983

Since max_d = 17.378147196983 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 342 - 242

max_d = √2023 - 36 - 1156 - 576

max_d = √255

max_d = 15.968719422671

Since max_d = 15.968719422671 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 342 - 252

max_d = √2023 - 36 - 1156 - 625

max_d = √206

max_d = 14.352700094407

Since max_d = 14.352700094407 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 342 - 262

max_d = √2023 - 36 - 1156 - 676

max_d = √155

max_d = 12.449899597989

Since max_d = 12.449899597989 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 342 - 272

max_d = √2023 - 36 - 1156 - 729

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 342 - 282

max_d = √2023 - 36 - 1156 - 784

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 352)

max_c = Floor(√2023 - 36 - 1225)

max_c = Floor(√762)

max_c = Floor(27.604347483685)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 352)/2 = 381

When min_c = 20, then it is c2 = 400 ≥ 381, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 352 - 202

max_d = √2023 - 36 - 1225 - 400

max_d = √362

max_d = 19.02629759044

Since max_d = 19.02629759044 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 352 - 212

max_d = √2023 - 36 - 1225 - 441

max_d = √321

max_d = 17.916472867169

Since max_d = 17.916472867169 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 352 - 222

max_d = √2023 - 36 - 1225 - 484

max_d = √278

max_d = 16.673332000533

Since max_d = 16.673332000533 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 352 - 232

max_d = √2023 - 36 - 1225 - 529

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 352 - 242

max_d = √2023 - 36 - 1225 - 576

max_d = √186

max_d = 13.638181696986

Since max_d = 13.638181696986 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 352 - 252

max_d = √2023 - 36 - 1225 - 625

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 352 - 262

max_d = √2023 - 36 - 1225 - 676

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 352 - 272

max_d = √2023 - 36 - 1225 - 729

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 362)

max_c = Floor(√2023 - 36 - 1296)

max_c = Floor(√691)

max_c = Floor(26.28687885619)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 362)/2 = 345.5

When min_c = 19, then it is c2 = 361 ≥ 345.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 362 - 192

max_d = √2023 - 36 - 1296 - 361

max_d = √330

max_d = 18.165902124585

Since max_d = 18.165902124585 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 362 - 202

max_d = √2023 - 36 - 1296 - 400

max_d = √291

max_d = 17.058722109232

Since max_d = 17.058722109232 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 362 - 212

max_d = √2023 - 36 - 1296 - 441

max_d = √250

max_d = 15.811388300842

Since max_d = 15.811388300842 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 362 - 222

max_d = √2023 - 36 - 1296 - 484

max_d = √207

max_d = 14.387494569938

Since max_d = 14.387494569938 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 362 - 232

max_d = √2023 - 36 - 1296 - 529

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 362 - 242

max_d = √2023 - 36 - 1296 - 576

max_d = √115

max_d = 10.723805294764

Since max_d = 10.723805294764 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 362 - 252

max_d = √2023 - 36 - 1296 - 625

max_d = √66

max_d = 8.124038404636

Since max_d = 8.124038404636 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 362 - 262

max_d = √2023 - 36 - 1296 - 676

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 372)

max_c = Floor(√2023 - 36 - 1369)

max_c = Floor(√618)

max_c = Floor(24.859605789312)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 372)/2 = 309

When min_c = 18, then it is c2 = 324 ≥ 309, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 372 - 182

max_d = √2023 - 36 - 1369 - 324

max_d = √294

max_d = 17.146428199482

Since max_d = 17.146428199482 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 372 - 192

max_d = √2023 - 36 - 1369 - 361

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 372 - 202

max_d = √2023 - 36 - 1369 - 400

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 372 - 212

max_d = √2023 - 36 - 1369 - 441

max_d = √177

max_d = 13.30413469565

Since max_d = 13.30413469565 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 372 - 222

max_d = √2023 - 36 - 1369 - 484

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 372 - 232

max_d = √2023 - 36 - 1369 - 529

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 372 - 242

max_d = √2023 - 36 - 1369 - 576

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 382)

max_c = Floor(√2023 - 36 - 1444)

max_c = Floor(√543)

max_c = Floor(23.302360395462)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 382)/2 = 271.5

When min_c = 17, then it is c2 = 289 ≥ 271.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 382 - 172

max_d = √2023 - 36 - 1444 - 289

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 382 - 182

max_d = √2023 - 36 - 1444 - 324

max_d = √219

max_d = 14.798648586949

Since max_d = 14.798648586949 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 382 - 192

max_d = √2023 - 36 - 1444 - 361

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 382 - 202

max_d = √2023 - 36 - 1444 - 400

max_d = √143

max_d = 11.958260743101

Since max_d = 11.958260743101 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 382 - 212

max_d = √2023 - 36 - 1444 - 441

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 382 - 222

max_d = √2023 - 36 - 1444 - 484

max_d = √59

max_d = 7.6811457478686

Since max_d = 7.6811457478686 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 382 - 232

max_d = √2023 - 36 - 1444 - 529

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 392)

max_c = Floor(√2023 - 36 - 1521)

max_c = Floor(√466)

max_c = Floor(21.587033144923)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 392)/2 = 233

When min_c = 16, then it is c2 = 256 ≥ 233, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 392 - 162

max_d = √2023 - 36 - 1521 - 256

max_d = √210

max_d = 14.491376746189

Since max_d = 14.491376746189 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 392 - 172

max_d = √2023 - 36 - 1521 - 289

max_d = √177

max_d = 13.30413469565

Since max_d = 13.30413469565 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 392 - 182

max_d = √2023 - 36 - 1521 - 324

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 392 - 192

max_d = √2023 - 36 - 1521 - 361

max_d = √105

max_d = 10.24695076596

Since max_d = 10.24695076596 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 392 - 202

max_d = √2023 - 36 - 1521 - 400

max_d = √66

max_d = 8.124038404636

Since max_d = 8.124038404636 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 392 - 212

max_d = √2023 - 36 - 1521 - 441

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (6, 39, 21, 5) is an integer solution proven below

62 + 392 + 212 + 52 → 36 + 1521 + 441 + 25 = 2023

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 402)

max_c = Floor(√2023 - 36 - 1600)

max_c = Floor(√387)

max_c = Floor(19.672315572906)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 402)/2 = 193.5

When min_c = 14, then it is c2 = 196 ≥ 193.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 402 - 142

max_d = √2023 - 36 - 1600 - 196

max_d = √191

max_d = 13.820274961085

Since max_d = 13.820274961085 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 402 - 152

max_d = √2023 - 36 - 1600 - 225

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 402 - 162

max_d = √2023 - 36 - 1600 - 256

max_d = √131

max_d = 11.44552314226

Since max_d = 11.44552314226 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 402 - 172

max_d = √2023 - 36 - 1600 - 289

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 402 - 182

max_d = √2023 - 36 - 1600 - 324

max_d = √63

max_d = 7.9372539331938

Since max_d = 7.9372539331938 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 402 - 192

max_d = √2023 - 36 - 1600 - 361

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 412)

max_c = Floor(√2023 - 36 - 1681)

max_c = Floor(√306)

max_c = Floor(17.492855684536)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 412)/2 = 153

When min_c = 13, then it is c2 = 169 ≥ 153, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 412 - 132

max_d = √2023 - 36 - 1681 - 169

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 412 - 142

max_d = √2023 - 36 - 1681 - 196

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 412 - 152

max_d = √2023 - 36 - 1681 - 225

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (6, 41, 15, 9) is an integer solution proven below

62 + 412 + 152 + 92 → 36 + 1681 + 225 + 81 = 2023

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 412 - 162

max_d = √2023 - 36 - 1681 - 256

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 412 - 172

max_d = √2023 - 36 - 1681 - 289

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 422)

max_c = Floor(√2023 - 36 - 1764)

max_c = Floor(√223)

max_c = Floor(14.933184523068)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 422)/2 = 111.5

When min_c = 11, then it is c2 = 121 ≥ 111.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 422 - 112

max_d = √2023 - 36 - 1764 - 121

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 422 - 122

max_d = √2023 - 36 - 1764 - 144

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 422 - 132

max_d = √2023 - 36 - 1764 - 169

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 422 - 142

max_d = √2023 - 36 - 1764 - 196

max_d = √27

max_d = 5.1961524227066

Since max_d = 5.1961524227066 is not an integer, this is not a solution

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 432)

max_c = Floor(√2023 - 36 - 1849)

max_c = Floor(√138)

max_c = Floor(11.747340124471)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 432)/2 = 69

When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 432 - 92

max_d = √2023 - 36 - 1849 - 81

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 432 - 102

max_d = √2023 - 36 - 1849 - 100

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 432 - 112

max_d = √2023 - 36 - 1849 - 121

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 44

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 62 - 442)

max_c = Floor(√2023 - 36 - 1936)

max_c = Floor(√51)

max_c = Floor(7.1414284285429)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 62 - 442)/2 = 25.5

When min_c = 6, then it is c2 = 36 ≥ 25.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 442 - 62

max_d = √2023 - 36 - 1936 - 36

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 62 - 442 - 72

max_d = √2023 - 36 - 1936 - 49

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 7

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 72)

max_b = Floor(√2023 - 49)

max_b = Floor(√1974)

max_b = Floor(44.429719783046)

max_b = 44

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 72)/3 = 658

When min_b = 26, then it is b2 = 676 ≥ 658, so min_b = 26

Test values for b in the range of (min_b, max_b)

(26, 44)

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 262)

max_c = Floor(√2023 - 49 - 676)

max_c = Floor(√1298)

max_c = Floor(36.027767069304)

max_c = 36

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 262)/2 = 649

When min_c = 26, then it is c2 = 676 ≥ 649, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 262 - 262

max_d = √2023 - 49 - 676 - 676

max_d = √622

max_d = 24.93992782668

Since max_d = 24.93992782668 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 262 - 272

max_d = √2023 - 49 - 676 - 729

max_d = √569

max_d = 23.853720883753

Since max_d = 23.853720883753 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 262 - 282

max_d = √2023 - 49 - 676 - 784

max_d = √514

max_d = 22.671568097509

Since max_d = 22.671568097509 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 262 - 292

max_d = √2023 - 49 - 676 - 841

max_d = √457

max_d = 21.377558326432

Since max_d = 21.377558326432 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 262 - 302

max_d = √2023 - 49 - 676 - 900

max_d = √398

max_d = 19.94993734326

Since max_d = 19.94993734326 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 262 - 312

max_d = √2023 - 49 - 676 - 961

max_d = √337

max_d = 18.357559750686

Since max_d = 18.357559750686 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 262 - 322

max_d = √2023 - 49 - 676 - 1024

max_d = √274

max_d = 16.552945357247

Since max_d = 16.552945357247 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 262 - 332

max_d = √2023 - 49 - 676 - 1089

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 262 - 342

max_d = √2023 - 49 - 676 - 1156

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 262 - 352

max_d = √2023 - 49 - 676 - 1225

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 36

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 262 - 362

max_d = √2023 - 49 - 676 - 1296

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 272)

max_c = Floor(√2023 - 49 - 729)

max_c = Floor(√1245)

max_c = Floor(35.284557528755)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 272)/2 = 622.5

When min_c = 25, then it is c2 = 625 ≥ 622.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 272 - 252

max_d = √2023 - 49 - 729 - 625

max_d = √620

max_d = 24.899799195977

Since max_d = 24.899799195977 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 272 - 262

max_d = √2023 - 49 - 729 - 676

max_d = √569

max_d = 23.853720883753

Since max_d = 23.853720883753 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 272 - 272

max_d = √2023 - 49 - 729 - 729

max_d = √516

max_d = 22.715633383201

Since max_d = 22.715633383201 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 272 - 282

max_d = √2023 - 49 - 729 - 784

max_d = √461

max_d = 21.470910553584

Since max_d = 21.470910553584 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 272 - 292

max_d = √2023 - 49 - 729 - 841

max_d = √404

max_d = 20.099751242242

Since max_d = 20.099751242242 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 272 - 302

max_d = √2023 - 49 - 729 - 900

max_d = √345

max_d = 18.574175621007

Since max_d = 18.574175621007 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 272 - 312

max_d = √2023 - 49 - 729 - 961

max_d = √284

max_d = 16.852299546353

Since max_d = 16.852299546353 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 272 - 322

max_d = √2023 - 49 - 729 - 1024

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 272 - 332

max_d = √2023 - 49 - 729 - 1089

max_d = √156

max_d = 12.489995996797

Since max_d = 12.489995996797 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 272 - 342

max_d = √2023 - 49 - 729 - 1156

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 272 - 352

max_d = √2023 - 49 - 729 - 1225

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 282)

max_c = Floor(√2023 - 49 - 784)

max_c = Floor(√1190)

max_c = Floor(34.496376621321)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 282)/2 = 595

When min_c = 25, then it is c2 = 625 ≥ 595, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 282 - 252

max_d = √2023 - 49 - 784 - 625

max_d = √565

max_d = 23.769728648009

Since max_d = 23.769728648009 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 282 - 262

max_d = √2023 - 49 - 784 - 676

max_d = √514

max_d = 22.671568097509

Since max_d = 22.671568097509 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 282 - 272

max_d = √2023 - 49 - 784 - 729

max_d = √461

max_d = 21.470910553584

Since max_d = 21.470910553584 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 282 - 282

max_d = √2023 - 49 - 784 - 784

max_d = √406

max_d = 20.14944167961

Since max_d = 20.14944167961 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 282 - 292

max_d = √2023 - 49 - 784 - 841

max_d = √349

max_d = 18.681541692269

Since max_d = 18.681541692269 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 282 - 302

max_d = √2023 - 49 - 784 - 900

max_d = √290

max_d = 17.029386365926

Since max_d = 17.029386365926 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 282 - 312

max_d = √2023 - 49 - 784 - 961

max_d = √229

max_d = 15.132745950422

Since max_d = 15.132745950422 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 282 - 322

max_d = √2023 - 49 - 784 - 1024

max_d = √166

max_d = 12.884098726725

Since max_d = 12.884098726725 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 282 - 332

max_d = √2023 - 49 - 784 - 1089

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 282 - 342

max_d = √2023 - 49 - 784 - 1156

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 292)

max_c = Floor(√2023 - 49 - 841)

max_c = Floor(√1133)

max_c = Floor(33.660065359414)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 292)/2 = 566.5

When min_c = 24, then it is c2 = 576 ≥ 566.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 292 - 242

max_d = √2023 - 49 - 841 - 576

max_d = √557

max_d = 23.600847442412

Since max_d = 23.600847442412 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 292 - 252

max_d = √2023 - 49 - 841 - 625

max_d = √508

max_d = 22.538855339169

Since max_d = 22.538855339169 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 292 - 262

max_d = √2023 - 49 - 841 - 676

max_d = √457

max_d = 21.377558326432

Since max_d = 21.377558326432 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 292 - 272

max_d = √2023 - 49 - 841 - 729

max_d = √404

max_d = 20.099751242242

Since max_d = 20.099751242242 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 292 - 282

max_d = √2023 - 49 - 841 - 784

max_d = √349

max_d = 18.681541692269

Since max_d = 18.681541692269 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 292 - 292

max_d = √2023 - 49 - 841 - 841

max_d = √292

max_d = 17.088007490635

Since max_d = 17.088007490635 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 292 - 302

max_d = √2023 - 49 - 841 - 900

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 292 - 312

max_d = √2023 - 49 - 841 - 961

max_d = √172

max_d = 13.114877048604

Since max_d = 13.114877048604 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 292 - 322

max_d = √2023 - 49 - 841 - 1024

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 292 - 332

max_d = √2023 - 49 - 841 - 1089

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 302)

max_c = Floor(√2023 - 49 - 900)

max_c = Floor(√1074)

max_c = Floor(32.771939216348)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 302)/2 = 537

When min_c = 24, then it is c2 = 576 ≥ 537, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 302 - 242

max_d = √2023 - 49 - 900 - 576

max_d = √498

max_d = 22.315913604421

Since max_d = 22.315913604421 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 302 - 252

max_d = √2023 - 49 - 900 - 625

max_d = √449

max_d = 21.189620100417

Since max_d = 21.189620100417 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 302 - 262

max_d = √2023 - 49 - 900 - 676

max_d = √398

max_d = 19.94993734326

Since max_d = 19.94993734326 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 302 - 272

max_d = √2023 - 49 - 900 - 729

max_d = √345

max_d = 18.574175621007

Since max_d = 18.574175621007 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 302 - 282

max_d = √2023 - 49 - 900 - 784

max_d = √290

max_d = 17.029386365926

Since max_d = 17.029386365926 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 302 - 292

max_d = √2023 - 49 - 900 - 841

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 302 - 302

max_d = √2023 - 49 - 900 - 900

max_d = √174

max_d = 13.190905958273

Since max_d = 13.190905958273 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 302 - 312

max_d = √2023 - 49 - 900 - 961

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 302 - 322

max_d = √2023 - 49 - 900 - 1024

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 312)

max_c = Floor(√2023 - 49 - 961)

max_c = Floor(√1013)

max_c = Floor(31.827660925679)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 312)/2 = 506.5

When min_c = 23, then it is c2 = 529 ≥ 506.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 312 - 232

max_d = √2023 - 49 - 961 - 529

max_d = √484

max_d = 22

Since max_d = 22, then (a, b, c, d) = (7, 31, 23, 22) is an integer solution proven below

72 + 312 + 232 + 222 → 49 + 961 + 529 + 484 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 312 - 242

max_d = √2023 - 49 - 961 - 576

max_d = √437

max_d = 20.904544960367

Since max_d = 20.904544960367 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 312 - 252

max_d = √2023 - 49 - 961 - 625

max_d = √388

max_d = 19.697715603592

Since max_d = 19.697715603592 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 312 - 262

max_d = √2023 - 49 - 961 - 676

max_d = √337

max_d = 18.357559750686

Since max_d = 18.357559750686 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 312 - 272

max_d = √2023 - 49 - 961 - 729

max_d = √284

max_d = 16.852299546353

Since max_d = 16.852299546353 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 312 - 282

max_d = √2023 - 49 - 961 - 784

max_d = √229

max_d = 15.132745950422

Since max_d = 15.132745950422 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 312 - 292

max_d = √2023 - 49 - 961 - 841

max_d = √172

max_d = 13.114877048604

Since max_d = 13.114877048604 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 312 - 302

max_d = √2023 - 49 - 961 - 900

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 312 - 312

max_d = √2023 - 49 - 961 - 961

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 322)

max_c = Floor(√2023 - 49 - 1024)

max_c = Floor(√950)

max_c = Floor(30.822070014845)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 322)/2 = 475

When min_c = 22, then it is c2 = 484 ≥ 475, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 322 - 222

max_d = √2023 - 49 - 1024 - 484

max_d = √466

max_d = 21.587033144923

Since max_d = 21.587033144923 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 322 - 232

max_d = √2023 - 49 - 1024 - 529

max_d = √421

max_d = 20.518284528683

Since max_d = 20.518284528683 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 322 - 242

max_d = √2023 - 49 - 1024 - 576

max_d = √374

max_d = 19.339079605814

Since max_d = 19.339079605814 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 322 - 252

max_d = √2023 - 49 - 1024 - 625

max_d = √325

max_d = 18.02775637732

Since max_d = 18.02775637732 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 322 - 262

max_d = √2023 - 49 - 1024 - 676

max_d = √274

max_d = 16.552945357247

Since max_d = 16.552945357247 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 322 - 272

max_d = √2023 - 49 - 1024 - 729

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 322 - 282

max_d = √2023 - 49 - 1024 - 784

max_d = √166

max_d = 12.884098726725

Since max_d = 12.884098726725 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 322 - 292

max_d = √2023 - 49 - 1024 - 841

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 322 - 302

max_d = √2023 - 49 - 1024 - 900

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 332)

max_c = Floor(√2023 - 49 - 1089)

max_c = Floor(√885)

max_c = Floor(29.748949561287)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 332)/2 = 442.5

When min_c = 22, then it is c2 = 484 ≥ 442.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 332 - 222

max_d = √2023 - 49 - 1089 - 484

max_d = √401

max_d = 20.024984394501

Since max_d = 20.024984394501 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 332 - 232

max_d = √2023 - 49 - 1089 - 529

max_d = √356

max_d = 18.867962264113

Since max_d = 18.867962264113 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 332 - 242

max_d = √2023 - 49 - 1089 - 576

max_d = √309

max_d = 17.578395831247

Since max_d = 17.578395831247 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 332 - 252

max_d = √2023 - 49 - 1089 - 625

max_d = √260

max_d = 16.124515496597

Since max_d = 16.124515496597 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 332 - 262

max_d = √2023 - 49 - 1089 - 676

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 332 - 272

max_d = √2023 - 49 - 1089 - 729

max_d = √156

max_d = 12.489995996797

Since max_d = 12.489995996797 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 332 - 282

max_d = √2023 - 49 - 1089 - 784

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 332 - 292

max_d = √2023 - 49 - 1089 - 841

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 342)

max_c = Floor(√2023 - 49 - 1156)

max_c = Floor(√818)

max_c = Floor(28.60069929215)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 342)/2 = 409

When min_c = 21, then it is c2 = 441 ≥ 409, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 342 - 212

max_d = √2023 - 49 - 1156 - 441

max_d = √377

max_d = 19.416487838948

Since max_d = 19.416487838948 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 342 - 222

max_d = √2023 - 49 - 1156 - 484

max_d = √334

max_d = 18.275666882497

Since max_d = 18.275666882497 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 342 - 232

max_d = √2023 - 49 - 1156 - 529

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (7, 34, 23, 17) is an integer solution proven below

72 + 342 + 232 + 172 → 49 + 1156 + 529 + 289 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 342 - 242

max_d = √2023 - 49 - 1156 - 576

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 342 - 252

max_d = √2023 - 49 - 1156 - 625

max_d = √193

max_d = 13.89244398945

Since max_d = 13.89244398945 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 342 - 262

max_d = √2023 - 49 - 1156 - 676

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 342 - 272

max_d = √2023 - 49 - 1156 - 729

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 342 - 282

max_d = √2023 - 49 - 1156 - 784

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 352)

max_c = Floor(√2023 - 49 - 1225)

max_c = Floor(√749)

max_c = Floor(27.367864366808)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 352)/2 = 374.5

When min_c = 20, then it is c2 = 400 ≥ 374.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 352 - 202

max_d = √2023 - 49 - 1225 - 400

max_d = √349

max_d = 18.681541692269

Since max_d = 18.681541692269 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 352 - 212

max_d = √2023 - 49 - 1225 - 441

max_d = √308

max_d = 17.549928774784

Since max_d = 17.549928774784 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 352 - 222

max_d = √2023 - 49 - 1225 - 484

max_d = √265

max_d = 16.2788205961

Since max_d = 16.2788205961 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 352 - 232

max_d = √2023 - 49 - 1225 - 529

max_d = √220

max_d = 14.832396974191

Since max_d = 14.832396974191 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 352 - 242

max_d = √2023 - 49 - 1225 - 576

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 352 - 252

max_d = √2023 - 49 - 1225 - 625

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 352 - 262

max_d = √2023 - 49 - 1225 - 676

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 352 - 272

max_d = √2023 - 49 - 1225 - 729

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 362)

max_c = Floor(√2023 - 49 - 1296)

max_c = Floor(√678)

max_c = Floor(26.038433132583)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 362)/2 = 339

When min_c = 19, then it is c2 = 361 ≥ 339, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 362 - 192

max_d = √2023 - 49 - 1296 - 361

max_d = √317

max_d = 17.804493814765

Since max_d = 17.804493814765 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 362 - 202

max_d = √2023 - 49 - 1296 - 400

max_d = √278

max_d = 16.673332000533

Since max_d = 16.673332000533 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 362 - 212

max_d = √2023 - 49 - 1296 - 441

max_d = √237

max_d = 15.394804318341

Since max_d = 15.394804318341 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 362 - 222

max_d = √2023 - 49 - 1296 - 484

max_d = √194

max_d = 13.928388277184

Since max_d = 13.928388277184 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 362 - 232

max_d = √2023 - 49 - 1296 - 529

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 362 - 242

max_d = √2023 - 49 - 1296 - 576

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 362 - 252

max_d = √2023 - 49 - 1296 - 625

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 362 - 262

max_d = √2023 - 49 - 1296 - 676

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 372)

max_c = Floor(√2023 - 49 - 1369)

max_c = Floor(√605)

max_c = Floor(24.596747752498)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 372)/2 = 302.5

When min_c = 18, then it is c2 = 324 ≥ 302.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 372 - 182

max_d = √2023 - 49 - 1369 - 324

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 372 - 192

max_d = √2023 - 49 - 1369 - 361

max_d = √244

max_d = 15.620499351813

Since max_d = 15.620499351813 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 372 - 202

max_d = √2023 - 49 - 1369 - 400

max_d = √205

max_d = 14.317821063276

Since max_d = 14.317821063276 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 372 - 212

max_d = √2023 - 49 - 1369 - 441

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 372 - 222

max_d = √2023 - 49 - 1369 - 484

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (7, 37, 22, 11) is an integer solution proven below

72 + 372 + 222 + 112 → 49 + 1369 + 484 + 121 = 2023

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 372 - 232

max_d = √2023 - 49 - 1369 - 529

max_d = √76

max_d = 8.7177978870813

Since max_d = 8.7177978870813 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 372 - 242

max_d = √2023 - 49 - 1369 - 576

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 382)

max_c = Floor(√2023 - 49 - 1444)

max_c = Floor(√530)

max_c = Floor(23.021728866443)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 382)/2 = 265

When min_c = 17, then it is c2 = 289 ≥ 265, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 382 - 172

max_d = √2023 - 49 - 1444 - 289

max_d = √241

max_d = 15.52417469626

Since max_d = 15.52417469626 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 382 - 182

max_d = √2023 - 49 - 1444 - 324

max_d = √206

max_d = 14.352700094407

Since max_d = 14.352700094407 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 382 - 192

max_d = √2023 - 49 - 1444 - 361

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (7, 38, 19, 13) is an integer solution proven below

72 + 382 + 192 + 132 → 49 + 1444 + 361 + 169 = 2023

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 382 - 202

max_d = √2023 - 49 - 1444 - 400

max_d = √130

max_d = 11.401754250991

Since max_d = 11.401754250991 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 382 - 212

max_d = √2023 - 49 - 1444 - 441

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 382 - 222

max_d = √2023 - 49 - 1444 - 484

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 382 - 232

max_d = √2023 - 49 - 1444 - 529

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (7, 38, 23, 1) is an integer solution proven below

72 + 382 + 232 + 12 → 49 + 1444 + 529 + 1 = 2023

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 392)

max_c = Floor(√2023 - 49 - 1521)

max_c = Floor(√453)

max_c = Floor(21.283796653793)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 392)/2 = 226.5

When min_c = 16, then it is c2 = 256 ≥ 226.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 392 - 162

max_d = √2023 - 49 - 1521 - 256

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 392 - 172

max_d = √2023 - 49 - 1521 - 289

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 392 - 182

max_d = √2023 - 49 - 1521 - 324

max_d = √129

max_d = 11.357816691601

Since max_d = 11.357816691601 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 392 - 192

max_d = √2023 - 49 - 1521 - 361

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 392 - 202

max_d = √2023 - 49 - 1521 - 400

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 392 - 212

max_d = √2023 - 49 - 1521 - 441

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 402)

max_c = Floor(√2023 - 49 - 1600)

max_c = Floor(√374)

max_c = Floor(19.339079605814)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 402)/2 = 187

When min_c = 14, then it is c2 = 196 ≥ 187, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 402 - 142

max_d = √2023 - 49 - 1600 - 196

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 402 - 152

max_d = √2023 - 49 - 1600 - 225

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 402 - 162

max_d = √2023 - 49 - 1600 - 256

max_d = √118

max_d = 10.8627804912

Since max_d = 10.8627804912 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 402 - 172

max_d = √2023 - 49 - 1600 - 289

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 402 - 182

max_d = √2023 - 49 - 1600 - 324

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 402 - 192

max_d = √2023 - 49 - 1600 - 361

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 412)

max_c = Floor(√2023 - 49 - 1681)

max_c = Floor(√293)

max_c = Floor(17.117242768624)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 412)/2 = 146.5

When min_c = 13, then it is c2 = 169 ≥ 146.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 412 - 132

max_d = √2023 - 49 - 1681 - 169

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 412 - 142

max_d = √2023 - 49 - 1681 - 196

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 412 - 152

max_d = √2023 - 49 - 1681 - 225

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 412 - 162

max_d = √2023 - 49 - 1681 - 256

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 412 - 172

max_d = √2023 - 49 - 1681 - 289

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (7, 41, 17, 2) is an integer solution proven below

72 + 412 + 172 + 22 → 49 + 1681 + 289 + 4 = 2023

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 422)

max_c = Floor(√2023 - 49 - 1764)

max_c = Floor(√210)

max_c = Floor(14.491376746189)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 422)/2 = 105

When min_c = 11, then it is c2 = 121 ≥ 105, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 422 - 112

max_d = √2023 - 49 - 1764 - 121

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 422 - 122

max_d = √2023 - 49 - 1764 - 144

max_d = √66

max_d = 8.124038404636

Since max_d = 8.124038404636 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 422 - 132

max_d = √2023 - 49 - 1764 - 169

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 422 - 142

max_d = √2023 - 49 - 1764 - 196

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 432)

max_c = Floor(√2023 - 49 - 1849)

max_c = Floor(√125)

max_c = Floor(11.180339887499)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 432)/2 = 62.5

When min_c = 8, then it is c2 = 64 ≥ 62.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 432 - 82

max_d = √2023 - 49 - 1849 - 64

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 432 - 92

max_d = √2023 - 49 - 1849 - 81

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 432 - 102

max_d = √2023 - 49 - 1849 - 100

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (7, 43, 10, 5) is an integer solution proven below

72 + 432 + 102 + 52 → 49 + 1849 + 100 + 25 = 2023

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 432 - 112

max_d = √2023 - 49 - 1849 - 121

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (7, 43, 11, 2) is an integer solution proven below

72 + 432 + 112 + 22 → 49 + 1849 + 121 + 4 = 2023

b = 44

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 72 - 442)

max_c = Floor(√2023 - 49 - 1936)

max_c = Floor(√38)

max_c = Floor(6.164414002969)

max_c = 6

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 72 - 442)/2 = 19

When min_c = 5, then it is c2 = 25 ≥ 19, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 442 - 52

max_d = √2023 - 49 - 1936 - 25

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 72 - 442 - 62

max_d = √2023 - 49 - 1936 - 36

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 8

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 82)

max_b = Floor(√2023 - 64)

max_b = Floor(√1959)

max_b = Floor(44.260591952661)

max_b = 44

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 82)/3 = 653

When min_b = 26, then it is b2 = 676 ≥ 653, so min_b = 26

Test values for b in the range of (min_b, max_b)

(26, 44)

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 262)

max_c = Floor(√2023 - 64 - 676)

max_c = Floor(√1283)

max_c = Floor(35.818989377145)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 262)/2 = 641.5

When min_c = 26, then it is c2 = 676 ≥ 641.5, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 262 - 262

max_d = √2023 - 64 - 676 - 676

max_d = √607

max_d = 24.63736998951

Since max_d = 24.63736998951 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 262 - 272

max_d = √2023 - 64 - 676 - 729

max_d = √554

max_d = 23.53720459188

Since max_d = 23.53720459188 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 262 - 282

max_d = √2023 - 64 - 676 - 784

max_d = √499

max_d = 22.338307903689

Since max_d = 22.338307903689 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 262 - 292

max_d = √2023 - 64 - 676 - 841

max_d = √442

max_d = 21.023796041629

Since max_d = 21.023796041629 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 262 - 302

max_d = √2023 - 64 - 676 - 900

max_d = √383

max_d = 19.570385790781

Since max_d = 19.570385790781 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 262 - 312

max_d = √2023 - 64 - 676 - 961

max_d = √322

max_d = 17.944358444926

Since max_d = 17.944358444926 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 262 - 322

max_d = √2023 - 64 - 676 - 1024

max_d = √259

max_d = 16.093476939431

Since max_d = 16.093476939431 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 262 - 332

max_d = √2023 - 64 - 676 - 1089

max_d = √194

max_d = 13.928388277184

Since max_d = 13.928388277184 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 262 - 342

max_d = √2023 - 64 - 676 - 1156

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 262 - 352

max_d = √2023 - 64 - 676 - 1225

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 272)

max_c = Floor(√2023 - 64 - 729)

max_c = Floor(√1230)

max_c = Floor(35.0713558335)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 272)/2 = 615

When min_c = 25, then it is c2 = 625 ≥ 615, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 272 - 252

max_d = √2023 - 64 - 729 - 625

max_d = √605

max_d = 24.596747752498

Since max_d = 24.596747752498 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 272 - 262

max_d = √2023 - 64 - 729 - 676

max_d = √554

max_d = 23.53720459188

Since max_d = 23.53720459188 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 272 - 272

max_d = √2023 - 64 - 729 - 729

max_d = √501

max_d = 22.383029285599

Since max_d = 22.383029285599 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 272 - 282

max_d = √2023 - 64 - 729 - 784

max_d = √446

max_d = 21.118712081943

Since max_d = 21.118712081943 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 272 - 292

max_d = √2023 - 64 - 729 - 841

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 272 - 302

max_d = √2023 - 64 - 729 - 900

max_d = √330

max_d = 18.165902124585

Since max_d = 18.165902124585 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 272 - 312

max_d = √2023 - 64 - 729 - 961

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 272 - 322

max_d = √2023 - 64 - 729 - 1024

max_d = √206

max_d = 14.352700094407

Since max_d = 14.352700094407 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 272 - 332

max_d = √2023 - 64 - 729 - 1089

max_d = √141

max_d = 11.874342087038

Since max_d = 11.874342087038 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 272 - 342

max_d = √2023 - 64 - 729 - 1156

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 272 - 352

max_d = √2023 - 64 - 729 - 1225

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 282)

max_c = Floor(√2023 - 64 - 784)

max_c = Floor(√1175)

max_c = Floor(34.278273002005)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 282)/2 = 587.5

When min_c = 25, then it is c2 = 625 ≥ 587.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 282 - 252

max_d = √2023 - 64 - 784 - 625

max_d = √550

max_d = 23.452078799117

Since max_d = 23.452078799117 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 282 - 262

max_d = √2023 - 64 - 784 - 676

max_d = √499

max_d = 22.338307903689

Since max_d = 22.338307903689 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 282 - 272

max_d = √2023 - 64 - 784 - 729

max_d = √446

max_d = 21.118712081943

Since max_d = 21.118712081943 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 282 - 282

max_d = √2023 - 64 - 784 - 784

max_d = √391

max_d = 19.773719933285

Since max_d = 19.773719933285 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 282 - 292

max_d = √2023 - 64 - 784 - 841

max_d = √334

max_d = 18.275666882497

Since max_d = 18.275666882497 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 282 - 302

max_d = √2023 - 64 - 784 - 900

max_d = √275

max_d = 16.583123951777

Since max_d = 16.583123951777 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 282 - 312

max_d = √2023 - 64 - 784 - 961

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 282 - 322

max_d = √2023 - 64 - 784 - 1024

max_d = √151

max_d = 12.288205727445

Since max_d = 12.288205727445 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 282 - 332

max_d = √2023 - 64 - 784 - 1089

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 282 - 342

max_d = √2023 - 64 - 784 - 1156

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 292)

max_c = Floor(√2023 - 64 - 841)

max_c = Floor(√1118)

max_c = Floor(33.436506994601)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 292)/2 = 559

When min_c = 24, then it is c2 = 576 ≥ 559, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 292 - 242

max_d = √2023 - 64 - 841 - 576

max_d = √542

max_d = 23.280893453646

Since max_d = 23.280893453646 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 292 - 252

max_d = √2023 - 64 - 841 - 625

max_d = √493

max_d = 22.203603311175

Since max_d = 22.203603311175 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 292 - 262

max_d = √2023 - 64 - 841 - 676

max_d = √442

max_d = 21.023796041629

Since max_d = 21.023796041629 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 292 - 272

max_d = √2023 - 64 - 841 - 729

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 292 - 282

max_d = √2023 - 64 - 841 - 784

max_d = √334

max_d = 18.275666882497

Since max_d = 18.275666882497 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 292 - 292

max_d = √2023 - 64 - 841 - 841

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 292 - 302

max_d = √2023 - 64 - 841 - 900

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 292 - 312

max_d = √2023 - 64 - 841 - 961

max_d = √157

max_d = 12.529964086142

Since max_d = 12.529964086142 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 292 - 322

max_d = √2023 - 64 - 841 - 1024

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 292 - 332

max_d = √2023 - 64 - 841 - 1089

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 302)

max_c = Floor(√2023 - 64 - 900)

max_c = Floor(√1059)

max_c = Floor(32.542280190546)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 302)/2 = 529.5

When min_c = 24, then it is c2 = 576 ≥ 529.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 302 - 242

max_d = √2023 - 64 - 900 - 576

max_d = √483

max_d = 21.977260975836

Since max_d = 21.977260975836 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 302 - 252

max_d = √2023 - 64 - 900 - 625

max_d = √434

max_d = 20.832666656

Since max_d = 20.832666656 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 302 - 262

max_d = √2023 - 64 - 900 - 676

max_d = √383

max_d = 19.570385790781

Since max_d = 19.570385790781 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 302 - 272

max_d = √2023 - 64 - 900 - 729

max_d = √330

max_d = 18.165902124585

Since max_d = 18.165902124585 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 302 - 282

max_d = √2023 - 64 - 900 - 784

max_d = √275

max_d = 16.583123951777

Since max_d = 16.583123951777 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 302 - 292

max_d = √2023 - 64 - 900 - 841

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 302 - 302

max_d = √2023 - 64 - 900 - 900

max_d = √159

max_d = 12.609520212918

Since max_d = 12.609520212918 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 302 - 312

max_d = √2023 - 64 - 900 - 961

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 302 - 322

max_d = √2023 - 64 - 900 - 1024

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 312)

max_c = Floor(√2023 - 64 - 961)

max_c = Floor(√998)

max_c = Floor(31.591137997863)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 312)/2 = 499

When min_c = 23, then it is c2 = 529 ≥ 499, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 312 - 232

max_d = √2023 - 64 - 961 - 529

max_d = √469

max_d = 21.656407827708

Since max_d = 21.656407827708 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 312 - 242

max_d = √2023 - 64 - 961 - 576

max_d = √422

max_d = 20.542638584174

Since max_d = 20.542638584174 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 312 - 252

max_d = √2023 - 64 - 961 - 625

max_d = √373

max_d = 19.313207915828

Since max_d = 19.313207915828 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 312 - 262

max_d = √2023 - 64 - 961 - 676

max_d = √322

max_d = 17.944358444926

Since max_d = 17.944358444926 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 312 - 272

max_d = √2023 - 64 - 961 - 729

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 312 - 282

max_d = √2023 - 64 - 961 - 784

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 312 - 292

max_d = √2023 - 64 - 961 - 841

max_d = √157

max_d = 12.529964086142

Since max_d = 12.529964086142 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 312 - 302

max_d = √2023 - 64 - 961 - 900

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 312 - 312

max_d = √2023 - 64 - 961 - 961

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 322)

max_c = Floor(√2023 - 64 - 1024)

max_c = Floor(√935)

max_c = Floor(30.577769702841)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 322)/2 = 467.5

When min_c = 22, then it is c2 = 484 ≥ 467.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 322 - 222

max_d = √2023 - 64 - 1024 - 484

max_d = √451

max_d = 21.236760581595

Since max_d = 21.236760581595 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 322 - 232

max_d = √2023 - 64 - 1024 - 529

max_d = √406

max_d = 20.14944167961

Since max_d = 20.14944167961 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 322 - 242

max_d = √2023 - 64 - 1024 - 576

max_d = √359

max_d = 18.947295321496

Since max_d = 18.947295321496 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 322 - 252

max_d = √2023 - 64 - 1024 - 625

max_d = √310

max_d = 17.606816861659

Since max_d = 17.606816861659 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 322 - 262

max_d = √2023 - 64 - 1024 - 676

max_d = √259

max_d = 16.093476939431

Since max_d = 16.093476939431 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 322 - 272

max_d = √2023 - 64 - 1024 - 729

max_d = √206

max_d = 14.352700094407

Since max_d = 14.352700094407 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 322 - 282

max_d = √2023 - 64 - 1024 - 784

max_d = √151

max_d = 12.288205727445

Since max_d = 12.288205727445 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 322 - 292

max_d = √2023 - 64 - 1024 - 841

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 322 - 302

max_d = √2023 - 64 - 1024 - 900

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 332)

max_c = Floor(√2023 - 64 - 1089)

max_c = Floor(√870)

max_c = Floor(29.495762407505)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 332)/2 = 435

When min_c = 21, then it is c2 = 441 ≥ 435, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 332 - 212

max_d = √2023 - 64 - 1089 - 441

max_d = √429

max_d = 20.712315177208

Since max_d = 20.712315177208 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 332 - 222

max_d = √2023 - 64 - 1089 - 484

max_d = √386

max_d = 19.646882704388

Since max_d = 19.646882704388 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 332 - 232

max_d = √2023 - 64 - 1089 - 529

max_d = √341

max_d = 18.466185312619

Since max_d = 18.466185312619 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 332 - 242

max_d = √2023 - 64 - 1089 - 576

max_d = √294

max_d = 17.146428199482

Since max_d = 17.146428199482 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 332 - 252

max_d = √2023 - 64 - 1089 - 625

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 332 - 262

max_d = √2023 - 64 - 1089 - 676

max_d = √194

max_d = 13.928388277184

Since max_d = 13.928388277184 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 332 - 272

max_d = √2023 - 64 - 1089 - 729

max_d = √141

max_d = 11.874342087038

Since max_d = 11.874342087038 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 332 - 282

max_d = √2023 - 64 - 1089 - 784

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 332 - 292

max_d = √2023 - 64 - 1089 - 841

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 342)

max_c = Floor(√2023 - 64 - 1156)

max_c = Floor(√803)

max_c = Floor(28.33725463061)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 342)/2 = 401.5

When min_c = 21, then it is c2 = 441 ≥ 401.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 342 - 212

max_d = √2023 - 64 - 1156 - 441

max_d = √362

max_d = 19.02629759044

Since max_d = 19.02629759044 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 342 - 222

max_d = √2023 - 64 - 1156 - 484

max_d = √319

max_d = 17.860571099492

Since max_d = 17.860571099492 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 342 - 232

max_d = √2023 - 64 - 1156 - 529

max_d = √274

max_d = 16.552945357247

Since max_d = 16.552945357247 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 342 - 242

max_d = √2023 - 64 - 1156 - 576

max_d = √227

max_d = 15.066519173319

Since max_d = 15.066519173319 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 342 - 252

max_d = √2023 - 64 - 1156 - 625

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 342 - 262

max_d = √2023 - 64 - 1156 - 676

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 342 - 272

max_d = √2023 - 64 - 1156 - 729

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 342 - 282

max_d = √2023 - 64 - 1156 - 784

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 352)

max_c = Floor(√2023 - 64 - 1225)

max_c = Floor(√734)

max_c = Floor(27.092434368288)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 352)/2 = 367

When min_c = 20, then it is c2 = 400 ≥ 367, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 352 - 202

max_d = √2023 - 64 - 1225 - 400

max_d = √334

max_d = 18.275666882497

Since max_d = 18.275666882497 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 352 - 212

max_d = √2023 - 64 - 1225 - 441

max_d = √293

max_d = 17.117242768624

Since max_d = 17.117242768624 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 352 - 222

max_d = √2023 - 64 - 1225 - 484

max_d = √250

max_d = 15.811388300842

Since max_d = 15.811388300842 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 352 - 232

max_d = √2023 - 64 - 1225 - 529

max_d = √205

max_d = 14.317821063276

Since max_d = 14.317821063276 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 352 - 242

max_d = √2023 - 64 - 1225 - 576

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 352 - 252

max_d = √2023 - 64 - 1225 - 625

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 352 - 262

max_d = √2023 - 64 - 1225 - 676

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 352 - 272

max_d = √2023 - 64 - 1225 - 729

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 362)

max_c = Floor(√2023 - 64 - 1296)

max_c = Floor(√663)

max_c = Floor(25.748786379167)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 362)/2 = 331.5

When min_c = 19, then it is c2 = 361 ≥ 331.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 362 - 192

max_d = √2023 - 64 - 1296 - 361

max_d = √302

max_d = 17.378147196983

Since max_d = 17.378147196983 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 362 - 202

max_d = √2023 - 64 - 1296 - 400

max_d = √263

max_d = 16.217274740227

Since max_d = 16.217274740227 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 362 - 212

max_d = √2023 - 64 - 1296 - 441

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 362 - 222

max_d = √2023 - 64 - 1296 - 484

max_d = √179

max_d = 13.37908816026

Since max_d = 13.37908816026 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 362 - 232

max_d = √2023 - 64 - 1296 - 529

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 362 - 242

max_d = √2023 - 64 - 1296 - 576

max_d = √87

max_d = 9.3273790530888

Since max_d = 9.3273790530888 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 362 - 252

max_d = √2023 - 64 - 1296 - 625

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 372)

max_c = Floor(√2023 - 64 - 1369)

max_c = Floor(√590)

max_c = Floor(24.289915602982)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 372)/2 = 295

When min_c = 18, then it is c2 = 324 ≥ 295, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 372 - 182

max_d = √2023 - 64 - 1369 - 324

max_d = √266

max_d = 16.3095064303

Since max_d = 16.3095064303 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 372 - 192

max_d = √2023 - 64 - 1369 - 361

max_d = √229

max_d = 15.132745950422

Since max_d = 15.132745950422 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 372 - 202

max_d = √2023 - 64 - 1369 - 400

max_d = √190

max_d = 13.78404875209

Since max_d = 13.78404875209 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 372 - 212

max_d = √2023 - 64 - 1369 - 441

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 372 - 222

max_d = √2023 - 64 - 1369 - 484

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 372 - 232

max_d = √2023 - 64 - 1369 - 529

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 372 - 242

max_d = √2023 - 64 - 1369 - 576

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 382)

max_c = Floor(√2023 - 64 - 1444)

max_c = Floor(√515)

max_c = Floor(22.69361143582)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 382)/2 = 257.5

When min_c = 17, then it is c2 = 289 ≥ 257.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 382 - 172

max_d = √2023 - 64 - 1444 - 289

max_d = √226

max_d = 15.033296378373

Since max_d = 15.033296378373 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 382 - 182

max_d = √2023 - 64 - 1444 - 324

max_d = √191

max_d = 13.820274961085

Since max_d = 13.820274961085 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 382 - 192

max_d = √2023 - 64 - 1444 - 361

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 382 - 202

max_d = √2023 - 64 - 1444 - 400

max_d = √115

max_d = 10.723805294764

Since max_d = 10.723805294764 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 382 - 212

max_d = √2023 - 64 - 1444 - 441

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 382 - 222

max_d = √2023 - 64 - 1444 - 484

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 392)

max_c = Floor(√2023 - 64 - 1521)

max_c = Floor(√438)

max_c = Floor(20.928449536456)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 392)/2 = 219

When min_c = 15, then it is c2 = 225 ≥ 219, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 392 - 152

max_d = √2023 - 64 - 1521 - 225

max_d = √213

max_d = 14.594519519326

Since max_d = 14.594519519326 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 392 - 162

max_d = √2023 - 64 - 1521 - 256

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 392 - 172

max_d = √2023 - 64 - 1521 - 289

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 392 - 182

max_d = √2023 - 64 - 1521 - 324

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 392 - 192

max_d = √2023 - 64 - 1521 - 361

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 392 - 202

max_d = √2023 - 64 - 1521 - 400

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 402)

max_c = Floor(√2023 - 64 - 1600)

max_c = Floor(√359)

max_c = Floor(18.947295321496)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 402)/2 = 179.5

When min_c = 14, then it is c2 = 196 ≥ 179.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 402 - 142

max_d = √2023 - 64 - 1600 - 196

max_d = √163

max_d = 12.767145334804

Since max_d = 12.767145334804 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 402 - 152

max_d = √2023 - 64 - 1600 - 225

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 402 - 162

max_d = √2023 - 64 - 1600 - 256

max_d = √103

max_d = 10.148891565092

Since max_d = 10.148891565092 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 402 - 172

max_d = √2023 - 64 - 1600 - 289

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 402 - 182

max_d = √2023 - 64 - 1600 - 324

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 412)

max_c = Floor(√2023 - 64 - 1681)

max_c = Floor(√278)

max_c = Floor(16.673332000533)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 412)/2 = 139

When min_c = 12, then it is c2 = 144 ≥ 139, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 412 - 122

max_d = √2023 - 64 - 1681 - 144

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 412 - 132

max_d = √2023 - 64 - 1681 - 169

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 412 - 142

max_d = √2023 - 64 - 1681 - 196

max_d = √82

max_d = 9.0553851381374

Since max_d = 9.0553851381374 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 412 - 152

max_d = √2023 - 64 - 1681 - 225

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 412 - 162

max_d = √2023 - 64 - 1681 - 256

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 422)

max_c = Floor(√2023 - 64 - 1764)

max_c = Floor(√195)

max_c = Floor(13.964240043769)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 422)/2 = 97.5

When min_c = 10, then it is c2 = 100 ≥ 97.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 422 - 102

max_d = √2023 - 64 - 1764 - 100

max_d = √95

max_d = 9.746794344809

Since max_d = 9.746794344809 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 422 - 112

max_d = √2023 - 64 - 1764 - 121

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 422 - 122

max_d = √2023 - 64 - 1764 - 144

max_d = √51

max_d = 7.1414284285429

Since max_d = 7.1414284285429 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 422 - 132

max_d = √2023 - 64 - 1764 - 169

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 432)

max_c = Floor(√2023 - 64 - 1849)

max_c = Floor(√110)

max_c = Floor(10.488088481702)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 432)/2 = 55

When min_c = 8, then it is c2 = 64 ≥ 55, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 432 - 82

max_d = √2023 - 64 - 1849 - 64

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 432 - 92

max_d = √2023 - 64 - 1849 - 81

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 432 - 102

max_d = √2023 - 64 - 1849 - 100

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 44

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 82 - 442)

max_c = Floor(√2023 - 64 - 1936)

max_c = Floor(√23)

max_c = Floor(4.7958315233127)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 82 - 442)/2 = 11.5

When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 82 - 442 - 42

max_d = √2023 - 64 - 1936 - 16

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

a = 9

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 92)

max_b = Floor(√2023 - 81)

max_b = Floor(√1942)

max_b = Floor(44.068129073061)

max_b = 44

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 92)/3 = 647.33333333333

When min_b = 26, then it is b2 = 676 ≥ 647.33333333333, so min_b = 26

Test values for b in the range of (min_b, max_b)

(26, 44)

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 262)

max_c = Floor(√2023 - 81 - 676)

max_c = Floor(√1266)

max_c = Floor(35.580893749314)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 262)/2 = 633

When min_c = 26, then it is c2 = 676 ≥ 633, so min_c = 26

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 262 - 262

max_d = √2023 - 81 - 676 - 676

max_d = √590

max_d = 24.289915602982

Since max_d = 24.289915602982 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 262 - 272

max_d = √2023 - 81 - 676 - 729

max_d = √537

max_d = 23.173260452513

Since max_d = 23.173260452513 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 262 - 282

max_d = √2023 - 81 - 676 - 784

max_d = √482

max_d = 21.9544984001

Since max_d = 21.9544984001 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 262 - 292

max_d = √2023 - 81 - 676 - 841

max_d = √425

max_d = 20.615528128088

Since max_d = 20.615528128088 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 262 - 302

max_d = √2023 - 81 - 676 - 900

max_d = √366

max_d = 19.131126469709

Since max_d = 19.131126469709 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 262 - 312

max_d = √2023 - 81 - 676 - 961

max_d = √305

max_d = 17.464249196573

Since max_d = 17.464249196573 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 262 - 322

max_d = √2023 - 81 - 676 - 1024

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 262 - 332

max_d = √2023 - 81 - 676 - 1089

max_d = √177

max_d = 13.30413469565

Since max_d = 13.30413469565 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 262 - 342

max_d = √2023 - 81 - 676 - 1156

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 262 - 352

max_d = √2023 - 81 - 676 - 1225

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 272)

max_c = Floor(√2023 - 81 - 729)

max_c = Floor(√1213)

max_c = Floor(34.828149534536)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 272)/2 = 606.5

When min_c = 25, then it is c2 = 625 ≥ 606.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 272 - 252

max_d = √2023 - 81 - 729 - 625

max_d = √588

max_d = 24.248711305964

Since max_d = 24.248711305964 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 272 - 262

max_d = √2023 - 81 - 729 - 676

max_d = √537

max_d = 23.173260452513

Since max_d = 23.173260452513 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 272 - 272

max_d = √2023 - 81 - 729 - 729

max_d = √484

max_d = 22

Since max_d = 22, then (a, b, c, d) = (9, 27, 27, 22) is an integer solution proven below

92 + 272 + 272 + 222 → 81 + 729 + 729 + 484 = 2023

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 272 - 282

max_d = √2023 - 81 - 729 - 784

max_d = √429

max_d = 20.712315177208

Since max_d = 20.712315177208 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 272 - 292

max_d = √2023 - 81 - 729 - 841

max_d = √372

max_d = 19.287301521986

Since max_d = 19.287301521986 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 272 - 302

max_d = √2023 - 81 - 729 - 900

max_d = √313

max_d = 17.691806012954

Since max_d = 17.691806012954 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 272 - 312

max_d = √2023 - 81 - 729 - 961

max_d = √252

max_d = 15.874507866388

Since max_d = 15.874507866388 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 272 - 322

max_d = √2023 - 81 - 729 - 1024

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 272 - 332

max_d = √2023 - 81 - 729 - 1089

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 272 - 342

max_d = √2023 - 81 - 729 - 1156

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 282)

max_c = Floor(√2023 - 81 - 784)

max_c = Floor(√1158)

max_c = Floor(34.029399054347)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 282)/2 = 579

When min_c = 25, then it is c2 = 625 ≥ 579, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 282 - 252

max_d = √2023 - 81 - 784 - 625

max_d = √533

max_d = 23.08679276123

Since max_d = 23.08679276123 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 282 - 262

max_d = √2023 - 81 - 784 - 676

max_d = √482

max_d = 21.9544984001

Since max_d = 21.9544984001 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 282 - 272

max_d = √2023 - 81 - 784 - 729

max_d = √429

max_d = 20.712315177208

Since max_d = 20.712315177208 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 282 - 282

max_d = √2023 - 81 - 784 - 784

max_d = √374

max_d = 19.339079605814

Since max_d = 19.339079605814 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 282 - 292

max_d = √2023 - 81 - 784 - 841

max_d = √317

max_d = 17.804493814765

Since max_d = 17.804493814765 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 282 - 302

max_d = √2023 - 81 - 784 - 900

max_d = √258

max_d = 16.062378404209

Since max_d = 16.062378404209 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 282 - 312

max_d = √2023 - 81 - 784 - 961

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 282 - 322

max_d = √2023 - 81 - 784 - 1024

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 282 - 332

max_d = √2023 - 81 - 784 - 1089

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 282 - 342

max_d = √2023 - 81 - 784 - 1156

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 292)

max_c = Floor(√2023 - 81 - 841)

max_c = Floor(√1101)

max_c = Floor(33.181320046074)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 292)/2 = 550.5

When min_c = 24, then it is c2 = 576 ≥ 550.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 292 - 242

max_d = √2023 - 81 - 841 - 576

max_d = √525

max_d = 22.912878474779

Since max_d = 22.912878474779 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 292 - 252

max_d = √2023 - 81 - 841 - 625

max_d = √476

max_d = 21.817424229271

Since max_d = 21.817424229271 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 292 - 262

max_d = √2023 - 81 - 841 - 676

max_d = √425

max_d = 20.615528128088

Since max_d = 20.615528128088 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 292 - 272

max_d = √2023 - 81 - 841 - 729

max_d = √372

max_d = 19.287301521986

Since max_d = 19.287301521986 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 292 - 282

max_d = √2023 - 81 - 841 - 784

max_d = √317

max_d = 17.804493814765

Since max_d = 17.804493814765 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 292 - 292

max_d = √2023 - 81 - 841 - 841

max_d = √260

max_d = 16.124515496597

Since max_d = 16.124515496597 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 292 - 302

max_d = √2023 - 81 - 841 - 900

max_d = √201

max_d = 14.177446878758

Since max_d = 14.177446878758 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 292 - 312

max_d = √2023 - 81 - 841 - 961

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 292 - 322

max_d = √2023 - 81 - 841 - 1024

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 292 - 332

max_d = √2023 - 81 - 841 - 1089

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 302)

max_c = Floor(√2023 - 81 - 900)

max_c = Floor(√1042)

max_c = Floor(32.280024783138)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 302)/2 = 521

When min_c = 23, then it is c2 = 529 ≥ 521, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 302 - 232

max_d = √2023 - 81 - 900 - 529

max_d = √513

max_d = 22.649503305812

Since max_d = 22.649503305812 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 302 - 242

max_d = √2023 - 81 - 900 - 576

max_d = √466

max_d = 21.587033144923

Since max_d = 21.587033144923 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 302 - 252

max_d = √2023 - 81 - 900 - 625

max_d = √417

max_d = 20.420577856662

Since max_d = 20.420577856662 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 302 - 262

max_d = √2023 - 81 - 900 - 676

max_d = √366

max_d = 19.131126469709

Since max_d = 19.131126469709 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 302 - 272

max_d = √2023 - 81 - 900 - 729

max_d = √313

max_d = 17.691806012954

Since max_d = 17.691806012954 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 302 - 282

max_d = √2023 - 81 - 900 - 784

max_d = √258

max_d = 16.062378404209

Since max_d = 16.062378404209 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 302 - 292

max_d = √2023 - 81 - 900 - 841

max_d = √201

max_d = 14.177446878758

Since max_d = 14.177446878758 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 302 - 302

max_d = √2023 - 81 - 900 - 900

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 302 - 312

max_d = √2023 - 81 - 900 - 961

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (9, 30, 31, 9) is an integer solution proven below

92 + 302 + 312 + 92 → 81 + 900 + 961 + 81 = 2023

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 302 - 322

max_d = √2023 - 81 - 900 - 1024

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 312)

max_c = Floor(√2023 - 81 - 961)

max_c = Floor(√981)

max_c = Floor(31.320919526732)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 312)/2 = 490.5

When min_c = 23, then it is c2 = 529 ≥ 490.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 312 - 232

max_d = √2023 - 81 - 961 - 529

max_d = √452

max_d = 21.260291625469

Since max_d = 21.260291625469 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 312 - 242

max_d = √2023 - 81 - 961 - 576

max_d = √405

max_d = 20.124611797498

Since max_d = 20.124611797498 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 312 - 252

max_d = √2023 - 81 - 961 - 625

max_d = √356

max_d = 18.867962264113

Since max_d = 18.867962264113 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 312 - 262

max_d = √2023 - 81 - 961 - 676

max_d = √305

max_d = 17.464249196573

Since max_d = 17.464249196573 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 312 - 272

max_d = √2023 - 81 - 961 - 729

max_d = √252

max_d = 15.874507866388

Since max_d = 15.874507866388 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 312 - 282

max_d = √2023 - 81 - 961 - 784

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 312 - 292

max_d = √2023 - 81 - 961 - 841

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 312 - 302

max_d = √2023 - 81 - 961 - 900

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (9, 31, 30, 9) is an integer solution proven below

92 + 312 + 302 + 92 → 81 + 961 + 900 + 81 = 2023

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 312 - 312

max_d = √2023 - 81 - 961 - 961

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 322)

max_c = Floor(√2023 - 81 - 1024)

max_c = Floor(√918)

max_c = Floor(30.298514815086)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 322)/2 = 459

When min_c = 22, then it is c2 = 484 ≥ 459, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 322 - 222

max_d = √2023 - 81 - 1024 - 484

max_d = √434

max_d = 20.832666656

Since max_d = 20.832666656 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 322 - 232

max_d = √2023 - 81 - 1024 - 529

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 322 - 242

max_d = √2023 - 81 - 1024 - 576

max_d = √342

max_d = 18.493242008907

Since max_d = 18.493242008907 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 322 - 252

max_d = √2023 - 81 - 1024 - 625

max_d = √293

max_d = 17.117242768624

Since max_d = 17.117242768624 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 322 - 262

max_d = √2023 - 81 - 1024 - 676

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 322 - 272

max_d = √2023 - 81 - 1024 - 729

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 322 - 282

max_d = √2023 - 81 - 1024 - 784

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 322 - 292

max_d = √2023 - 81 - 1024 - 841

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 322 - 302

max_d = √2023 - 81 - 1024 - 900

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 332)

max_c = Floor(√2023 - 81 - 1089)

max_c = Floor(√853)

max_c = Floor(29.20616373302)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 332)/2 = 426.5

When min_c = 21, then it is c2 = 441 ≥ 426.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 332 - 212

max_d = √2023 - 81 - 1089 - 441

max_d = √412

max_d = 20.297783130184

Since max_d = 20.297783130184 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 332 - 222

max_d = √2023 - 81 - 1089 - 484

max_d = √369

max_d = 19.209372712299

Since max_d = 19.209372712299 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 332 - 232

max_d = √2023 - 81 - 1089 - 529

max_d = √324

max_d = 18

Since max_d = 18, then (a, b, c, d) = (9, 33, 23, 18) is an integer solution proven below

92 + 332 + 232 + 182 → 81 + 1089 + 529 + 324 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 332 - 242

max_d = √2023 - 81 - 1089 - 576

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 332 - 252

max_d = √2023 - 81 - 1089 - 625

max_d = √228

max_d = 15.099668870541

Since max_d = 15.099668870541 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 332 - 262

max_d = √2023 - 81 - 1089 - 676

max_d = √177

max_d = 13.30413469565

Since max_d = 13.30413469565 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 332 - 272

max_d = √2023 - 81 - 1089 - 729

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 332 - 282

max_d = √2023 - 81 - 1089 - 784

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 332 - 292

max_d = √2023 - 81 - 1089 - 841

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 342)

max_c = Floor(√2023 - 81 - 1156)

max_c = Floor(√786)

max_c = Floor(28.035691537752)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 342)/2 = 393

When min_c = 20, then it is c2 = 400 ≥ 393, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 342 - 202

max_d = √2023 - 81 - 1156 - 400

max_d = √386

max_d = 19.646882704388

Since max_d = 19.646882704388 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 342 - 212

max_d = √2023 - 81 - 1156 - 441

max_d = √345

max_d = 18.574175621007

Since max_d = 18.574175621007 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 342 - 222

max_d = √2023 - 81 - 1156 - 484

max_d = √302

max_d = 17.378147196983

Since max_d = 17.378147196983 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 342 - 232

max_d = √2023 - 81 - 1156 - 529

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 342 - 242

max_d = √2023 - 81 - 1156 - 576

max_d = √210

max_d = 14.491376746189

Since max_d = 14.491376746189 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 342 - 252

max_d = √2023 - 81 - 1156 - 625

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 342 - 262

max_d = √2023 - 81 - 1156 - 676

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 342 - 272

max_d = √2023 - 81 - 1156 - 729

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 342 - 282

max_d = √2023 - 81 - 1156 - 784

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 352)

max_c = Floor(√2023 - 81 - 1225)

max_c = Floor(√717)

max_c = Floor(26.776855677992)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 352)/2 = 358.5

When min_c = 19, then it is c2 = 361 ≥ 358.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 352 - 192

max_d = √2023 - 81 - 1225 - 361

max_d = √356

max_d = 18.867962264113

Since max_d = 18.867962264113 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 352 - 202

max_d = √2023 - 81 - 1225 - 400

max_d = √317

max_d = 17.804493814765

Since max_d = 17.804493814765 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 352 - 212

max_d = √2023 - 81 - 1225 - 441

max_d = √276

max_d = 16.613247725836

Since max_d = 16.613247725836 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 352 - 222

max_d = √2023 - 81 - 1225 - 484

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 352 - 232

max_d = √2023 - 81 - 1225 - 529

max_d = √188

max_d = 13.711309200802

Since max_d = 13.711309200802 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 352 - 242

max_d = √2023 - 81 - 1225 - 576

max_d = √141

max_d = 11.874342087038

Since max_d = 11.874342087038 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 352 - 252

max_d = √2023 - 81 - 1225 - 625

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 352 - 262

max_d = √2023 - 81 - 1225 - 676

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 362)

max_c = Floor(√2023 - 81 - 1296)

max_c = Floor(√646)

max_c = Floor(25.416530054278)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 362)/2 = 323

When min_c = 18, then it is c2 = 324 ≥ 323, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 362 - 182

max_d = √2023 - 81 - 1296 - 324

max_d = √322

max_d = 17.944358444926

Since max_d = 17.944358444926 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 362 - 192

max_d = √2023 - 81 - 1296 - 361

max_d = √285

max_d = 16.881943016134

Since max_d = 16.881943016134 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 362 - 202

max_d = √2023 - 81 - 1296 - 400

max_d = √246

max_d = 15.684387141358

Since max_d = 15.684387141358 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 362 - 212

max_d = √2023 - 81 - 1296 - 441

max_d = √205

max_d = 14.317821063276

Since max_d = 14.317821063276 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 362 - 222

max_d = √2023 - 81 - 1296 - 484

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 362 - 232

max_d = √2023 - 81 - 1296 - 529

max_d = √117

max_d = 10.816653826392

Since max_d = 10.816653826392 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 362 - 242

max_d = √2023 - 81 - 1296 - 576

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 362 - 252

max_d = √2023 - 81 - 1296 - 625

max_d = √21

max_d = 4.5825756949558

Since max_d = 4.5825756949558 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 372)

max_c = Floor(√2023 - 81 - 1369)

max_c = Floor(√573)

max_c = Floor(23.937418407172)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 372)/2 = 286.5

When min_c = 17, then it is c2 = 289 ≥ 286.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 372 - 172

max_d = √2023 - 81 - 1369 - 289

max_d = √284

max_d = 16.852299546353

Since max_d = 16.852299546353 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 372 - 182

max_d = √2023 - 81 - 1369 - 324

max_d = √249

max_d = 15.779733838059

Since max_d = 15.779733838059 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 372 - 192

max_d = √2023 - 81 - 1369 - 361

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 372 - 202

max_d = √2023 - 81 - 1369 - 400

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 372 - 212

max_d = √2023 - 81 - 1369 - 441

max_d = √132

max_d = 11.489125293076

Since max_d = 11.489125293076 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 372 - 222

max_d = √2023 - 81 - 1369 - 484

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 372 - 232

max_d = √2023 - 81 - 1369 - 529

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 382)

max_c = Floor(√2023 - 81 - 1444)

max_c = Floor(√498)

max_c = Floor(22.315913604421)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 382)/2 = 249

When min_c = 16, then it is c2 = 256 ≥ 249, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 382 - 162

max_d = √2023 - 81 - 1444 - 256

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 382 - 172

max_d = √2023 - 81 - 1444 - 289

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 382 - 182

max_d = √2023 - 81 - 1444 - 324

max_d = √174

max_d = 13.190905958273

Since max_d = 13.190905958273 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 382 - 192

max_d = √2023 - 81 - 1444 - 361

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 382 - 202

max_d = √2023 - 81 - 1444 - 400

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 382 - 212

max_d = √2023 - 81 - 1444 - 441

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 382 - 222

max_d = √2023 - 81 - 1444 - 484

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 392)

max_c = Floor(√2023 - 81 - 1521)

max_c = Floor(√421)

max_c = Floor(20.518284528683)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 392)/2 = 210.5

When min_c = 15, then it is c2 = 225 ≥ 210.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 392 - 152

max_d = √2023 - 81 - 1521 - 225

max_d = √196

max_d = 14

Since max_d = 14, then (a, b, c, d) = (9, 39, 15, 14) is an integer solution proven below

92 + 392 + 152 + 142 → 81 + 1521 + 225 + 196 = 2023

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 392 - 162

max_d = √2023 - 81 - 1521 - 256

max_d = √165

max_d = 12.845232578665

Since max_d = 12.845232578665 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 392 - 172

max_d = √2023 - 81 - 1521 - 289

max_d = √132

max_d = 11.489125293076

Since max_d = 11.489125293076 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 392 - 182

max_d = √2023 - 81 - 1521 - 324

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 392 - 192

max_d = √2023 - 81 - 1521 - 361

max_d = √60

max_d = 7.7459666924148

Since max_d = 7.7459666924148 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 392 - 202

max_d = √2023 - 81 - 1521 - 400

max_d = √21

max_d = 4.5825756949558

Since max_d = 4.5825756949558 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 402)

max_c = Floor(√2023 - 81 - 1600)

max_c = Floor(√342)

max_c = Floor(18.493242008907)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 402)/2 = 171

When min_c = 14, then it is c2 = 196 ≥ 171, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 402 - 142

max_d = √2023 - 81 - 1600 - 196

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 402 - 152

max_d = √2023 - 81 - 1600 - 225

max_d = √117

max_d = 10.816653826392

Since max_d = 10.816653826392 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 402 - 162

max_d = √2023 - 81 - 1600 - 256

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 402 - 172

max_d = √2023 - 81 - 1600 - 289

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 402 - 182

max_d = √2023 - 81 - 1600 - 324

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 412)

max_c = Floor(√2023 - 81 - 1681)

max_c = Floor(√261)

max_c = Floor(16.155494421404)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 412)/2 = 130.5

When min_c = 12, then it is c2 = 144 ≥ 130.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 412 - 122

max_d = √2023 - 81 - 1681 - 144

max_d = √117

max_d = 10.816653826392

Since max_d = 10.816653826392 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 412 - 132

max_d = √2023 - 81 - 1681 - 169

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 412 - 142

max_d = √2023 - 81 - 1681 - 196

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 412 - 152

max_d = √2023 - 81 - 1681 - 225

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (9, 41, 15, 6) is an integer solution proven below

92 + 412 + 152 + 62 → 81 + 1681 + 225 + 36 = 2023

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 412 - 162

max_d = √2023 - 81 - 1681 - 256

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 422)

max_c = Floor(√2023 - 81 - 1764)

max_c = Floor(√178)

max_c = Floor(13.341664064126)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 422)/2 = 89

When min_c = 10, then it is c2 = 100 ≥ 89, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 422 - 102

max_d = √2023 - 81 - 1764 - 100

max_d = √78

max_d = 8.8317608663278

Since max_d = 8.8317608663278 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 422 - 112

max_d = √2023 - 81 - 1764 - 121

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 422 - 122

max_d = √2023 - 81 - 1764 - 144

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 422 - 132

max_d = √2023 - 81 - 1764 - 169

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (9, 42, 13, 3) is an integer solution proven below

92 + 422 + 132 + 32 → 81 + 1764 + 169 + 9 = 2023

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 432)

max_c = Floor(√2023 - 81 - 1849)

max_c = Floor(√93)

max_c = Floor(9.643650760993)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 432)/2 = 46.5

When min_c = 7, then it is c2 = 49 ≥ 46.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 432 - 72

max_d = √2023 - 81 - 1849 - 49

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 432 - 82

max_d = √2023 - 81 - 1849 - 64

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 432 - 92

max_d = √2023 - 81 - 1849 - 81

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 44

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 92 - 442)

max_c = Floor(√2023 - 81 - 1936)

max_c = Floor(√6)

max_c = Floor(2.4494897427832)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 92 - 442)/2 = 3

When min_c = 2, then it is c2 = 4 ≥ 3, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 92 - 442 - 22

max_d = √2023 - 81 - 1936 - 4

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 10

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 102)

max_b = Floor(√2023 - 100)

max_b = Floor(√1923)

max_b = Floor(43.852023898561)

max_b = 43

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 102)/3 = 641

When min_b = 26, then it is b2 = 676 ≥ 641, so min_b = 26

Test values for b in the range of (min_b, max_b)

(26, 43)

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 262)

max_c = Floor(√2023 - 100 - 676)

max_c = Floor(√1247)

max_c = Floor(35.312887166019)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 262)/2 = 623.5

When min_c = 25, then it is c2 = 625 ≥ 623.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 262 - 252

max_d = √2023 - 100 - 676 - 625

max_d = √622

max_d = 24.93992782668

Since max_d = 24.93992782668 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 262 - 262

max_d = √2023 - 100 - 676 - 676

max_d = √571

max_d = 23.895606290697

Since max_d = 23.895606290697 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 262 - 272

max_d = √2023 - 100 - 676 - 729

max_d = √518

max_d = 22.759613353482

Since max_d = 22.759613353482 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 262 - 282

max_d = √2023 - 100 - 676 - 784

max_d = √463

max_d = 21.51743479135

Since max_d = 21.51743479135 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 262 - 292

max_d = √2023 - 100 - 676 - 841

max_d = √406

max_d = 20.14944167961

Since max_d = 20.14944167961 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 262 - 302

max_d = √2023 - 100 - 676 - 900

max_d = √347

max_d = 18.627936010197

Since max_d = 18.627936010197 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 262 - 312

max_d = √2023 - 100 - 676 - 961

max_d = √286

max_d = 16.911534525288

Since max_d = 16.911534525288 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 262 - 322

max_d = √2023 - 100 - 676 - 1024

max_d = √223

max_d = 14.933184523068

Since max_d = 14.933184523068 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 262 - 332

max_d = √2023 - 100 - 676 - 1089

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 262 - 342

max_d = √2023 - 100 - 676 - 1156

max_d = √91

max_d = 9.5393920141695

Since max_d = 9.5393920141695 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 262 - 352

max_d = √2023 - 100 - 676 - 1225

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 272)

max_c = Floor(√2023 - 100 - 729)

max_c = Floor(√1194)

max_c = Floor(34.554305086342)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 272)/2 = 597

When min_c = 25, then it is c2 = 625 ≥ 597, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 272 - 252

max_d = √2023 - 100 - 729 - 625

max_d = √569

max_d = 23.853720883753

Since max_d = 23.853720883753 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 272 - 262

max_d = √2023 - 100 - 729 - 676

max_d = √518

max_d = 22.759613353482

Since max_d = 22.759613353482 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 272 - 272

max_d = √2023 - 100 - 729 - 729

max_d = √465

max_d = 21.563858652848

Since max_d = 21.563858652848 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 272 - 282

max_d = √2023 - 100 - 729 - 784

max_d = √410

max_d = 20.248456731317

Since max_d = 20.248456731317 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 272 - 292

max_d = √2023 - 100 - 729 - 841

max_d = √353

max_d = 18.788294228056

Since max_d = 18.788294228056 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 272 - 302

max_d = √2023 - 100 - 729 - 900

max_d = √294

max_d = 17.146428199482

Since max_d = 17.146428199482 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 272 - 312

max_d = √2023 - 100 - 729 - 961

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 272 - 322

max_d = √2023 - 100 - 729 - 1024

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 272 - 332

max_d = √2023 - 100 - 729 - 1089

max_d = √105

max_d = 10.24695076596

Since max_d = 10.24695076596 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 272 - 342

max_d = √2023 - 100 - 729 - 1156

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 282)

max_c = Floor(√2023 - 100 - 784)

max_c = Floor(√1139)

max_c = Floor(33.749074061372)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 282)/2 = 569.5

When min_c = 24, then it is c2 = 576 ≥ 569.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 282 - 242

max_d = √2023 - 100 - 784 - 576

max_d = √563

max_d = 23.727621035409

Since max_d = 23.727621035409 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 282 - 252

max_d = √2023 - 100 - 784 - 625

max_d = √514

max_d = 22.671568097509

Since max_d = 22.671568097509 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 282 - 262

max_d = √2023 - 100 - 784 - 676

max_d = √463

max_d = 21.51743479135

Since max_d = 21.51743479135 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 282 - 272

max_d = √2023 - 100 - 784 - 729

max_d = √410

max_d = 20.248456731317

Since max_d = 20.248456731317 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 282 - 282

max_d = √2023 - 100 - 784 - 784

max_d = √355

max_d = 18.841443681417

Since max_d = 18.841443681417 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 282 - 292

max_d = √2023 - 100 - 784 - 841

max_d = √298

max_d = 17.262676501632

Since max_d = 17.262676501632 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 282 - 302

max_d = √2023 - 100 - 784 - 900

max_d = √239

max_d = 15.45962483374

Since max_d = 15.45962483374 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 282 - 312

max_d = √2023 - 100 - 784 - 961

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 282 - 322

max_d = √2023 - 100 - 784 - 1024

max_d = √115

max_d = 10.723805294764

Since max_d = 10.723805294764 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 282 - 332

max_d = √2023 - 100 - 784 - 1089

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 292)

max_c = Floor(√2023 - 100 - 841)

max_c = Floor(√1082)

max_c = Floor(32.893768406797)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 292)/2 = 541

When min_c = 24, then it is c2 = 576 ≥ 541, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 292 - 242

max_d = √2023 - 100 - 841 - 576

max_d = √506

max_d = 22.494443758404

Since max_d = 22.494443758404 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 292 - 252

max_d = √2023 - 100 - 841 - 625

max_d = √457

max_d = 21.377558326432

Since max_d = 21.377558326432 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 292 - 262

max_d = √2023 - 100 - 841 - 676

max_d = √406

max_d = 20.14944167961

Since max_d = 20.14944167961 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 292 - 272

max_d = √2023 - 100 - 841 - 729

max_d = √353

max_d = 18.788294228056

Since max_d = 18.788294228056 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 292 - 282

max_d = √2023 - 100 - 841 - 784

max_d = √298

max_d = 17.262676501632

Since max_d = 17.262676501632 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 292 - 292

max_d = √2023 - 100 - 841 - 841

max_d = √241

max_d = 15.52417469626

Since max_d = 15.52417469626 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 292 - 302

max_d = √2023 - 100 - 841 - 900

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 292 - 312

max_d = √2023 - 100 - 841 - 961

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (10, 29, 31, 11) is an integer solution proven below

102 + 292 + 312 + 112 → 100 + 841 + 961 + 121 = 2023

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 292 - 322

max_d = √2023 - 100 - 841 - 1024

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 302)

max_c = Floor(√2023 - 100 - 900)

max_c = Floor(√1023)

max_c = Floor(31.984371183439)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 302)/2 = 511.5

When min_c = 23, then it is c2 = 529 ≥ 511.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 302 - 232

max_d = √2023 - 100 - 900 - 529

max_d = √494

max_d = 22.226110770893

Since max_d = 22.226110770893 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 302 - 242

max_d = √2023 - 100 - 900 - 576

max_d = √447

max_d = 21.142374511866

Since max_d = 21.142374511866 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 302 - 252

max_d = √2023 - 100 - 900 - 625

max_d = √398

max_d = 19.94993734326

Since max_d = 19.94993734326 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 302 - 262

max_d = √2023 - 100 - 900 - 676

max_d = √347

max_d = 18.627936010197

Since max_d = 18.627936010197 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 302 - 272

max_d = √2023 - 100 - 900 - 729

max_d = √294

max_d = 17.146428199482

Since max_d = 17.146428199482 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 302 - 282

max_d = √2023 - 100 - 900 - 784

max_d = √239

max_d = 15.45962483374

Since max_d = 15.45962483374 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 302 - 292

max_d = √2023 - 100 - 900 - 841

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 302 - 302

max_d = √2023 - 100 - 900 - 900

max_d = √123

max_d = 11.090536506409

Since max_d = 11.090536506409 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 302 - 312

max_d = √2023 - 100 - 900 - 961

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 312)

max_c = Floor(√2023 - 100 - 961)

max_c = Floor(√962)

max_c = Floor(31.016124838542)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 312)/2 = 481

When min_c = 22, then it is c2 = 484 ≥ 481, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 312 - 222

max_d = √2023 - 100 - 961 - 484

max_d = √478

max_d = 21.863211109075

Since max_d = 21.863211109075 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 312 - 232

max_d = √2023 - 100 - 961 - 529

max_d = √433

max_d = 20.808652046685

Since max_d = 20.808652046685 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 312 - 242

max_d = √2023 - 100 - 961 - 576

max_d = √386

max_d = 19.646882704388

Since max_d = 19.646882704388 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 312 - 252

max_d = √2023 - 100 - 961 - 625

max_d = √337

max_d = 18.357559750686

Since max_d = 18.357559750686 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 312 - 262

max_d = √2023 - 100 - 961 - 676

max_d = √286

max_d = 16.911534525288

Since max_d = 16.911534525288 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 312 - 272

max_d = √2023 - 100 - 961 - 729

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 312 - 282

max_d = √2023 - 100 - 961 - 784

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 312 - 292

max_d = √2023 - 100 - 961 - 841

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (10, 31, 29, 11) is an integer solution proven below

102 + 312 + 292 + 112 → 100 + 961 + 841 + 121 = 2023

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 312 - 302

max_d = √2023 - 100 - 961 - 900

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 312 - 312

max_d = √2023 - 100 - 961 - 961

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (10, 31, 31, 1) is an integer solution proven below

102 + 312 + 312 + 12 → 100 + 961 + 961 + 1 = 2023

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 322)

max_c = Floor(√2023 - 100 - 1024)

max_c = Floor(√899)

max_c = Floor(29.98332870113)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 322)/2 = 449.5

When min_c = 22, then it is c2 = 484 ≥ 449.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 322 - 222

max_d = √2023 - 100 - 1024 - 484

max_d = √415

max_d = 20.371548787463

Since max_d = 20.371548787463 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 322 - 232

max_d = √2023 - 100 - 1024 - 529

max_d = √370

max_d = 19.235384061671

Since max_d = 19.235384061671 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 322 - 242

max_d = √2023 - 100 - 1024 - 576

max_d = √323

max_d = 17.972200755611

Since max_d = 17.972200755611 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 322 - 252

max_d = √2023 - 100 - 1024 - 625

max_d = √274

max_d = 16.552945357247

Since max_d = 16.552945357247 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 322 - 262

max_d = √2023 - 100 - 1024 - 676

max_d = √223

max_d = 14.933184523068

Since max_d = 14.933184523068 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 322 - 272

max_d = √2023 - 100 - 1024 - 729

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 322 - 282

max_d = √2023 - 100 - 1024 - 784

max_d = √115

max_d = 10.723805294764

Since max_d = 10.723805294764 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 322 - 292

max_d = √2023 - 100 - 1024 - 841

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 332)

max_c = Floor(√2023 - 100 - 1089)

max_c = Floor(√834)

max_c = Floor(28.879058156387)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 332)/2 = 417

When min_c = 21, then it is c2 = 441 ≥ 417, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 332 - 212

max_d = √2023 - 100 - 1089 - 441

max_d = √393

max_d = 19.824227601599

Since max_d = 19.824227601599 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 332 - 222

max_d = √2023 - 100 - 1089 - 484

max_d = √350

max_d = 18.70828693387

Since max_d = 18.70828693387 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 332 - 232

max_d = √2023 - 100 - 1089 - 529

max_d = √305

max_d = 17.464249196573

Since max_d = 17.464249196573 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 332 - 242

max_d = √2023 - 100 - 1089 - 576

max_d = √258

max_d = 16.062378404209

Since max_d = 16.062378404209 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 332 - 252

max_d = √2023 - 100 - 1089 - 625

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 332 - 262

max_d = √2023 - 100 - 1089 - 676

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 332 - 272

max_d = √2023 - 100 - 1089 - 729

max_d = √105

max_d = 10.24695076596

Since max_d = 10.24695076596 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 332 - 282

max_d = √2023 - 100 - 1089 - 784

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 342)

max_c = Floor(√2023 - 100 - 1156)

max_c = Floor(√767)

max_c = Floor(27.694764848252)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 342)/2 = 383.5

When min_c = 20, then it is c2 = 400 ≥ 383.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 342 - 202

max_d = √2023 - 100 - 1156 - 400

max_d = √367

max_d = 19.157244060668

Since max_d = 19.157244060668 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 342 - 212

max_d = √2023 - 100 - 1156 - 441

max_d = √326

max_d = 18.055470085268

Since max_d = 18.055470085268 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 342 - 222

max_d = √2023 - 100 - 1156 - 484

max_d = √283

max_d = 16.822603841261

Since max_d = 16.822603841261 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 342 - 232

max_d = √2023 - 100 - 1156 - 529

max_d = √238

max_d = 15.427248620542

Since max_d = 15.427248620542 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 342 - 242

max_d = √2023 - 100 - 1156 - 576

max_d = √191

max_d = 13.820274961085

Since max_d = 13.820274961085 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 342 - 252

max_d = √2023 - 100 - 1156 - 625

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 342 - 262

max_d = √2023 - 100 - 1156 - 676

max_d = √91

max_d = 9.5393920141695

Since max_d = 9.5393920141695 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 342 - 272

max_d = √2023 - 100 - 1156 - 729

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 352)

max_c = Floor(√2023 - 100 - 1225)

max_c = Floor(√698)

max_c = Floor(26.419689627246)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 352)/2 = 349

When min_c = 19, then it is c2 = 361 ≥ 349, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 352 - 192

max_d = √2023 - 100 - 1225 - 361

max_d = √337

max_d = 18.357559750686

Since max_d = 18.357559750686 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 352 - 202

max_d = √2023 - 100 - 1225 - 400

max_d = √298

max_d = 17.262676501632

Since max_d = 17.262676501632 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 352 - 212

max_d = √2023 - 100 - 1225 - 441

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 352 - 222

max_d = √2023 - 100 - 1225 - 484

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 352 - 232

max_d = √2023 - 100 - 1225 - 529

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (10, 35, 23, 13) is an integer solution proven below

102 + 352 + 232 + 132 → 100 + 1225 + 529 + 169 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 352 - 242

max_d = √2023 - 100 - 1225 - 576

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 352 - 252

max_d = √2023 - 100 - 1225 - 625

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 352 - 262

max_d = √2023 - 100 - 1225 - 676

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 362)

max_c = Floor(√2023 - 100 - 1296)

max_c = Floor(√627)

max_c = Floor(25.039968051098)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 362)/2 = 313.5

When min_c = 18, then it is c2 = 324 ≥ 313.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 362 - 182

max_d = √2023 - 100 - 1296 - 324

max_d = √303

max_d = 17.406895185529

Since max_d = 17.406895185529 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 362 - 192

max_d = √2023 - 100 - 1296 - 361

max_d = √266

max_d = 16.3095064303

Since max_d = 16.3095064303 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 362 - 202

max_d = √2023 - 100 - 1296 - 400

max_d = √227

max_d = 15.066519173319

Since max_d = 15.066519173319 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 362 - 212

max_d = √2023 - 100 - 1296 - 441

max_d = √186

max_d = 13.638181696986

Since max_d = 13.638181696986 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 362 - 222

max_d = √2023 - 100 - 1296 - 484

max_d = √143

max_d = 11.958260743101

Since max_d = 11.958260743101 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 362 - 232

max_d = √2023 - 100 - 1296 - 529

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 362 - 242

max_d = √2023 - 100 - 1296 - 576

max_d = √51

max_d = 7.1414284285429

Since max_d = 7.1414284285429 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 362 - 252

max_d = √2023 - 100 - 1296 - 625

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 372)

max_c = Floor(√2023 - 100 - 1369)

max_c = Floor(√554)

max_c = Floor(23.53720459188)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 372)/2 = 277

When min_c = 17, then it is c2 = 289 ≥ 277, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 372 - 172

max_d = √2023 - 100 - 1369 - 289

max_d = √265

max_d = 16.2788205961

Since max_d = 16.2788205961 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 372 - 182

max_d = √2023 - 100 - 1369 - 324

max_d = √230

max_d = 15.165750888103

Since max_d = 15.165750888103 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 372 - 192

max_d = √2023 - 100 - 1369 - 361

max_d = √193

max_d = 13.89244398945

Since max_d = 13.89244398945 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 372 - 202

max_d = √2023 - 100 - 1369 - 400

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 372 - 212

max_d = √2023 - 100 - 1369 - 441

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 372 - 222

max_d = √2023 - 100 - 1369 - 484

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 372 - 232

max_d = √2023 - 100 - 1369 - 529

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (10, 37, 23, 5) is an integer solution proven below

102 + 372 + 232 + 52 → 100 + 1369 + 529 + 25 = 2023

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 382)

max_c = Floor(√2023 - 100 - 1444)

max_c = Floor(√479)

max_c = Floor(21.886068628239)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 382)/2 = 239.5

When min_c = 16, then it is c2 = 256 ≥ 239.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 382 - 162

max_d = √2023 - 100 - 1444 - 256

max_d = √223

max_d = 14.933184523068

Since max_d = 14.933184523068 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 382 - 172

max_d = √2023 - 100 - 1444 - 289

max_d = √190

max_d = 13.78404875209

Since max_d = 13.78404875209 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 382 - 182

max_d = √2023 - 100 - 1444 - 324

max_d = √155

max_d = 12.449899597989

Since max_d = 12.449899597989 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 382 - 192

max_d = √2023 - 100 - 1444 - 361

max_d = √118

max_d = 10.8627804912

Since max_d = 10.8627804912 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 382 - 202

max_d = √2023 - 100 - 1444 - 400

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 382 - 212

max_d = √2023 - 100 - 1444 - 441

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 392)

max_c = Floor(√2023 - 100 - 1521)

max_c = Floor(√402)

max_c = Floor(20.049937655763)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 392)/2 = 201

When min_c = 15, then it is c2 = 225 ≥ 201, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 392 - 152

max_d = √2023 - 100 - 1521 - 225

max_d = √177

max_d = 13.30413469565

Since max_d = 13.30413469565 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 392 - 162

max_d = √2023 - 100 - 1521 - 256

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 392 - 172

max_d = √2023 - 100 - 1521 - 289

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 392 - 182

max_d = √2023 - 100 - 1521 - 324

max_d = √78

max_d = 8.8317608663278

Since max_d = 8.8317608663278 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 392 - 192

max_d = √2023 - 100 - 1521 - 361

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 392 - 202

max_d = √2023 - 100 - 1521 - 400

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 402)

max_c = Floor(√2023 - 100 - 1600)

max_c = Floor(√323)

max_c = Floor(17.972200755611)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 402)/2 = 161.5

When min_c = 13, then it is c2 = 169 ≥ 161.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 402 - 132

max_d = √2023 - 100 - 1600 - 169

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 402 - 142

max_d = √2023 - 100 - 1600 - 196

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 402 - 152

max_d = √2023 - 100 - 1600 - 225

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 402 - 162

max_d = √2023 - 100 - 1600 - 256

max_d = √67

max_d = 8.1853527718725

Since max_d = 8.1853527718725 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 402 - 172

max_d = √2023 - 100 - 1600 - 289

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 412)

max_c = Floor(√2023 - 100 - 1681)

max_c = Floor(√242)

max_c = Floor(15.556349186104)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 412)/2 = 121

When min_c = 11, then it is c2 = 121 ≥ 121, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 412 - 112

max_d = √2023 - 100 - 1681 - 121

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (10, 41, 11, 11) is an integer solution proven below

102 + 412 + 112 + 112 → 100 + 1681 + 121 + 121 = 2023

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 412 - 122

max_d = √2023 - 100 - 1681 - 144

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 412 - 132

max_d = √2023 - 100 - 1681 - 169

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 412 - 142

max_d = √2023 - 100 - 1681 - 196

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 412 - 152

max_d = √2023 - 100 - 1681 - 225

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 422)

max_c = Floor(√2023 - 100 - 1764)

max_c = Floor(√159)

max_c = Floor(12.609520212918)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 422)/2 = 79.5

When min_c = 9, then it is c2 = 81 ≥ 79.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 422 - 92

max_d = √2023 - 100 - 1764 - 81

max_d = √78

max_d = 8.8317608663278

Since max_d = 8.8317608663278 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 422 - 102

max_d = √2023 - 100 - 1764 - 100

max_d = √59

max_d = 7.6811457478686

Since max_d = 7.6811457478686 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 422 - 112

max_d = √2023 - 100 - 1764 - 121

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 422 - 122

max_d = √2023 - 100 - 1764 - 144

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 102 - 432)

max_c = Floor(√2023 - 100 - 1849)

max_c = Floor(√74)

max_c = Floor(8.6023252670426)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 102 - 432)/2 = 37

When min_c = 7, then it is c2 = 49 ≥ 37, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 432 - 72

max_d = √2023 - 100 - 1849 - 49

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (10, 43, 7, 5) is an integer solution proven below

102 + 432 + 72 + 52 → 100 + 1849 + 49 + 25 = 2023

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 102 - 432 - 82

max_d = √2023 - 100 - 1849 - 64

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

a = 11

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 112)

max_b = Floor(√2023 - 121)

max_b = Floor(√1902)

max_b = Floor(43.611924974713)

max_b = 43

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 112)/3 = 634

When min_b = 26, then it is b2 = 676 ≥ 634, so min_b = 26

Test values for b in the range of (min_b, max_b)

(26, 43)

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 262)

max_c = Floor(√2023 - 121 - 676)

max_c = Floor(√1226)

max_c = Floor(35.014282800023)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 262)/2 = 613

When min_c = 25, then it is c2 = 625 ≥ 613, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 262 - 252

max_d = √2023 - 121 - 676 - 625

max_d = √601

max_d = 24.515301344263

Since max_d = 24.515301344263 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 262 - 262

max_d = √2023 - 121 - 676 - 676

max_d = √550

max_d = 23.452078799117

Since max_d = 23.452078799117 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 262 - 272

max_d = √2023 - 121 - 676 - 729

max_d = √497

max_d = 22.293496809608

Since max_d = 22.293496809608 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 262 - 282

max_d = √2023 - 121 - 676 - 784

max_d = √442

max_d = 21.023796041629

Since max_d = 21.023796041629 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 262 - 292

max_d = √2023 - 121 - 676 - 841

max_d = √385

max_d = 19.621416870349

Since max_d = 19.621416870349 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 262 - 302

max_d = √2023 - 121 - 676 - 900

max_d = √326

max_d = 18.055470085268

Since max_d = 18.055470085268 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 262 - 312

max_d = √2023 - 121 - 676 - 961

max_d = √265

max_d = 16.2788205961

Since max_d = 16.2788205961 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 262 - 322

max_d = √2023 - 121 - 676 - 1024

max_d = √202

max_d = 14.212670403552

Since max_d = 14.212670403552 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 262 - 332

max_d = √2023 - 121 - 676 - 1089

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 262 - 342

max_d = √2023 - 121 - 676 - 1156

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 262 - 352

max_d = √2023 - 121 - 676 - 1225

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (11, 26, 35, 1) is an integer solution proven below

112 + 262 + 352 + 12 → 121 + 676 + 1225 + 1 = 2023

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 272)

max_c = Floor(√2023 - 121 - 729)

max_c = Floor(√1173)

max_c = Floor(34.249087579087)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 272)/2 = 586.5

When min_c = 25, then it is c2 = 625 ≥ 586.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 272 - 252

max_d = √2023 - 121 - 729 - 625

max_d = √548

max_d = 23.409399821439

Since max_d = 23.409399821439 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 272 - 262

max_d = √2023 - 121 - 729 - 676

max_d = √497

max_d = 22.293496809608

Since max_d = 22.293496809608 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 272 - 272

max_d = √2023 - 121 - 729 - 729

max_d = √444

max_d = 21.071307505705

Since max_d = 21.071307505705 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 272 - 282

max_d = √2023 - 121 - 729 - 784

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 272 - 292

max_d = √2023 - 121 - 729 - 841

max_d = √332

max_d = 18.220867158289

Since max_d = 18.220867158289 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 272 - 302

max_d = √2023 - 121 - 729 - 900

max_d = √273

max_d = 16.522711641858

Since max_d = 16.522711641858 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 272 - 312

max_d = √2023 - 121 - 729 - 961

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 272 - 322

max_d = √2023 - 121 - 729 - 1024

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 272 - 332

max_d = √2023 - 121 - 729 - 1089

max_d = √84

max_d = 9.1651513899117

Since max_d = 9.1651513899117 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 272 - 342

max_d = √2023 - 121 - 729 - 1156

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 282)

max_c = Floor(√2023 - 121 - 784)

max_c = Floor(√1118)

max_c = Floor(33.436506994601)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 282)/2 = 559

When min_c = 24, then it is c2 = 576 ≥ 559, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 282 - 242

max_d = √2023 - 121 - 784 - 576

max_d = √542

max_d = 23.280893453646

Since max_d = 23.280893453646 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 282 - 252

max_d = √2023 - 121 - 784 - 625

max_d = √493

max_d = 22.203603311175

Since max_d = 22.203603311175 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 282 - 262

max_d = √2023 - 121 - 784 - 676

max_d = √442

max_d = 21.023796041629

Since max_d = 21.023796041629 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 282 - 272

max_d = √2023 - 121 - 784 - 729

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 282 - 282

max_d = √2023 - 121 - 784 - 784

max_d = √334

max_d = 18.275666882497

Since max_d = 18.275666882497 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 282 - 292

max_d = √2023 - 121 - 784 - 841

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 282 - 302

max_d = √2023 - 121 - 784 - 900

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 282 - 312

max_d = √2023 - 121 - 784 - 961

max_d = √157

max_d = 12.529964086142

Since max_d = 12.529964086142 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 282 - 322

max_d = √2023 - 121 - 784 - 1024

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 282 - 332

max_d = √2023 - 121 - 784 - 1089

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 292)

max_c = Floor(√2023 - 121 - 841)

max_c = Floor(√1061)

max_c = Floor(32.572994949805)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 292)/2 = 530.5

When min_c = 24, then it is c2 = 576 ≥ 530.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 292 - 242

max_d = √2023 - 121 - 841 - 576

max_d = √485

max_d = 22.022715545545

Since max_d = 22.022715545545 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 292 - 252

max_d = √2023 - 121 - 841 - 625

max_d = √436

max_d = 20.880613017821

Since max_d = 20.880613017821 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 292 - 262

max_d = √2023 - 121 - 841 - 676

max_d = √385

max_d = 19.621416870349

Since max_d = 19.621416870349 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 292 - 272

max_d = √2023 - 121 - 841 - 729

max_d = √332

max_d = 18.220867158289

Since max_d = 18.220867158289 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 292 - 282

max_d = √2023 - 121 - 841 - 784

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 292 - 292

max_d = √2023 - 121 - 841 - 841

max_d = √220

max_d = 14.832396974191

Since max_d = 14.832396974191 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 292 - 302

max_d = √2023 - 121 - 841 - 900

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 292 - 312

max_d = √2023 - 121 - 841 - 961

max_d = √100

max_d = 10

Since max_d = 10, then (a, b, c, d) = (11, 29, 31, 10) is an integer solution proven below

112 + 292 + 312 + 102 → 121 + 841 + 961 + 100 = 2023

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 292 - 322

max_d = √2023 - 121 - 841 - 1024

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 302)

max_c = Floor(√2023 - 121 - 900)

max_c = Floor(√1002)

max_c = Floor(31.654383582689)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 302)/2 = 501

When min_c = 23, then it is c2 = 529 ≥ 501, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 302 - 232

max_d = √2023 - 121 - 900 - 529

max_d = √473

max_d = 21.748563170932

Since max_d = 21.748563170932 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 302 - 242

max_d = √2023 - 121 - 900 - 576

max_d = √426

max_d = 20.63976744055

Since max_d = 20.63976744055 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 302 - 252

max_d = √2023 - 121 - 900 - 625

max_d = √377

max_d = 19.416487838948

Since max_d = 19.416487838948 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 302 - 262

max_d = √2023 - 121 - 900 - 676

max_d = √326

max_d = 18.055470085268

Since max_d = 18.055470085268 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 302 - 272

max_d = √2023 - 121 - 900 - 729

max_d = √273

max_d = 16.522711641858

Since max_d = 16.522711641858 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 302 - 282

max_d = √2023 - 121 - 900 - 784

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 302 - 292

max_d = √2023 - 121 - 900 - 841

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 302 - 302

max_d = √2023 - 121 - 900 - 900

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 302 - 312

max_d = √2023 - 121 - 900 - 961

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 312)

max_c = Floor(√2023 - 121 - 961)

max_c = Floor(√941)

max_c = Floor(30.675723300356)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 312)/2 = 470.5

When min_c = 22, then it is c2 = 484 ≥ 470.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 312 - 222

max_d = √2023 - 121 - 961 - 484

max_d = √457

max_d = 21.377558326432

Since max_d = 21.377558326432 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 312 - 232

max_d = √2023 - 121 - 961 - 529

max_d = √412

max_d = 20.297783130184

Since max_d = 20.297783130184 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 312 - 242

max_d = √2023 - 121 - 961 - 576

max_d = √365

max_d = 19.104973174543

Since max_d = 19.104973174543 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 312 - 252

max_d = √2023 - 121 - 961 - 625

max_d = √316

max_d = 17.776388834631

Since max_d = 17.776388834631 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 312 - 262

max_d = √2023 - 121 - 961 - 676

max_d = √265

max_d = 16.2788205961

Since max_d = 16.2788205961 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 312 - 272

max_d = √2023 - 121 - 961 - 729

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 312 - 282

max_d = √2023 - 121 - 961 - 784

max_d = √157

max_d = 12.529964086142

Since max_d = 12.529964086142 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 312 - 292

max_d = √2023 - 121 - 961 - 841

max_d = √100

max_d = 10

Since max_d = 10, then (a, b, c, d) = (11, 31, 29, 10) is an integer solution proven below

112 + 312 + 292 + 102 → 121 + 961 + 841 + 100 = 2023

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 312 - 302

max_d = √2023 - 121 - 961 - 900

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 322)

max_c = Floor(√2023 - 121 - 1024)

max_c = Floor(√878)

max_c = Floor(29.631064780058)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 322)/2 = 439

When min_c = 21, then it is c2 = 441 ≥ 439, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 322 - 212

max_d = √2023 - 121 - 1024 - 441

max_d = √437

max_d = 20.904544960367

Since max_d = 20.904544960367 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 322 - 222

max_d = √2023 - 121 - 1024 - 484

max_d = √394

max_d = 19.849433241279

Since max_d = 19.849433241279 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 322 - 232

max_d = √2023 - 121 - 1024 - 529

max_d = √349

max_d = 18.681541692269

Since max_d = 18.681541692269 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 322 - 242

max_d = √2023 - 121 - 1024 - 576

max_d = √302

max_d = 17.378147196983

Since max_d = 17.378147196983 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 322 - 252

max_d = √2023 - 121 - 1024 - 625

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 322 - 262

max_d = √2023 - 121 - 1024 - 676

max_d = √202

max_d = 14.212670403552

Since max_d = 14.212670403552 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 322 - 272

max_d = √2023 - 121 - 1024 - 729

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 322 - 282

max_d = √2023 - 121 - 1024 - 784

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 322 - 292

max_d = √2023 - 121 - 1024 - 841

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 332)

max_c = Floor(√2023 - 121 - 1089)

max_c = Floor(√813)

max_c = Floor(28.513154858767)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 332)/2 = 406.5

When min_c = 21, then it is c2 = 441 ≥ 406.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 332 - 212

max_d = √2023 - 121 - 1089 - 441

max_d = √372

max_d = 19.287301521986

Since max_d = 19.287301521986 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 332 - 222

max_d = √2023 - 121 - 1089 - 484

max_d = √329

max_d = 18.138357147217

Since max_d = 18.138357147217 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 332 - 232

max_d = √2023 - 121 - 1089 - 529

max_d = √284

max_d = 16.852299546353

Since max_d = 16.852299546353 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 332 - 242

max_d = √2023 - 121 - 1089 - 576

max_d = √237

max_d = 15.394804318341

Since max_d = 15.394804318341 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 332 - 252

max_d = √2023 - 121 - 1089 - 625

max_d = √188

max_d = 13.711309200802

Since max_d = 13.711309200802 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 332 - 262

max_d = √2023 - 121 - 1089 - 676

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 332 - 272

max_d = √2023 - 121 - 1089 - 729

max_d = √84

max_d = 9.1651513899117

Since max_d = 9.1651513899117 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 332 - 282

max_d = √2023 - 121 - 1089 - 784

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 342)

max_c = Floor(√2023 - 121 - 1156)

max_c = Floor(√746)

max_c = Floor(27.313000567495)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 342)/2 = 373

When min_c = 20, then it is c2 = 400 ≥ 373, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 342 - 202

max_d = √2023 - 121 - 1156 - 400

max_d = √346

max_d = 18.601075237738

Since max_d = 18.601075237738 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 342 - 212

max_d = √2023 - 121 - 1156 - 441

max_d = √305

max_d = 17.464249196573

Since max_d = 17.464249196573 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 342 - 222

max_d = √2023 - 121 - 1156 - 484

max_d = √262

max_d = 16.186414056239

Since max_d = 16.186414056239 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 342 - 232

max_d = √2023 - 121 - 1156 - 529

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 342 - 242

max_d = √2023 - 121 - 1156 - 576

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 342 - 252

max_d = √2023 - 121 - 1156 - 625

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (11, 34, 25, 11) is an integer solution proven below

112 + 342 + 252 + 112 → 121 + 1156 + 625 + 121 = 2023

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 342 - 262

max_d = √2023 - 121 - 1156 - 676

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 342 - 272

max_d = √2023 - 121 - 1156 - 729

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 352)

max_c = Floor(√2023 - 121 - 1225)

max_c = Floor(√677)

max_c = Floor(26.019223662515)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 352)/2 = 338.5

When min_c = 19, then it is c2 = 361 ≥ 338.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 352 - 192

max_d = √2023 - 121 - 1225 - 361

max_d = √316

max_d = 17.776388834631

Since max_d = 17.776388834631 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 352 - 202

max_d = √2023 - 121 - 1225 - 400

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 352 - 212

max_d = √2023 - 121 - 1225 - 441

max_d = √236

max_d = 15.362291495737

Since max_d = 15.362291495737 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 352 - 222

max_d = √2023 - 121 - 1225 - 484

max_d = √193

max_d = 13.89244398945

Since max_d = 13.89244398945 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 352 - 232

max_d = √2023 - 121 - 1225 - 529

max_d = √148

max_d = 12.165525060596

Since max_d = 12.165525060596 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 352 - 242

max_d = √2023 - 121 - 1225 - 576

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 352 - 252

max_d = √2023 - 121 - 1225 - 625

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 352 - 262

max_d = √2023 - 121 - 1225 - 676

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (11, 35, 26, 1) is an integer solution proven below

112 + 352 + 262 + 12 → 121 + 1225 + 676 + 1 = 2023

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 362)

max_c = Floor(√2023 - 121 - 1296)

max_c = Floor(√606)

max_c = Floor(24.617067250182)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 362)/2 = 303

When min_c = 18, then it is c2 = 324 ≥ 303, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 362 - 182

max_d = √2023 - 121 - 1296 - 324

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 362 - 192

max_d = √2023 - 121 - 1296 - 361

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 362 - 202

max_d = √2023 - 121 - 1296 - 400

max_d = √206

max_d = 14.352700094407

Since max_d = 14.352700094407 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 362 - 212

max_d = √2023 - 121 - 1296 - 441

max_d = √165

max_d = 12.845232578665

Since max_d = 12.845232578665 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 362 - 222

max_d = √2023 - 121 - 1296 - 484

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 362 - 232

max_d = √2023 - 121 - 1296 - 529

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 362 - 242

max_d = √2023 - 121 - 1296 - 576

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 372)

max_c = Floor(√2023 - 121 - 1369)

max_c = Floor(√533)

max_c = Floor(23.08679276123)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 372)/2 = 266.5

When min_c = 17, then it is c2 = 289 ≥ 266.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 372 - 172

max_d = √2023 - 121 - 1369 - 289

max_d = √244

max_d = 15.620499351813

Since max_d = 15.620499351813 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 372 - 182

max_d = √2023 - 121 - 1369 - 324

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 372 - 192

max_d = √2023 - 121 - 1369 - 361

max_d = √172

max_d = 13.114877048604

Since max_d = 13.114877048604 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 372 - 202

max_d = √2023 - 121 - 1369 - 400

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 372 - 212

max_d = √2023 - 121 - 1369 - 441

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 372 - 222

max_d = √2023 - 121 - 1369 - 484

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (11, 37, 22, 7) is an integer solution proven below

112 + 372 + 222 + 72 → 121 + 1369 + 484 + 49 = 2023

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 372 - 232

max_d = √2023 - 121 - 1369 - 529

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (11, 37, 23, 2) is an integer solution proven below

112 + 372 + 232 + 22 → 121 + 1369 + 529 + 4 = 2023

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 382)

max_c = Floor(√2023 - 121 - 1444)

max_c = Floor(√458)

max_c = Floor(21.400934559033)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 382)/2 = 229

When min_c = 16, then it is c2 = 256 ≥ 229, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 382 - 162

max_d = √2023 - 121 - 1444 - 256

max_d = √202

max_d = 14.212670403552

Since max_d = 14.212670403552 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 382 - 172

max_d = √2023 - 121 - 1444 - 289

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (11, 38, 17, 13) is an integer solution proven below

112 + 382 + 172 + 132 → 121 + 1444 + 289 + 169 = 2023

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 382 - 182

max_d = √2023 - 121 - 1444 - 324

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 382 - 192

max_d = √2023 - 121 - 1444 - 361

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 382 - 202

max_d = √2023 - 121 - 1444 - 400

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 382 - 212

max_d = √2023 - 121 - 1444 - 441

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 392)

max_c = Floor(√2023 - 121 - 1521)

max_c = Floor(√381)

max_c = Floor(19.519221295943)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 392)/2 = 190.5

When min_c = 14, then it is c2 = 196 ≥ 190.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 392 - 142

max_d = √2023 - 121 - 1521 - 196

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 392 - 152

max_d = √2023 - 121 - 1521 - 225

max_d = √156

max_d = 12.489995996797

Since max_d = 12.489995996797 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 392 - 162

max_d = √2023 - 121 - 1521 - 256

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 392 - 172

max_d = √2023 - 121 - 1521 - 289

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 392 - 182

max_d = √2023 - 121 - 1521 - 324

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 392 - 192

max_d = √2023 - 121 - 1521 - 361

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 402)

max_c = Floor(√2023 - 121 - 1600)

max_c = Floor(√302)

max_c = Floor(17.378147196983)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 402)/2 = 151

When min_c = 13, then it is c2 = 169 ≥ 151, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 402 - 132

max_d = √2023 - 121 - 1600 - 169

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 402 - 142

max_d = √2023 - 121 - 1600 - 196

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 402 - 152

max_d = √2023 - 121 - 1600 - 225

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 402 - 162

max_d = √2023 - 121 - 1600 - 256

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 402 - 172

max_d = √2023 - 121 - 1600 - 289

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 412)

max_c = Floor(√2023 - 121 - 1681)

max_c = Floor(√221)

max_c = Floor(14.866068747319)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 412)/2 = 110.5

When min_c = 11, then it is c2 = 121 ≥ 110.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 412 - 112

max_d = √2023 - 121 - 1681 - 121

max_d = √100

max_d = 10

Since max_d = 10, then (a, b, c, d) = (11, 41, 11, 10) is an integer solution proven below

112 + 412 + 112 + 102 → 121 + 1681 + 121 + 100 = 2023

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 412 - 122

max_d = √2023 - 121 - 1681 - 144

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 412 - 132

max_d = √2023 - 121 - 1681 - 169

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 412 - 142

max_d = √2023 - 121 - 1681 - 196

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (11, 41, 14, 5) is an integer solution proven below

112 + 412 + 142 + 52 → 121 + 1681 + 196 + 25 = 2023

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 422)

max_c = Floor(√2023 - 121 - 1764)

max_c = Floor(√138)

max_c = Floor(11.747340124471)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 422)/2 = 69

When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 422 - 92

max_d = √2023 - 121 - 1764 - 81

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 422 - 102

max_d = √2023 - 121 - 1764 - 100

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 422 - 112

max_d = √2023 - 121 - 1764 - 121

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 112 - 432)

max_c = Floor(√2023 - 121 - 1849)

max_c = Floor(√53)

max_c = Floor(7.2801098892805)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 112 - 432)/2 = 26.5

When min_c = 6, then it is c2 = 36 ≥ 26.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 432 - 62

max_d = √2023 - 121 - 1849 - 36

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 112 - 432 - 72

max_d = √2023 - 121 - 1849 - 49

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (11, 43, 7, 2) is an integer solution proven below

112 + 432 + 72 + 22 → 121 + 1849 + 49 + 4 = 2023

a = 12

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 122)

max_b = Floor(√2023 - 144)

max_b = Floor(√1879)

max_b = Floor(43.347433603386)

max_b = 43

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 122)/3 = 626.33333333333

When min_b = 26, then it is b2 = 676 ≥ 626.33333333333, so min_b = 26

Test values for b in the range of (min_b, max_b)

(26, 43)

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 262)

max_c = Floor(√2023 - 144 - 676)

max_c = Floor(√1203)

max_c = Floor(34.684290392049)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 262)/2 = 601.5

When min_c = 25, then it is c2 = 625 ≥ 601.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 262 - 252

max_d = √2023 - 144 - 676 - 625

max_d = √578

max_d = 24.041630560343

Since max_d = 24.041630560343 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 262 - 262

max_d = √2023 - 144 - 676 - 676

max_d = √527

max_d = 22.956480566498

Since max_d = 22.956480566498 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 262 - 272

max_d = √2023 - 144 - 676 - 729

max_d = √474

max_d = 21.771541057077

Since max_d = 21.771541057077 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 262 - 282

max_d = √2023 - 144 - 676 - 784

max_d = √419

max_d = 20.469489490459

Since max_d = 20.469489490459 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 262 - 292

max_d = √2023 - 144 - 676 - 841

max_d = √362

max_d = 19.02629759044

Since max_d = 19.02629759044 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 262 - 302

max_d = √2023 - 144 - 676 - 900

max_d = √303

max_d = 17.406895185529

Since max_d = 17.406895185529 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 262 - 312

max_d = √2023 - 144 - 676 - 961

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 262 - 322

max_d = √2023 - 144 - 676 - 1024

max_d = √179

max_d = 13.37908816026

Since max_d = 13.37908816026 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 262 - 332

max_d = √2023 - 144 - 676 - 1089

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 262 - 342

max_d = √2023 - 144 - 676 - 1156

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 272)

max_c = Floor(√2023 - 144 - 729)

max_c = Floor(√1150)

max_c = Floor(33.911649915626)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 272)/2 = 575

When min_c = 24, then it is c2 = 576 ≥ 575, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 272 - 242

max_d = √2023 - 144 - 729 - 576

max_d = √574

max_d = 23.958297101422

Since max_d = 23.958297101422 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 272 - 252

max_d = √2023 - 144 - 729 - 625

max_d = √525

max_d = 22.912878474779

Since max_d = 22.912878474779 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 272 - 262

max_d = √2023 - 144 - 729 - 676

max_d = √474

max_d = 21.771541057077

Since max_d = 21.771541057077 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 272 - 272

max_d = √2023 - 144 - 729 - 729

max_d = √421

max_d = 20.518284528683

Since max_d = 20.518284528683 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 272 - 282

max_d = √2023 - 144 - 729 - 784

max_d = √366

max_d = 19.131126469709

Since max_d = 19.131126469709 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 272 - 292

max_d = √2023 - 144 - 729 - 841

max_d = √309

max_d = 17.578395831247

Since max_d = 17.578395831247 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 272 - 302

max_d = √2023 - 144 - 729 - 900

max_d = √250

max_d = 15.811388300842

Since max_d = 15.811388300842 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 272 - 312

max_d = √2023 - 144 - 729 - 961

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 272 - 322

max_d = √2023 - 144 - 729 - 1024

max_d = √126

max_d = 11.224972160322

Since max_d = 11.224972160322 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 272 - 332

max_d = √2023 - 144 - 729 - 1089

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 282)

max_c = Floor(√2023 - 144 - 784)

max_c = Floor(√1095)

max_c = Floor(33.090784215549)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 282)/2 = 547.5

When min_c = 24, then it is c2 = 576 ≥ 547.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 282 - 242

max_d = √2023 - 144 - 784 - 576

max_d = √519

max_d = 22.781571499789

Since max_d = 22.781571499789 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 282 - 252

max_d = √2023 - 144 - 784 - 625

max_d = √470

max_d = 21.679483388679

Since max_d = 21.679483388679 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 282 - 262

max_d = √2023 - 144 - 784 - 676

max_d = √419

max_d = 20.469489490459

Since max_d = 20.469489490459 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 282 - 272

max_d = √2023 - 144 - 784 - 729

max_d = √366

max_d = 19.131126469709

Since max_d = 19.131126469709 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 282 - 282

max_d = √2023 - 144 - 784 - 784

max_d = √311

max_d = 17.635192088548

Since max_d = 17.635192088548 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 282 - 292

max_d = √2023 - 144 - 784 - 841

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 282 - 302

max_d = √2023 - 144 - 784 - 900

max_d = √195

max_d = 13.964240043769

Since max_d = 13.964240043769 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 282 - 312

max_d = √2023 - 144 - 784 - 961

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 282 - 322

max_d = √2023 - 144 - 784 - 1024

max_d = √71

max_d = 8.4261497731764

Since max_d = 8.4261497731764 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 282 - 332

max_d = √2023 - 144 - 784 - 1089

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 292)

max_c = Floor(√2023 - 144 - 841)

max_c = Floor(√1038)

max_c = Floor(32.218007387174)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 292)/2 = 519

When min_c = 23, then it is c2 = 529 ≥ 519, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 292 - 232

max_d = √2023 - 144 - 841 - 529

max_d = √509

max_d = 22.561028345357

Since max_d = 22.561028345357 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 292 - 242

max_d = √2023 - 144 - 841 - 576

max_d = √462

max_d = 21.494185260205

Since max_d = 21.494185260205 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 292 - 252

max_d = √2023 - 144 - 841 - 625

max_d = √413

max_d = 20.322401432902

Since max_d = 20.322401432902 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 292 - 262

max_d = √2023 - 144 - 841 - 676

max_d = √362

max_d = 19.02629759044

Since max_d = 19.02629759044 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 292 - 272

max_d = √2023 - 144 - 841 - 729

max_d = √309

max_d = 17.578395831247

Since max_d = 17.578395831247 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 292 - 282

max_d = √2023 - 144 - 841 - 784

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 292 - 292

max_d = √2023 - 144 - 841 - 841

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 292 - 302

max_d = √2023 - 144 - 841 - 900

max_d = √138

max_d = 11.747340124471

Since max_d = 11.747340124471 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 292 - 312

max_d = √2023 - 144 - 841 - 961

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 292 - 322

max_d = √2023 - 144 - 841 - 1024

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 302)

max_c = Floor(√2023 - 144 - 900)

max_c = Floor(√979)

max_c = Floor(31.288975694324)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 302)/2 = 489.5

When min_c = 23, then it is c2 = 529 ≥ 489.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 302 - 232

max_d = √2023 - 144 - 900 - 529

max_d = √450

max_d = 21.213203435596

Since max_d = 21.213203435596 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 302 - 242

max_d = √2023 - 144 - 900 - 576

max_d = √403

max_d = 20.074859899885

Since max_d = 20.074859899885 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 302 - 252

max_d = √2023 - 144 - 900 - 625

max_d = √354

max_d = 18.814887722227

Since max_d = 18.814887722227 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 302 - 262

max_d = √2023 - 144 - 900 - 676

max_d = √303

max_d = 17.406895185529

Since max_d = 17.406895185529 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 302 - 272

max_d = √2023 - 144 - 900 - 729

max_d = √250

max_d = 15.811388300842

Since max_d = 15.811388300842 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 302 - 282

max_d = √2023 - 144 - 900 - 784

max_d = √195

max_d = 13.964240043769

Since max_d = 13.964240043769 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 302 - 292

max_d = √2023 - 144 - 900 - 841

max_d = √138

max_d = 11.747340124471

Since max_d = 11.747340124471 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 302 - 302

max_d = √2023 - 144 - 900 - 900

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 302 - 312

max_d = √2023 - 144 - 900 - 961

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 312)

max_c = Floor(√2023 - 144 - 961)

max_c = Floor(√918)

max_c = Floor(30.298514815086)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 312)/2 = 459

When min_c = 22, then it is c2 = 484 ≥ 459, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 312 - 222

max_d = √2023 - 144 - 961 - 484

max_d = √434

max_d = 20.832666656

Since max_d = 20.832666656 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 312 - 232

max_d = √2023 - 144 - 961 - 529

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 312 - 242

max_d = √2023 - 144 - 961 - 576

max_d = √342

max_d = 18.493242008907

Since max_d = 18.493242008907 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 312 - 252

max_d = √2023 - 144 - 961 - 625

max_d = √293

max_d = 17.117242768624

Since max_d = 17.117242768624 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 312 - 262

max_d = √2023 - 144 - 961 - 676

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 312 - 272

max_d = √2023 - 144 - 961 - 729

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 312 - 282

max_d = √2023 - 144 - 961 - 784

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 312 - 292

max_d = √2023 - 144 - 961 - 841

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 312 - 302

max_d = √2023 - 144 - 961 - 900

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 322)

max_c = Floor(√2023 - 144 - 1024)

max_c = Floor(√855)

max_c = Floor(29.240383034427)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 322)/2 = 427.5

When min_c = 21, then it is c2 = 441 ≥ 427.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 322 - 212

max_d = √2023 - 144 - 1024 - 441

max_d = √414

max_d = 20.346989949376

Since max_d = 20.346989949376 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 322 - 222

max_d = √2023 - 144 - 1024 - 484

max_d = √371

max_d = 19.261360284258

Since max_d = 19.261360284258 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 322 - 232

max_d = √2023 - 144 - 1024 - 529

max_d = √326

max_d = 18.055470085268

Since max_d = 18.055470085268 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 322 - 242

max_d = √2023 - 144 - 1024 - 576

max_d = √279

max_d = 16.70329308849

Since max_d = 16.70329308849 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 322 - 252

max_d = √2023 - 144 - 1024 - 625

max_d = √230

max_d = 15.165750888103

Since max_d = 15.165750888103 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 322 - 262

max_d = √2023 - 144 - 1024 - 676

max_d = √179

max_d = 13.37908816026

Since max_d = 13.37908816026 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 322 - 272

max_d = √2023 - 144 - 1024 - 729

max_d = √126

max_d = 11.224972160322

Since max_d = 11.224972160322 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 322 - 282

max_d = √2023 - 144 - 1024 - 784

max_d = √71

max_d = 8.4261497731764

Since max_d = 8.4261497731764 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 322 - 292

max_d = √2023 - 144 - 1024 - 841

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 332)

max_c = Floor(√2023 - 144 - 1089)

max_c = Floor(√790)

max_c = Floor(28.10693864511)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 332)/2 = 395

When min_c = 20, then it is c2 = 400 ≥ 395, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 332 - 202

max_d = √2023 - 144 - 1089 - 400

max_d = √390

max_d = 19.748417658131

Since max_d = 19.748417658131 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 332 - 212

max_d = √2023 - 144 - 1089 - 441

max_d = √349

max_d = 18.681541692269

Since max_d = 18.681541692269 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 332 - 222

max_d = √2023 - 144 - 1089 - 484

max_d = √306

max_d = 17.492855684536

Since max_d = 17.492855684536 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 332 - 232

max_d = √2023 - 144 - 1089 - 529

max_d = √261

max_d = 16.155494421404

Since max_d = 16.155494421404 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 332 - 242

max_d = √2023 - 144 - 1089 - 576

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 332 - 252

max_d = √2023 - 144 - 1089 - 625

max_d = √165

max_d = 12.845232578665

Since max_d = 12.845232578665 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 332 - 262

max_d = √2023 - 144 - 1089 - 676

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 332 - 272

max_d = √2023 - 144 - 1089 - 729

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 332 - 282

max_d = √2023 - 144 - 1089 - 784

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 342)

max_c = Floor(√2023 - 144 - 1156)

max_c = Floor(√723)

max_c = Floor(26.888659319498)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 342)/2 = 361.5

When min_c = 20, then it is c2 = 400 ≥ 361.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 342 - 202

max_d = √2023 - 144 - 1156 - 400

max_d = √323

max_d = 17.972200755611

Since max_d = 17.972200755611 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 342 - 212

max_d = √2023 - 144 - 1156 - 441

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 342 - 222

max_d = √2023 - 144 - 1156 - 484

max_d = √239

max_d = 15.45962483374

Since max_d = 15.45962483374 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 342 - 232

max_d = √2023 - 144 - 1156 - 529

max_d = √194

max_d = 13.928388277184

Since max_d = 13.928388277184 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 342 - 242

max_d = √2023 - 144 - 1156 - 576

max_d = √147

max_d = 12.124355652982

Since max_d = 12.124355652982 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 342 - 252

max_d = √2023 - 144 - 1156 - 625

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 342 - 262

max_d = √2023 - 144 - 1156 - 676

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 352)

max_c = Floor(√2023 - 144 - 1225)

max_c = Floor(√654)

max_c = Floor(25.573423705089)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 352)/2 = 327

When min_c = 19, then it is c2 = 361 ≥ 327, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 352 - 192

max_d = √2023 - 144 - 1225 - 361

max_d = √293

max_d = 17.117242768624

Since max_d = 17.117242768624 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 352 - 202

max_d = √2023 - 144 - 1225 - 400

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 352 - 212

max_d = √2023 - 144 - 1225 - 441

max_d = √213

max_d = 14.594519519326

Since max_d = 14.594519519326 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 352 - 222

max_d = √2023 - 144 - 1225 - 484

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 352 - 232

max_d = √2023 - 144 - 1225 - 529

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 352 - 242

max_d = √2023 - 144 - 1225 - 576

max_d = √78

max_d = 8.8317608663278

Since max_d = 8.8317608663278 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 352 - 252

max_d = √2023 - 144 - 1225 - 625

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 362)

max_c = Floor(√2023 - 144 - 1296)

max_c = Floor(√583)

max_c = Floor(24.145392935299)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 362)/2 = 291.5

When min_c = 18, then it is c2 = 324 ≥ 291.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 362 - 182

max_d = √2023 - 144 - 1296 - 324

max_d = √259

max_d = 16.093476939431

Since max_d = 16.093476939431 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 362 - 192

max_d = √2023 - 144 - 1296 - 361

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 362 - 202

max_d = √2023 - 144 - 1296 - 400

max_d = √183

max_d = 13.527749258469

Since max_d = 13.527749258469 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 362 - 212

max_d = √2023 - 144 - 1296 - 441

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 362 - 222

max_d = √2023 - 144 - 1296 - 484

max_d = √99

max_d = 9.9498743710662

Since max_d = 9.9498743710662 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 362 - 232

max_d = √2023 - 144 - 1296 - 529

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 362 - 242

max_d = √2023 - 144 - 1296 - 576

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 372)

max_c = Floor(√2023 - 144 - 1369)

max_c = Floor(√510)

max_c = Floor(22.583179581272)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 372)/2 = 255

When min_c = 16, then it is c2 = 256 ≥ 255, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 372 - 162

max_d = √2023 - 144 - 1369 - 256

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 372 - 172

max_d = √2023 - 144 - 1369 - 289

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 372 - 182

max_d = √2023 - 144 - 1369 - 324

max_d = √186

max_d = 13.638181696986

Since max_d = 13.638181696986 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 372 - 192

max_d = √2023 - 144 - 1369 - 361

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 372 - 202

max_d = √2023 - 144 - 1369 - 400

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 372 - 212

max_d = √2023 - 144 - 1369 - 441

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 372 - 222

max_d = √2023 - 144 - 1369 - 484

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 382)

max_c = Floor(√2023 - 144 - 1444)

max_c = Floor(√435)

max_c = Floor(20.856653614614)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 382)/2 = 217.5

When min_c = 15, then it is c2 = 225 ≥ 217.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 382 - 152

max_d = √2023 - 144 - 1444 - 225

max_d = √210

max_d = 14.491376746189

Since max_d = 14.491376746189 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 382 - 162

max_d = √2023 - 144 - 1444 - 256

max_d = √179

max_d = 13.37908816026

Since max_d = 13.37908816026 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 382 - 172

max_d = √2023 - 144 - 1444 - 289

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 382 - 182

max_d = √2023 - 144 - 1444 - 324

max_d = √111

max_d = 10.535653752853

Since max_d = 10.535653752853 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 382 - 192

max_d = √2023 - 144 - 1444 - 361

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 382 - 202

max_d = √2023 - 144 - 1444 - 400

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 392)

max_c = Floor(√2023 - 144 - 1521)

max_c = Floor(√358)

max_c = Floor(18.920887928425)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 392)/2 = 179

When min_c = 14, then it is c2 = 196 ≥ 179, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 392 - 142

max_d = √2023 - 144 - 1521 - 196

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 392 - 152

max_d = √2023 - 144 - 1521 - 225

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 392 - 162

max_d = √2023 - 144 - 1521 - 256

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 392 - 172

max_d = √2023 - 144 - 1521 - 289

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 392 - 182

max_d = √2023 - 144 - 1521 - 324

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 402)

max_c = Floor(√2023 - 144 - 1600)

max_c = Floor(√279)

max_c = Floor(16.70329308849)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 402)/2 = 139.5

When min_c = 12, then it is c2 = 144 ≥ 139.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 402 - 122

max_d = √2023 - 144 - 1600 - 144

max_d = √135

max_d = 11.618950038622

Since max_d = 11.618950038622 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 402 - 132

max_d = √2023 - 144 - 1600 - 169

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 402 - 142

max_d = √2023 - 144 - 1600 - 196

max_d = √83

max_d = 9.1104335791443

Since max_d = 9.1104335791443 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 402 - 152

max_d = √2023 - 144 - 1600 - 225

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 402 - 162

max_d = √2023 - 144 - 1600 - 256

max_d = √23

max_d = 4.7958315233127

Since max_d = 4.7958315233127 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 412)

max_c = Floor(√2023 - 144 - 1681)

max_c = Floor(√198)

max_c = Floor(14.07124727947)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 412)/2 = 99

When min_c = 10, then it is c2 = 100 ≥ 99, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 412 - 102

max_d = √2023 - 144 - 1681 - 100

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 412 - 112

max_d = √2023 - 144 - 1681 - 121

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 412 - 122

max_d = √2023 - 144 - 1681 - 144

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 412 - 132

max_d = √2023 - 144 - 1681 - 169

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 412 - 142

max_d = √2023 - 144 - 1681 - 196

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 422)

max_c = Floor(√2023 - 144 - 1764)

max_c = Floor(√115)

max_c = Floor(10.723805294764)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 422)/2 = 57.5

When min_c = 8, then it is c2 = 64 ≥ 57.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 422 - 82

max_d = √2023 - 144 - 1764 - 64

max_d = √51

max_d = 7.1414284285429

Since max_d = 7.1414284285429 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 422 - 92

max_d = √2023 - 144 - 1764 - 81

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 422 - 102

max_d = √2023 - 144 - 1764 - 100

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 122 - 432)

max_c = Floor(√2023 - 144 - 1849)

max_c = Floor(√30)

max_c = Floor(5.4772255750517)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 122 - 432)/2 = 15

When min_c = 4, then it is c2 = 16 ≥ 15, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 432 - 42

max_d = √2023 - 144 - 1849 - 16

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 122 - 432 - 52

max_d = √2023 - 144 - 1849 - 25

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

a = 13

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 132)

max_b = Floor(√2023 - 169)

max_b = Floor(√1854)

max_b = Floor(43.058100283222)

max_b = 43

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 132)/3 = 618

When min_b = 25, then it is b2 = 625 ≥ 618, so min_b = 25

Test values for b in the range of (min_b, max_b)

(25, 43)

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 252)

max_c = Floor(√2023 - 169 - 625)

max_c = Floor(√1229)

max_c = Floor(35.057096285916)

max_c = 35

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 252)/2 = 614.5

When min_c = 25, then it is c2 = 625 ≥ 614.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 252 - 252

max_d = √2023 - 169 - 625 - 625

max_d = √604

max_d = 24.576411454889

Since max_d = 24.576411454889 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 252 - 262

max_d = √2023 - 169 - 625 - 676

max_d = √553

max_d = 23.51595203261

Since max_d = 23.51595203261 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 252 - 272

max_d = √2023 - 169 - 625 - 729

max_d = √500

max_d = 22.360679774998

Since max_d = 22.360679774998 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 252 - 282

max_d = √2023 - 169 - 625 - 784

max_d = √445

max_d = 21.095023109729

Since max_d = 21.095023109729 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 252 - 292

max_d = √2023 - 169 - 625 - 841

max_d = √388

max_d = 19.697715603592

Since max_d = 19.697715603592 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 252 - 302

max_d = √2023 - 169 - 625 - 900

max_d = √329

max_d = 18.138357147217

Since max_d = 18.138357147217 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 252 - 312

max_d = √2023 - 169 - 625 - 961

max_d = √268

max_d = 16.370705543745

Since max_d = 16.370705543745 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 252 - 322

max_d = √2023 - 169 - 625 - 1024

max_d = √205

max_d = 14.317821063276

Since max_d = 14.317821063276 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 252 - 332

max_d = √2023 - 169 - 625 - 1089

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 252 - 342

max_d = √2023 - 169 - 625 - 1156

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 35

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 252 - 352

max_d = √2023 - 169 - 625 - 1225

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (13, 25, 35, 2) is an integer solution proven below

132 + 252 + 352 + 22 → 169 + 625 + 1225 + 4 = 2023

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 262)

max_c = Floor(√2023 - 169 - 676)

max_c = Floor(√1178)

max_c = Floor(34.322004603461)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 262)/2 = 589

When min_c = 25, then it is c2 = 625 ≥ 589, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 262 - 252

max_d = √2023 - 169 - 676 - 625

max_d = √553

max_d = 23.51595203261

Since max_d = 23.51595203261 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 262 - 262

max_d = √2023 - 169 - 676 - 676

max_d = √502

max_d = 22.405356502408

Since max_d = 22.405356502408 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 262 - 272

max_d = √2023 - 169 - 676 - 729

max_d = √449

max_d = 21.189620100417

Since max_d = 21.189620100417 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 262 - 282

max_d = √2023 - 169 - 676 - 784

max_d = √394

max_d = 19.849433241279

Since max_d = 19.849433241279 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 262 - 292

max_d = √2023 - 169 - 676 - 841

max_d = √337

max_d = 18.357559750686

Since max_d = 18.357559750686 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 262 - 302

max_d = √2023 - 169 - 676 - 900

max_d = √278

max_d = 16.673332000533

Since max_d = 16.673332000533 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 262 - 312

max_d = √2023 - 169 - 676 - 961

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 262 - 322

max_d = √2023 - 169 - 676 - 1024

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 262 - 332

max_d = √2023 - 169 - 676 - 1089

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 262 - 342

max_d = √2023 - 169 - 676 - 1156

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 272)

max_c = Floor(√2023 - 169 - 729)

max_c = Floor(√1125)

max_c = Floor(33.541019662497)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 272)/2 = 562.5

When min_c = 24, then it is c2 = 576 ≥ 562.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 272 - 242

max_d = √2023 - 169 - 729 - 576

max_d = √549

max_d = 23.43074902772

Since max_d = 23.43074902772 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 272 - 252

max_d = √2023 - 169 - 729 - 625

max_d = √500

max_d = 22.360679774998

Since max_d = 22.360679774998 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 272 - 262

max_d = √2023 - 169 - 729 - 676

max_d = √449

max_d = 21.189620100417

Since max_d = 21.189620100417 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 272 - 272

max_d = √2023 - 169 - 729 - 729

max_d = √396

max_d = 19.899748742132

Since max_d = 19.899748742132 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 272 - 282

max_d = √2023 - 169 - 729 - 784

max_d = √341

max_d = 18.466185312619

Since max_d = 18.466185312619 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 272 - 292

max_d = √2023 - 169 - 729 - 841

max_d = √284

max_d = 16.852299546353

Since max_d = 16.852299546353 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 272 - 302

max_d = √2023 - 169 - 729 - 900

max_d = √225

max_d = 15

Since max_d = 15, then (a, b, c, d) = (13, 27, 30, 15) is an integer solution proven below

132 + 272 + 302 + 152 → 169 + 729 + 900 + 225 = 2023

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 272 - 312

max_d = √2023 - 169 - 729 - 961

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 272 - 322

max_d = √2023 - 169 - 729 - 1024

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 272 - 332

max_d = √2023 - 169 - 729 - 1089

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (13, 27, 33, 6) is an integer solution proven below

132 + 272 + 332 + 62 → 169 + 729 + 1089 + 36 = 2023

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 282)

max_c = Floor(√2023 - 169 - 784)

max_c = Floor(√1070)

max_c = Floor(32.710854467592)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 282)/2 = 535

When min_c = 24, then it is c2 = 576 ≥ 535, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 282 - 242

max_d = √2023 - 169 - 784 - 576

max_d = √494

max_d = 22.226110770893

Since max_d = 22.226110770893 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 282 - 252

max_d = √2023 - 169 - 784 - 625

max_d = √445

max_d = 21.095023109729

Since max_d = 21.095023109729 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 282 - 262

max_d = √2023 - 169 - 784 - 676

max_d = √394

max_d = 19.849433241279

Since max_d = 19.849433241279 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 282 - 272

max_d = √2023 - 169 - 784 - 729

max_d = √341

max_d = 18.466185312619

Since max_d = 18.466185312619 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 282 - 282

max_d = √2023 - 169 - 784 - 784

max_d = √286

max_d = 16.911534525288

Since max_d = 16.911534525288 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 282 - 292

max_d = √2023 - 169 - 784 - 841

max_d = √229

max_d = 15.132745950422

Since max_d = 15.132745950422 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 282 - 302

max_d = √2023 - 169 - 784 - 900

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 282 - 312

max_d = √2023 - 169 - 784 - 961

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 282 - 322

max_d = √2023 - 169 - 784 - 1024

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 292)

max_c = Floor(√2023 - 169 - 841)

max_c = Floor(√1013)

max_c = Floor(31.827660925679)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 292)/2 = 506.5

When min_c = 23, then it is c2 = 529 ≥ 506.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 292 - 232

max_d = √2023 - 169 - 841 - 529

max_d = √484

max_d = 22

Since max_d = 22, then (a, b, c, d) = (13, 29, 23, 22) is an integer solution proven below

132 + 292 + 232 + 222 → 169 + 841 + 529 + 484 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 292 - 242

max_d = √2023 - 169 - 841 - 576

max_d = √437

max_d = 20.904544960367

Since max_d = 20.904544960367 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 292 - 252

max_d = √2023 - 169 - 841 - 625

max_d = √388

max_d = 19.697715603592

Since max_d = 19.697715603592 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 292 - 262

max_d = √2023 - 169 - 841 - 676

max_d = √337

max_d = 18.357559750686

Since max_d = 18.357559750686 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 292 - 272

max_d = √2023 - 169 - 841 - 729

max_d = √284

max_d = 16.852299546353

Since max_d = 16.852299546353 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 292 - 282

max_d = √2023 - 169 - 841 - 784

max_d = √229

max_d = 15.132745950422

Since max_d = 15.132745950422 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 292 - 292

max_d = √2023 - 169 - 841 - 841

max_d = √172

max_d = 13.114877048604

Since max_d = 13.114877048604 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 292 - 302

max_d = √2023 - 169 - 841 - 900

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 292 - 312

max_d = √2023 - 169 - 841 - 961

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 302)

max_c = Floor(√2023 - 169 - 900)

max_c = Floor(√954)

max_c = Floor(30.886890422961)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 302)/2 = 477

When min_c = 22, then it is c2 = 484 ≥ 477, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 302 - 222

max_d = √2023 - 169 - 900 - 484

max_d = √470

max_d = 21.679483388679

Since max_d = 21.679483388679 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 302 - 232

max_d = √2023 - 169 - 900 - 529

max_d = √425

max_d = 20.615528128088

Since max_d = 20.615528128088 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 302 - 242

max_d = √2023 - 169 - 900 - 576

max_d = √378

max_d = 19.442222095224

Since max_d = 19.442222095224 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 302 - 252

max_d = √2023 - 169 - 900 - 625

max_d = √329

max_d = 18.138357147217

Since max_d = 18.138357147217 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 302 - 262

max_d = √2023 - 169 - 900 - 676

max_d = √278

max_d = 16.673332000533

Since max_d = 16.673332000533 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 302 - 272

max_d = √2023 - 169 - 900 - 729

max_d = √225

max_d = 15

Since max_d = 15, then (a, b, c, d) = (13, 30, 27, 15) is an integer solution proven below

132 + 302 + 272 + 152 → 169 + 900 + 729 + 225 = 2023

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 302 - 282

max_d = √2023 - 169 - 900 - 784

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 302 - 292

max_d = √2023 - 169 - 900 - 841

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 302 - 302

max_d = √2023 - 169 - 900 - 900

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 312)

max_c = Floor(√2023 - 169 - 961)

max_c = Floor(√893)

max_c = Floor(29.883105594968)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 312)/2 = 446.5

When min_c = 22, then it is c2 = 484 ≥ 446.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 312 - 222

max_d = √2023 - 169 - 961 - 484

max_d = √409

max_d = 20.223748416157

Since max_d = 20.223748416157 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 312 - 232

max_d = √2023 - 169 - 961 - 529

max_d = √364

max_d = 19.078784028339

Since max_d = 19.078784028339 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 312 - 242

max_d = √2023 - 169 - 961 - 576

max_d = √317

max_d = 17.804493814765

Since max_d = 17.804493814765 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 312 - 252

max_d = √2023 - 169 - 961 - 625

max_d = √268

max_d = 16.370705543745

Since max_d = 16.370705543745 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 312 - 262

max_d = √2023 - 169 - 961 - 676

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 312 - 272

max_d = √2023 - 169 - 961 - 729

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 312 - 282

max_d = √2023 - 169 - 961 - 784

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 312 - 292

max_d = √2023 - 169 - 961 - 841

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 322)

max_c = Floor(√2023 - 169 - 1024)

max_c = Floor(√830)

max_c = Floor(28.809720581776)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 322)/2 = 415

When min_c = 21, then it is c2 = 441 ≥ 415, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 322 - 212

max_d = √2023 - 169 - 1024 - 441

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 322 - 222

max_d = √2023 - 169 - 1024 - 484

max_d = √346

max_d = 18.601075237738

Since max_d = 18.601075237738 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 322 - 232

max_d = √2023 - 169 - 1024 - 529

max_d = √301

max_d = 17.349351572897

Since max_d = 17.349351572897 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 322 - 242

max_d = √2023 - 169 - 1024 - 576

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 322 - 252

max_d = √2023 - 169 - 1024 - 625

max_d = √205

max_d = 14.317821063276

Since max_d = 14.317821063276 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 322 - 262

max_d = √2023 - 169 - 1024 - 676

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 322 - 272

max_d = √2023 - 169 - 1024 - 729

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 322 - 282

max_d = √2023 - 169 - 1024 - 784

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 332)

max_c = Floor(√2023 - 169 - 1089)

max_c = Floor(√765)

max_c = Floor(27.658633371879)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 332)/2 = 382.5

When min_c = 20, then it is c2 = 400 ≥ 382.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 332 - 202

max_d = √2023 - 169 - 1089 - 400

max_d = √365

max_d = 19.104973174543

Since max_d = 19.104973174543 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 332 - 212

max_d = √2023 - 169 - 1089 - 441

max_d = √324

max_d = 18

Since max_d = 18, then (a, b, c, d) = (13, 33, 21, 18) is an integer solution proven below

132 + 332 + 212 + 182 → 169 + 1089 + 441 + 324 = 2023

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 332 - 222

max_d = √2023 - 169 - 1089 - 484

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 332 - 232

max_d = √2023 - 169 - 1089 - 529

max_d = √236

max_d = 15.362291495737

Since max_d = 15.362291495737 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 332 - 242

max_d = √2023 - 169 - 1089 - 576

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 332 - 252

max_d = √2023 - 169 - 1089 - 625

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 332 - 262

max_d = √2023 - 169 - 1089 - 676

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 332 - 272

max_d = √2023 - 169 - 1089 - 729

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (13, 33, 27, 6) is an integer solution proven below

132 + 332 + 272 + 62 → 169 + 1089 + 729 + 36 = 2023

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 342)

max_c = Floor(√2023 - 169 - 1156)

max_c = Floor(√698)

max_c = Floor(26.419689627246)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 342)/2 = 349

When min_c = 19, then it is c2 = 361 ≥ 349, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 342 - 192

max_d = √2023 - 169 - 1156 - 361

max_d = √337

max_d = 18.357559750686

Since max_d = 18.357559750686 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 342 - 202

max_d = √2023 - 169 - 1156 - 400

max_d = √298

max_d = 17.262676501632

Since max_d = 17.262676501632 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 342 - 212

max_d = √2023 - 169 - 1156 - 441

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 342 - 222

max_d = √2023 - 169 - 1156 - 484

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 342 - 232

max_d = √2023 - 169 - 1156 - 529

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (13, 34, 23, 13) is an integer solution proven below

132 + 342 + 232 + 132 → 169 + 1156 + 529 + 169 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 342 - 242

max_d = √2023 - 169 - 1156 - 576

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 342 - 252

max_d = √2023 - 169 - 1156 - 625

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 342 - 262

max_d = √2023 - 169 - 1156 - 676

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 352)

max_c = Floor(√2023 - 169 - 1225)

max_c = Floor(√629)

max_c = Floor(25.079872407969)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 352)/2 = 314.5

When min_c = 18, then it is c2 = 324 ≥ 314.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 352 - 182

max_d = √2023 - 169 - 1225 - 324

max_d = √305

max_d = 17.464249196573

Since max_d = 17.464249196573 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 352 - 192

max_d = √2023 - 169 - 1225 - 361

max_d = √268

max_d = 16.370705543745

Since max_d = 16.370705543745 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 352 - 202

max_d = √2023 - 169 - 1225 - 400

max_d = √229

max_d = 15.132745950422

Since max_d = 15.132745950422 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 352 - 212

max_d = √2023 - 169 - 1225 - 441

max_d = √188

max_d = 13.711309200802

Since max_d = 13.711309200802 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 352 - 222

max_d = √2023 - 169 - 1225 - 484

max_d = √145

max_d = 12.041594578792

Since max_d = 12.041594578792 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 352 - 232

max_d = √2023 - 169 - 1225 - 529

max_d = √100

max_d = 10

Since max_d = 10, then (a, b, c, d) = (13, 35, 23, 10) is an integer solution proven below

132 + 352 + 232 + 102 → 169 + 1225 + 529 + 100 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 352 - 242

max_d = √2023 - 169 - 1225 - 576

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 352 - 252

max_d = √2023 - 169 - 1225 - 625

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (13, 35, 25, 2) is an integer solution proven below

132 + 352 + 252 + 22 → 169 + 1225 + 625 + 4 = 2023

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 362)

max_c = Floor(√2023 - 169 - 1296)

max_c = Floor(√558)

max_c = Floor(23.622023622035)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 362)/2 = 279

When min_c = 17, then it is c2 = 289 ≥ 279, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 362 - 172

max_d = √2023 - 169 - 1296 - 289

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 362 - 182

max_d = √2023 - 169 - 1296 - 324

max_d = √234

max_d = 15.297058540778

Since max_d = 15.297058540778 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 362 - 192

max_d = √2023 - 169 - 1296 - 361

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 362 - 202

max_d = √2023 - 169 - 1296 - 400

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 362 - 212

max_d = √2023 - 169 - 1296 - 441

max_d = √117

max_d = 10.816653826392

Since max_d = 10.816653826392 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 362 - 222

max_d = √2023 - 169 - 1296 - 484

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 362 - 232

max_d = √2023 - 169 - 1296 - 529

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 372)

max_c = Floor(√2023 - 169 - 1369)

max_c = Floor(√485)

max_c = Floor(22.022715545545)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 372)/2 = 242.5

When min_c = 16, then it is c2 = 256 ≥ 242.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 372 - 162

max_d = √2023 - 169 - 1369 - 256

max_d = √229

max_d = 15.132745950422

Since max_d = 15.132745950422 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 372 - 172

max_d = √2023 - 169 - 1369 - 289

max_d = √196

max_d = 14

Since max_d = 14, then (a, b, c, d) = (13, 37, 17, 14) is an integer solution proven below

132 + 372 + 172 + 142 → 169 + 1369 + 289 + 196 = 2023

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 372 - 182

max_d = √2023 - 169 - 1369 - 324

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 372 - 192

max_d = √2023 - 169 - 1369 - 361

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 372 - 202

max_d = √2023 - 169 - 1369 - 400

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 372 - 212

max_d = √2023 - 169 - 1369 - 441

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 372 - 222

max_d = √2023 - 169 - 1369 - 484

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (13, 37, 22, 1) is an integer solution proven below

132 + 372 + 222 + 12 → 169 + 1369 + 484 + 1 = 2023

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 382)

max_c = Floor(√2023 - 169 - 1444)

max_c = Floor(√410)

max_c = Floor(20.248456731317)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 382)/2 = 205

When min_c = 15, then it is c2 = 225 ≥ 205, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 382 - 152

max_d = √2023 - 169 - 1444 - 225

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 382 - 162

max_d = √2023 - 169 - 1444 - 256

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 382 - 172

max_d = √2023 - 169 - 1444 - 289

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (13, 38, 17, 11) is an integer solution proven below

132 + 382 + 172 + 112 → 169 + 1444 + 289 + 121 = 2023

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 382 - 182

max_d = √2023 - 169 - 1444 - 324

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 382 - 192

max_d = √2023 - 169 - 1444 - 361

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (13, 38, 19, 7) is an integer solution proven below

132 + 382 + 192 + 72 → 169 + 1444 + 361 + 49 = 2023

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 382 - 202

max_d = √2023 - 169 - 1444 - 400

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 392)

max_c = Floor(√2023 - 169 - 1521)

max_c = Floor(√333)

max_c = Floor(18.248287590895)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 392)/2 = 166.5

When min_c = 13, then it is c2 = 169 ≥ 166.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 392 - 132

max_d = √2023 - 169 - 1521 - 169

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 392 - 142

max_d = √2023 - 169 - 1521 - 196

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 392 - 152

max_d = √2023 - 169 - 1521 - 225

max_d = √108

max_d = 10.392304845413

Since max_d = 10.392304845413 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 392 - 162

max_d = √2023 - 169 - 1521 - 256

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 392 - 172

max_d = √2023 - 169 - 1521 - 289

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 392 - 182

max_d = √2023 - 169 - 1521 - 324

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (13, 39, 18, 3) is an integer solution proven below

132 + 392 + 182 + 32 → 169 + 1521 + 324 + 9 = 2023

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 402)

max_c = Floor(√2023 - 169 - 1600)

max_c = Floor(√254)

max_c = Floor(15.937377450509)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 402)/2 = 127

When min_c = 12, then it is c2 = 144 ≥ 127, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 402 - 122

max_d = √2023 - 169 - 1600 - 144

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 402 - 132

max_d = √2023 - 169 - 1600 - 169

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 402 - 142

max_d = √2023 - 169 - 1600 - 196

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 402 - 152

max_d = √2023 - 169 - 1600 - 225

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 412)

max_c = Floor(√2023 - 169 - 1681)

max_c = Floor(√173)

max_c = Floor(13.152946437966)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 412)/2 = 86.5

When min_c = 10, then it is c2 = 100 ≥ 86.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 412 - 102

max_d = √2023 - 169 - 1681 - 100

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 412 - 112

max_d = √2023 - 169 - 1681 - 121

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 412 - 122

max_d = √2023 - 169 - 1681 - 144

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 412 - 132

max_d = √2023 - 169 - 1681 - 169

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (13, 41, 13, 2) is an integer solution proven below

132 + 412 + 132 + 22 → 169 + 1681 + 169 + 4 = 2023

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 422)

max_c = Floor(√2023 - 169 - 1764)

max_c = Floor(√90)

max_c = Floor(9.4868329805051)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 422)/2 = 45

When min_c = 7, then it is c2 = 49 ≥ 45, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 422 - 72

max_d = √2023 - 169 - 1764 - 49

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 422 - 82

max_d = √2023 - 169 - 1764 - 64

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 422 - 92

max_d = √2023 - 169 - 1764 - 81

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (13, 42, 9, 3) is an integer solution proven below

132 + 422 + 92 + 32 → 169 + 1764 + 81 + 9 = 2023

b = 43

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 132 - 432)

max_c = Floor(√2023 - 169 - 1849)

max_c = Floor(√5)

max_c = Floor(2.2360679774998)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 132 - 432)/2 = 2.5

When min_c = 2, then it is c2 = 4 ≥ 2.5, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 132 - 432 - 22

max_d = √2023 - 169 - 1849 - 4

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (13, 43, 2, 1) is an integer solution proven below

132 + 432 + 22 + 12 → 169 + 1849 + 4 + 1 = 2023

a = 14

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 142)

max_b = Floor(√2023 - 196)

max_b = Floor(√1827)

max_b = Floor(42.743420546325)

max_b = 42

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 142)/3 = 609

When min_b = 25, then it is b2 = 625 ≥ 609, so min_b = 25

Test values for b in the range of (min_b, max_b)

(25, 42)

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 252)

max_c = Floor(√2023 - 196 - 625)

max_c = Floor(√1202)

max_c = Floor(34.669871646719)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 252)/2 = 601

When min_c = 25, then it is c2 = 625 ≥ 601, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 252 - 252

max_d = √2023 - 196 - 625 - 625

max_d = √577

max_d = 24.020824298929

Since max_d = 24.020824298929 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 252 - 262

max_d = √2023 - 196 - 625 - 676

max_d = √526

max_d = 22.934689882359

Since max_d = 22.934689882359 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 252 - 272

max_d = √2023 - 196 - 625 - 729

max_d = √473

max_d = 21.748563170932

Since max_d = 21.748563170932 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 252 - 282

max_d = √2023 - 196 - 625 - 784

max_d = √418

max_d = 20.445048300261

Since max_d = 20.445048300261 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 252 - 292

max_d = √2023 - 196 - 625 - 841

max_d = √361

max_d = 19

Since max_d = 19, then (a, b, c, d) = (14, 25, 29, 19) is an integer solution proven below

142 + 252 + 292 + 192 → 196 + 625 + 841 + 361 = 2023

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 252 - 302

max_d = √2023 - 196 - 625 - 900

max_d = √302

max_d = 17.378147196983

Since max_d = 17.378147196983 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 252 - 312

max_d = √2023 - 196 - 625 - 961

max_d = √241

max_d = 15.52417469626

Since max_d = 15.52417469626 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 252 - 322

max_d = √2023 - 196 - 625 - 1024

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 252 - 332

max_d = √2023 - 196 - 625 - 1089

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 252 - 342

max_d = √2023 - 196 - 625 - 1156

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 262)

max_c = Floor(√2023 - 196 - 676)

max_c = Floor(√1151)

max_c = Floor(33.926390907375)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 262)/2 = 575.5

When min_c = 24, then it is c2 = 576 ≥ 575.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 262 - 242

max_d = √2023 - 196 - 676 - 576

max_d = √575

max_d = 23.979157616564

Since max_d = 23.979157616564 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 262 - 252

max_d = √2023 - 196 - 676 - 625

max_d = √526

max_d = 22.934689882359

Since max_d = 22.934689882359 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 262 - 262

max_d = √2023 - 196 - 676 - 676

max_d = √475

max_d = 21.794494717703

Since max_d = 21.794494717703 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 262 - 272

max_d = √2023 - 196 - 676 - 729

max_d = √422

max_d = 20.542638584174

Since max_d = 20.542638584174 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 262 - 282

max_d = √2023 - 196 - 676 - 784

max_d = √367

max_d = 19.157244060668

Since max_d = 19.157244060668 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 262 - 292

max_d = √2023 - 196 - 676 - 841

max_d = √310

max_d = 17.606816861659

Since max_d = 17.606816861659 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 262 - 302

max_d = √2023 - 196 - 676 - 900

max_d = √251

max_d = 15.842979517755

Since max_d = 15.842979517755 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 262 - 312

max_d = √2023 - 196 - 676 - 961

max_d = √190

max_d = 13.78404875209

Since max_d = 13.78404875209 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 262 - 322

max_d = √2023 - 196 - 676 - 1024

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 262 - 332

max_d = √2023 - 196 - 676 - 1089

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 272)

max_c = Floor(√2023 - 196 - 729)

max_c = Floor(√1098)

max_c = Floor(33.136083051562)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 272)/2 = 549

When min_c = 24, then it is c2 = 576 ≥ 549, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 272 - 242

max_d = √2023 - 196 - 729 - 576

max_d = √522

max_d = 22.847319317592

Since max_d = 22.847319317592 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 272 - 252

max_d = √2023 - 196 - 729 - 625

max_d = √473

max_d = 21.748563170932

Since max_d = 21.748563170932 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 272 - 262

max_d = √2023 - 196 - 729 - 676

max_d = √422

max_d = 20.542638584174

Since max_d = 20.542638584174 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 272 - 272

max_d = √2023 - 196 - 729 - 729

max_d = √369

max_d = 19.209372712299

Since max_d = 19.209372712299 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 272 - 282

max_d = √2023 - 196 - 729 - 784

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 272 - 292

max_d = √2023 - 196 - 729 - 841

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 272 - 302

max_d = √2023 - 196 - 729 - 900

max_d = √198

max_d = 14.07124727947

Since max_d = 14.07124727947 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 272 - 312

max_d = √2023 - 196 - 729 - 961

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 272 - 322

max_d = √2023 - 196 - 729 - 1024

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 272 - 332

max_d = √2023 - 196 - 729 - 1089

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (14, 27, 33, 3) is an integer solution proven below

142 + 272 + 332 + 32 → 196 + 729 + 1089 + 9 = 2023

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 282)

max_c = Floor(√2023 - 196 - 784)

max_c = Floor(√1043)

max_c = Floor(32.29551052391)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 282)/2 = 521.5

When min_c = 23, then it is c2 = 529 ≥ 521.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 282 - 232

max_d = √2023 - 196 - 784 - 529

max_d = √514

max_d = 22.671568097509

Since max_d = 22.671568097509 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 282 - 242

max_d = √2023 - 196 - 784 - 576

max_d = √467

max_d = 21.610182784974

Since max_d = 21.610182784974 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 282 - 252

max_d = √2023 - 196 - 784 - 625

max_d = √418

max_d = 20.445048300261

Since max_d = 20.445048300261 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 282 - 262

max_d = √2023 - 196 - 784 - 676

max_d = √367

max_d = 19.157244060668

Since max_d = 19.157244060668 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 282 - 272

max_d = √2023 - 196 - 784 - 729

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 282 - 282

max_d = √2023 - 196 - 784 - 784

max_d = √259

max_d = 16.093476939431

Since max_d = 16.093476939431 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 282 - 292

max_d = √2023 - 196 - 784 - 841

max_d = √202

max_d = 14.212670403552

Since max_d = 14.212670403552 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 282 - 302

max_d = √2023 - 196 - 784 - 900

max_d = √143

max_d = 11.958260743101

Since max_d = 11.958260743101 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 282 - 312

max_d = √2023 - 196 - 784 - 961

max_d = √82

max_d = 9.0553851381374

Since max_d = 9.0553851381374 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 282 - 322

max_d = √2023 - 196 - 784 - 1024

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 292)

max_c = Floor(√2023 - 196 - 841)

max_c = Floor(√986)

max_c = Floor(31.400636936215)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 292)/2 = 493

When min_c = 23, then it is c2 = 529 ≥ 493, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 292 - 232

max_d = √2023 - 196 - 841 - 529

max_d = √457

max_d = 21.377558326432

Since max_d = 21.377558326432 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 292 - 242

max_d = √2023 - 196 - 841 - 576

max_d = √410

max_d = 20.248456731317

Since max_d = 20.248456731317 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 292 - 252

max_d = √2023 - 196 - 841 - 625

max_d = √361

max_d = 19

Since max_d = 19, then (a, b, c, d) = (14, 29, 25, 19) is an integer solution proven below

142 + 292 + 252 + 192 → 196 + 841 + 625 + 361 = 2023

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 292 - 262

max_d = √2023 - 196 - 841 - 676

max_d = √310

max_d = 17.606816861659

Since max_d = 17.606816861659 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 292 - 272

max_d = √2023 - 196 - 841 - 729

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 292 - 282

max_d = √2023 - 196 - 841 - 784

max_d = √202

max_d = 14.212670403552

Since max_d = 14.212670403552 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 292 - 292

max_d = √2023 - 196 - 841 - 841

max_d = √145

max_d = 12.041594578792

Since max_d = 12.041594578792 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 292 - 302

max_d = √2023 - 196 - 841 - 900

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 292 - 312

max_d = √2023 - 196 - 841 - 961

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (14, 29, 31, 5) is an integer solution proven below

142 + 292 + 312 + 52 → 196 + 841 + 961 + 25 = 2023

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 302)

max_c = Floor(√2023 - 196 - 900)

max_c = Floor(√927)

max_c = Floor(30.446674695277)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 302)/2 = 463.5

When min_c = 22, then it is c2 = 484 ≥ 463.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 302 - 222

max_d = √2023 - 196 - 900 - 484

max_d = √443

max_d = 21.047565179849

Since max_d = 21.047565179849 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 302 - 232

max_d = √2023 - 196 - 900 - 529

max_d = √398

max_d = 19.94993734326

Since max_d = 19.94993734326 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 302 - 242

max_d = √2023 - 196 - 900 - 576

max_d = √351

max_d = 18.734993995195

Since max_d = 18.734993995195 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 302 - 252

max_d = √2023 - 196 - 900 - 625

max_d = √302

max_d = 17.378147196983

Since max_d = 17.378147196983 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 302 - 262

max_d = √2023 - 196 - 900 - 676

max_d = √251

max_d = 15.842979517755

Since max_d = 15.842979517755 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 302 - 272

max_d = √2023 - 196 - 900 - 729

max_d = √198

max_d = 14.07124727947

Since max_d = 14.07124727947 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 302 - 282

max_d = √2023 - 196 - 900 - 784

max_d = √143

max_d = 11.958260743101

Since max_d = 11.958260743101 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 302 - 292

max_d = √2023 - 196 - 900 - 841

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 302 - 302

max_d = √2023 - 196 - 900 - 900

max_d = √27

max_d = 5.1961524227066

Since max_d = 5.1961524227066 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 312)

max_c = Floor(√2023 - 196 - 961)

max_c = Floor(√866)

max_c = Floor(29.427877939124)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 312)/2 = 433

When min_c = 21, then it is c2 = 441 ≥ 433, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 312 - 212

max_d = √2023 - 196 - 961 - 441

max_d = √425

max_d = 20.615528128088

Since max_d = 20.615528128088 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 312 - 222

max_d = √2023 - 196 - 961 - 484

max_d = √382

max_d = 19.544820285692

Since max_d = 19.544820285692 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 312 - 232

max_d = √2023 - 196 - 961 - 529

max_d = √337

max_d = 18.357559750686

Since max_d = 18.357559750686 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 312 - 242

max_d = √2023 - 196 - 961 - 576

max_d = √290

max_d = 17.029386365926

Since max_d = 17.029386365926 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 312 - 252

max_d = √2023 - 196 - 961 - 625

max_d = √241

max_d = 15.52417469626

Since max_d = 15.52417469626 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 312 - 262

max_d = √2023 - 196 - 961 - 676

max_d = √190

max_d = 13.78404875209

Since max_d = 13.78404875209 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 312 - 272

max_d = √2023 - 196 - 961 - 729

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 312 - 282

max_d = √2023 - 196 - 961 - 784

max_d = √82

max_d = 9.0553851381374

Since max_d = 9.0553851381374 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 312 - 292

max_d = √2023 - 196 - 961 - 841

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (14, 31, 29, 5) is an integer solution proven below

142 + 312 + 292 + 52 → 196 + 961 + 841 + 25 = 2023

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 322)

max_c = Floor(√2023 - 196 - 1024)

max_c = Floor(√803)

max_c = Floor(28.33725463061)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 322)/2 = 401.5

When min_c = 21, then it is c2 = 441 ≥ 401.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 322 - 212

max_d = √2023 - 196 - 1024 - 441

max_d = √362

max_d = 19.02629759044

Since max_d = 19.02629759044 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 322 - 222

max_d = √2023 - 196 - 1024 - 484

max_d = √319

max_d = 17.860571099492

Since max_d = 17.860571099492 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 322 - 232

max_d = √2023 - 196 - 1024 - 529

max_d = √274

max_d = 16.552945357247

Since max_d = 16.552945357247 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 322 - 242

max_d = √2023 - 196 - 1024 - 576

max_d = √227

max_d = 15.066519173319

Since max_d = 15.066519173319 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 322 - 252

max_d = √2023 - 196 - 1024 - 625

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 322 - 262

max_d = √2023 - 196 - 1024 - 676

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 322 - 272

max_d = √2023 - 196 - 1024 - 729

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 322 - 282

max_d = √2023 - 196 - 1024 - 784

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 332)

max_c = Floor(√2023 - 196 - 1089)

max_c = Floor(√738)

max_c = Floor(27.166155414412)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 332)/2 = 369

When min_c = 20, then it is c2 = 400 ≥ 369, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 332 - 202

max_d = √2023 - 196 - 1089 - 400

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 332 - 212

max_d = √2023 - 196 - 1089 - 441

max_d = √297

max_d = 17.233687939614

Since max_d = 17.233687939614 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 332 - 222

max_d = √2023 - 196 - 1089 - 484

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 332 - 232

max_d = √2023 - 196 - 1089 - 529

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 332 - 242

max_d = √2023 - 196 - 1089 - 576

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 332 - 252

max_d = √2023 - 196 - 1089 - 625

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 332 - 262

max_d = √2023 - 196 - 1089 - 676

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 332 - 272

max_d = √2023 - 196 - 1089 - 729

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (14, 33, 27, 3) is an integer solution proven below

142 + 332 + 272 + 32 → 196 + 1089 + 729 + 9 = 2023

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 342)

max_c = Floor(√2023 - 196 - 1156)

max_c = Floor(√671)

max_c = Floor(25.903667693977)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 342)/2 = 335.5

When min_c = 19, then it is c2 = 361 ≥ 335.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 342 - 192

max_d = √2023 - 196 - 1156 - 361

max_d = √310

max_d = 17.606816861659

Since max_d = 17.606816861659 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 342 - 202

max_d = √2023 - 196 - 1156 - 400

max_d = √271

max_d = 16.462077633154

Since max_d = 16.462077633154 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 342 - 212

max_d = √2023 - 196 - 1156 - 441

max_d = √230

max_d = 15.165750888103

Since max_d = 15.165750888103 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 342 - 222

max_d = √2023 - 196 - 1156 - 484

max_d = √187

max_d = 13.674794331177

Since max_d = 13.674794331177 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 342 - 232

max_d = √2023 - 196 - 1156 - 529

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 342 - 242

max_d = √2023 - 196 - 1156 - 576

max_d = √95

max_d = 9.746794344809

Since max_d = 9.746794344809 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 342 - 252

max_d = √2023 - 196 - 1156 - 625

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 352)

max_c = Floor(√2023 - 196 - 1225)

max_c = Floor(√602)

max_c = Floor(24.535688292771)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 352)/2 = 301

When min_c = 18, then it is c2 = 324 ≥ 301, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 352 - 182

max_d = √2023 - 196 - 1225 - 324

max_d = √278

max_d = 16.673332000533

Since max_d = 16.673332000533 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 352 - 192

max_d = √2023 - 196 - 1225 - 361

max_d = √241

max_d = 15.52417469626

Since max_d = 15.52417469626 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 352 - 202

max_d = √2023 - 196 - 1225 - 400

max_d = √202

max_d = 14.212670403552

Since max_d = 14.212670403552 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 352 - 212

max_d = √2023 - 196 - 1225 - 441

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 352 - 222

max_d = √2023 - 196 - 1225 - 484

max_d = √118

max_d = 10.8627804912

Since max_d = 10.8627804912 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 352 - 232

max_d = √2023 - 196 - 1225 - 529

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 352 - 242

max_d = √2023 - 196 - 1225 - 576

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 362)

max_c = Floor(√2023 - 196 - 1296)

max_c = Floor(√531)

max_c = Floor(23.043437243606)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 362)/2 = 265.5

When min_c = 17, then it is c2 = 289 ≥ 265.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 362 - 172

max_d = √2023 - 196 - 1296 - 289

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 362 - 182

max_d = √2023 - 196 - 1296 - 324

max_d = √207

max_d = 14.387494569938

Since max_d = 14.387494569938 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 362 - 192

max_d = √2023 - 196 - 1296 - 361

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 362 - 202

max_d = √2023 - 196 - 1296 - 400

max_d = √131

max_d = 11.44552314226

Since max_d = 11.44552314226 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 362 - 212

max_d = √2023 - 196 - 1296 - 441

max_d = √90

max_d = 9.4868329805051

Since max_d = 9.4868329805051 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 362 - 222

max_d = √2023 - 196 - 1296 - 484

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 362 - 232

max_d = √2023 - 196 - 1296 - 529

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 372)

max_c = Floor(√2023 - 196 - 1369)

max_c = Floor(√458)

max_c = Floor(21.400934559033)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 372)/2 = 229

When min_c = 16, then it is c2 = 256 ≥ 229, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 372 - 162

max_d = √2023 - 196 - 1369 - 256

max_d = √202

max_d = 14.212670403552

Since max_d = 14.212670403552 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 372 - 172

max_d = √2023 - 196 - 1369 - 289

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (14, 37, 17, 13) is an integer solution proven below

142 + 372 + 172 + 132 → 196 + 1369 + 289 + 169 = 2023

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 372 - 182

max_d = √2023 - 196 - 1369 - 324

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 372 - 192

max_d = √2023 - 196 - 1369 - 361

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 372 - 202

max_d = √2023 - 196 - 1369 - 400

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 372 - 212

max_d = √2023 - 196 - 1369 - 441

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 382)

max_c = Floor(√2023 - 196 - 1444)

max_c = Floor(√383)

max_c = Floor(19.570385790781)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 382)/2 = 191.5

When min_c = 14, then it is c2 = 196 ≥ 191.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 382 - 142

max_d = √2023 - 196 - 1444 - 196

max_d = √187

max_d = 13.674794331177

Since max_d = 13.674794331177 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 382 - 152

max_d = √2023 - 196 - 1444 - 225

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 382 - 162

max_d = √2023 - 196 - 1444 - 256

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 382 - 172

max_d = √2023 - 196 - 1444 - 289

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 382 - 182

max_d = √2023 - 196 - 1444 - 324

max_d = √59

max_d = 7.6811457478686

Since max_d = 7.6811457478686 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 382 - 192

max_d = √2023 - 196 - 1444 - 361

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 392)

max_c = Floor(√2023 - 196 - 1521)

max_c = Floor(√306)

max_c = Floor(17.492855684536)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 392)/2 = 153

When min_c = 13, then it is c2 = 169 ≥ 153, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 392 - 132

max_d = √2023 - 196 - 1521 - 169

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 392 - 142

max_d = √2023 - 196 - 1521 - 196

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 392 - 152

max_d = √2023 - 196 - 1521 - 225

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (14, 39, 15, 9) is an integer solution proven below

142 + 392 + 152 + 92 → 196 + 1521 + 225 + 81 = 2023

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 392 - 162

max_d = √2023 - 196 - 1521 - 256

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 392 - 172

max_d = √2023 - 196 - 1521 - 289

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 402)

max_c = Floor(√2023 - 196 - 1600)

max_c = Floor(√227)

max_c = Floor(15.066519173319)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 402)/2 = 113.5

When min_c = 11, then it is c2 = 121 ≥ 113.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 402 - 112

max_d = √2023 - 196 - 1600 - 121

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 402 - 122

max_d = √2023 - 196 - 1600 - 144

max_d = √83

max_d = 9.1104335791443

Since max_d = 9.1104335791443 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 402 - 132

max_d = √2023 - 196 - 1600 - 169

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 402 - 142

max_d = √2023 - 196 - 1600 - 196

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 402 - 152

max_d = √2023 - 196 - 1600 - 225

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 412)

max_c = Floor(√2023 - 196 - 1681)

max_c = Floor(√146)

max_c = Floor(12.083045973595)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 412)/2 = 73

When min_c = 9, then it is c2 = 81 ≥ 73, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 412 - 92

max_d = √2023 - 196 - 1681 - 81

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 412 - 102

max_d = √2023 - 196 - 1681 - 100

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 412 - 112

max_d = √2023 - 196 - 1681 - 121

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (14, 41, 11, 5) is an integer solution proven below

142 + 412 + 112 + 52 → 196 + 1681 + 121 + 25 = 2023

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 412 - 122

max_d = √2023 - 196 - 1681 - 144

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 142 - 422)

max_c = Floor(√2023 - 196 - 1764)

max_c = Floor(√63)

max_c = Floor(7.9372539331938)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 142 - 422)/2 = 31.5

When min_c = 6, then it is c2 = 36 ≥ 31.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 422 - 62

max_d = √2023 - 196 - 1764 - 36

max_d = √27

max_d = 5.1961524227066

Since max_d = 5.1961524227066 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 142 - 422 - 72

max_d = √2023 - 196 - 1764 - 49

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

a = 15

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 152)

max_b = Floor(√2023 - 225)

max_b = Floor(√1798)

max_b = Floor(42.402830094228)

max_b = 42

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 152)/3 = 599.33333333333

When min_b = 25, then it is b2 = 625 ≥ 599.33333333333, so min_b = 25

Test values for b in the range of (min_b, max_b)

(25, 42)

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 252)

max_c = Floor(√2023 - 225 - 625)

max_c = Floor(√1173)

max_c = Floor(34.249087579087)

max_c = 34

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 252)/2 = 586.5

When min_c = 25, then it is c2 = 625 ≥ 586.5, so min_c = 25

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 252 - 252

max_d = √2023 - 225 - 625 - 625

max_d = √548

max_d = 23.409399821439

Since max_d = 23.409399821439 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 252 - 262

max_d = √2023 - 225 - 625 - 676

max_d = √497

max_d = 22.293496809608

Since max_d = 22.293496809608 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 252 - 272

max_d = √2023 - 225 - 625 - 729

max_d = √444

max_d = 21.071307505705

Since max_d = 21.071307505705 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 252 - 282

max_d = √2023 - 225 - 625 - 784

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 252 - 292

max_d = √2023 - 225 - 625 - 841

max_d = √332

max_d = 18.220867158289

Since max_d = 18.220867158289 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 252 - 302

max_d = √2023 - 225 - 625 - 900

max_d = √273

max_d = 16.522711641858

Since max_d = 16.522711641858 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 252 - 312

max_d = √2023 - 225 - 625 - 961

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 252 - 322

max_d = √2023 - 225 - 625 - 1024

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 252 - 332

max_d = √2023 - 225 - 625 - 1089

max_d = √84

max_d = 9.1651513899117

Since max_d = 9.1651513899117 is not an integer, this is not a solution

c = 34

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 252 - 342

max_d = √2023 - 225 - 625 - 1156

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 262)

max_c = Floor(√2023 - 225 - 676)

max_c = Floor(√1122)

max_c = Floor(33.496268448888)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 262)/2 = 561

When min_c = 24, then it is c2 = 576 ≥ 561, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 262 - 242

max_d = √2023 - 225 - 676 - 576

max_d = √546

max_d = 23.366642891096

Since max_d = 23.366642891096 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 262 - 252

max_d = √2023 - 225 - 676 - 625

max_d = √497

max_d = 22.293496809608

Since max_d = 22.293496809608 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 262 - 262

max_d = √2023 - 225 - 676 - 676

max_d = √446

max_d = 21.118712081943

Since max_d = 21.118712081943 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 262 - 272

max_d = √2023 - 225 - 676 - 729

max_d = √393

max_d = 19.824227601599

Since max_d = 19.824227601599 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 262 - 282

max_d = √2023 - 225 - 676 - 784

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 262 - 292

max_d = √2023 - 225 - 676 - 841

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 262 - 302

max_d = √2023 - 225 - 676 - 900

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 262 - 312

max_d = √2023 - 225 - 676 - 961

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 262 - 322

max_d = √2023 - 225 - 676 - 1024

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 262 - 332

max_d = √2023 - 225 - 676 - 1089

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 272)

max_c = Floor(√2023 - 225 - 729)

max_c = Floor(√1069)

max_c = Floor(32.695565448544)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 272)/2 = 534.5

When min_c = 24, then it is c2 = 576 ≥ 534.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 272 - 242

max_d = √2023 - 225 - 729 - 576

max_d = √493

max_d = 22.203603311175

Since max_d = 22.203603311175 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 272 - 252

max_d = √2023 - 225 - 729 - 625

max_d = √444

max_d = 21.071307505705

Since max_d = 21.071307505705 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 272 - 262

max_d = √2023 - 225 - 729 - 676

max_d = √393

max_d = 19.824227601599

Since max_d = 19.824227601599 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 272 - 272

max_d = √2023 - 225 - 729 - 729

max_d = √340

max_d = 18.439088914586

Since max_d = 18.439088914586 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 272 - 282

max_d = √2023 - 225 - 729 - 784

max_d = √285

max_d = 16.881943016134

Since max_d = 16.881943016134 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 272 - 292

max_d = √2023 - 225 - 729 - 841

max_d = √228

max_d = 15.099668870541

Since max_d = 15.099668870541 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 272 - 302

max_d = √2023 - 225 - 729 - 900

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (15, 27, 30, 13) is an integer solution proven below

152 + 272 + 302 + 132 → 225 + 729 + 900 + 169 = 2023

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 272 - 312

max_d = √2023 - 225 - 729 - 961

max_d = √108

max_d = 10.392304845413

Since max_d = 10.392304845413 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 272 - 322

max_d = √2023 - 225 - 729 - 1024

max_d = √45

max_d = 6.7082039324994

Since max_d = 6.7082039324994 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 282)

max_c = Floor(√2023 - 225 - 784)

max_c = Floor(√1014)

max_c = Floor(31.843366656181)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 282)/2 = 507

When min_c = 23, then it is c2 = 529 ≥ 507, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 282 - 232

max_d = √2023 - 225 - 784 - 529

max_d = √485

max_d = 22.022715545545

Since max_d = 22.022715545545 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 282 - 242

max_d = √2023 - 225 - 784 - 576

max_d = √438

max_d = 20.928449536456

Since max_d = 20.928449536456 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 282 - 252

max_d = √2023 - 225 - 784 - 625

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 282 - 262

max_d = √2023 - 225 - 784 - 676

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 282 - 272

max_d = √2023 - 225 - 784 - 729

max_d = √285

max_d = 16.881943016134

Since max_d = 16.881943016134 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 282 - 282

max_d = √2023 - 225 - 784 - 784

max_d = √230

max_d = 15.165750888103

Since max_d = 15.165750888103 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 282 - 292

max_d = √2023 - 225 - 784 - 841

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 282 - 302

max_d = √2023 - 225 - 784 - 900

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 282 - 312

max_d = √2023 - 225 - 784 - 961

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 292)

max_c = Floor(√2023 - 225 - 841)

max_c = Floor(√957)

max_c = Floor(30.935416596516)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 292)/2 = 478.5

When min_c = 22, then it is c2 = 484 ≥ 478.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 292 - 222

max_d = √2023 - 225 - 841 - 484

max_d = √473

max_d = 21.748563170932

Since max_d = 21.748563170932 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 292 - 232

max_d = √2023 - 225 - 841 - 529

max_d = √428

max_d = 20.688160865577

Since max_d = 20.688160865577 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 292 - 242

max_d = √2023 - 225 - 841 - 576

max_d = √381

max_d = 19.519221295943

Since max_d = 19.519221295943 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 292 - 252

max_d = √2023 - 225 - 841 - 625

max_d = √332

max_d = 18.220867158289

Since max_d = 18.220867158289 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 292 - 262

max_d = √2023 - 225 - 841 - 676

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 292 - 272

max_d = √2023 - 225 - 841 - 729

max_d = √228

max_d = 15.099668870541

Since max_d = 15.099668870541 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 292 - 282

max_d = √2023 - 225 - 841 - 784

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 292 - 292

max_d = √2023 - 225 - 841 - 841

max_d = √116

max_d = 10.770329614269

Since max_d = 10.770329614269 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 292 - 302

max_d = √2023 - 225 - 841 - 900

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 302)

max_c = Floor(√2023 - 225 - 900)

max_c = Floor(√898)

max_c = Floor(29.966648127543)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 302)/2 = 449

When min_c = 22, then it is c2 = 484 ≥ 449, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 302 - 222

max_d = √2023 - 225 - 900 - 484

max_d = √414

max_d = 20.346989949376

Since max_d = 20.346989949376 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 302 - 232

max_d = √2023 - 225 - 900 - 529

max_d = √369

max_d = 19.209372712299

Since max_d = 19.209372712299 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 302 - 242

max_d = √2023 - 225 - 900 - 576

max_d = √322

max_d = 17.944358444926

Since max_d = 17.944358444926 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 302 - 252

max_d = √2023 - 225 - 900 - 625

max_d = √273

max_d = 16.522711641858

Since max_d = 16.522711641858 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 302 - 262

max_d = √2023 - 225 - 900 - 676

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 302 - 272

max_d = √2023 - 225 - 900 - 729

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (15, 30, 27, 13) is an integer solution proven below

152 + 302 + 272 + 132 → 225 + 900 + 729 + 169 = 2023

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 302 - 282

max_d = √2023 - 225 - 900 - 784

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 302 - 292

max_d = √2023 - 225 - 900 - 841

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 312)

max_c = Floor(√2023 - 225 - 961)

max_c = Floor(√837)

max_c = Floor(28.930952282979)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 312)/2 = 418.5

When min_c = 21, then it is c2 = 441 ≥ 418.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 312 - 212

max_d = √2023 - 225 - 961 - 441

max_d = √396

max_d = 19.899748742132

Since max_d = 19.899748742132 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 312 - 222

max_d = √2023 - 225 - 961 - 484

max_d = √353

max_d = 18.788294228056

Since max_d = 18.788294228056 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 312 - 232

max_d = √2023 - 225 - 961 - 529

max_d = √308

max_d = 17.549928774784

Since max_d = 17.549928774784 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 312 - 242

max_d = √2023 - 225 - 961 - 576

max_d = √261

max_d = 16.155494421404

Since max_d = 16.155494421404 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 312 - 252

max_d = √2023 - 225 - 961 - 625

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 312 - 262

max_d = √2023 - 225 - 961 - 676

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 312 - 272

max_d = √2023 - 225 - 961 - 729

max_d = √108

max_d = 10.392304845413

Since max_d = 10.392304845413 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 312 - 282

max_d = √2023 - 225 - 961 - 784

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 322)

max_c = Floor(√2023 - 225 - 1024)

max_c = Floor(√774)

max_c = Floor(27.820855486487)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 322)/2 = 387

When min_c = 20, then it is c2 = 400 ≥ 387, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 322 - 202

max_d = √2023 - 225 - 1024 - 400

max_d = √374

max_d = 19.339079605814

Since max_d = 19.339079605814 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 322 - 212

max_d = √2023 - 225 - 1024 - 441

max_d = √333

max_d = 18.248287590895

Since max_d = 18.248287590895 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 322 - 222

max_d = √2023 - 225 - 1024 - 484

max_d = √290

max_d = 17.029386365926

Since max_d = 17.029386365926 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 322 - 232

max_d = √2023 - 225 - 1024 - 529

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 322 - 242

max_d = √2023 - 225 - 1024 - 576

max_d = √198

max_d = 14.07124727947

Since max_d = 14.07124727947 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 322 - 252

max_d = √2023 - 225 - 1024 - 625

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 322 - 262

max_d = √2023 - 225 - 1024 - 676

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 322 - 272

max_d = √2023 - 225 - 1024 - 729

max_d = √45

max_d = 6.7082039324994

Since max_d = 6.7082039324994 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 332)

max_c = Floor(√2023 - 225 - 1089)

max_c = Floor(√709)

max_c = Floor(26.627053911389)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 332)/2 = 354.5

When min_c = 19, then it is c2 = 361 ≥ 354.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 332 - 192

max_d = √2023 - 225 - 1089 - 361

max_d = √348

max_d = 18.654758106178

Since max_d = 18.654758106178 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 332 - 202

max_d = √2023 - 225 - 1089 - 400

max_d = √309

max_d = 17.578395831247

Since max_d = 17.578395831247 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 332 - 212

max_d = √2023 - 225 - 1089 - 441

max_d = √268

max_d = 16.370705543745

Since max_d = 16.370705543745 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 332 - 222

max_d = √2023 - 225 - 1089 - 484

max_d = √225

max_d = 15

Since max_d = 15, then (a, b, c, d) = (15, 33, 22, 15) is an integer solution proven below

152 + 332 + 222 + 152 → 225 + 1089 + 484 + 225 = 2023

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 332 - 232

max_d = √2023 - 225 - 1089 - 529

max_d = √180

max_d = 13.416407864999

Since max_d = 13.416407864999 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 332 - 242

max_d = √2023 - 225 - 1089 - 576

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 332 - 252

max_d = √2023 - 225 - 1089 - 625

max_d = √84

max_d = 9.1651513899117

Since max_d = 9.1651513899117 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 332 - 262

max_d = √2023 - 225 - 1089 - 676

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 342)

max_c = Floor(√2023 - 225 - 1156)

max_c = Floor(√642)

max_c = Floor(25.33771891864)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 342)/2 = 321

When min_c = 18, then it is c2 = 324 ≥ 321, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 342 - 182

max_d = √2023 - 225 - 1156 - 324

max_d = √318

max_d = 17.832554500127

Since max_d = 17.832554500127 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 342 - 192

max_d = √2023 - 225 - 1156 - 361

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 342 - 202

max_d = √2023 - 225 - 1156 - 400

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 342 - 212

max_d = √2023 - 225 - 1156 - 441

max_d = √201

max_d = 14.177446878758

Since max_d = 14.177446878758 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 342 - 222

max_d = √2023 - 225 - 1156 - 484

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 342 - 232

max_d = √2023 - 225 - 1156 - 529

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 342 - 242

max_d = √2023 - 225 - 1156 - 576

max_d = √66

max_d = 8.124038404636

Since max_d = 8.124038404636 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 342 - 252

max_d = √2023 - 225 - 1156 - 625

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 352)

max_c = Floor(√2023 - 225 - 1225)

max_c = Floor(√573)

max_c = Floor(23.937418407172)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 352)/2 = 286.5

When min_c = 17, then it is c2 = 289 ≥ 286.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 352 - 172

max_d = √2023 - 225 - 1225 - 289

max_d = √284

max_d = 16.852299546353

Since max_d = 16.852299546353 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 352 - 182

max_d = √2023 - 225 - 1225 - 324

max_d = √249

max_d = 15.779733838059

Since max_d = 15.779733838059 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 352 - 192

max_d = √2023 - 225 - 1225 - 361

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 352 - 202

max_d = √2023 - 225 - 1225 - 400

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 352 - 212

max_d = √2023 - 225 - 1225 - 441

max_d = √132

max_d = 11.489125293076

Since max_d = 11.489125293076 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 352 - 222

max_d = √2023 - 225 - 1225 - 484

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 352 - 232

max_d = √2023 - 225 - 1225 - 529

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 362)

max_c = Floor(√2023 - 225 - 1296)

max_c = Floor(√502)

max_c = Floor(22.405356502408)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 362)/2 = 251

When min_c = 16, then it is c2 = 256 ≥ 251, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 362 - 162

max_d = √2023 - 225 - 1296 - 256

max_d = √246

max_d = 15.684387141358

Since max_d = 15.684387141358 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 362 - 172

max_d = √2023 - 225 - 1296 - 289

max_d = √213

max_d = 14.594519519326

Since max_d = 14.594519519326 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 362 - 182

max_d = √2023 - 225 - 1296 - 324

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 362 - 192

max_d = √2023 - 225 - 1296 - 361

max_d = √141

max_d = 11.874342087038

Since max_d = 11.874342087038 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 362 - 202

max_d = √2023 - 225 - 1296 - 400

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 362 - 212

max_d = √2023 - 225 - 1296 - 441

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 362 - 222

max_d = √2023 - 225 - 1296 - 484

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 372)

max_c = Floor(√2023 - 225 - 1369)

max_c = Floor(√429)

max_c = Floor(20.712315177208)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 372)/2 = 214.5

When min_c = 15, then it is c2 = 225 ≥ 214.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 372 - 152

max_d = √2023 - 225 - 1369 - 225

max_d = √204

max_d = 14.282856857086

Since max_d = 14.282856857086 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 372 - 162

max_d = √2023 - 225 - 1369 - 256

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 372 - 172

max_d = √2023 - 225 - 1369 - 289

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 372 - 182

max_d = √2023 - 225 - 1369 - 324

max_d = √105

max_d = 10.24695076596

Since max_d = 10.24695076596 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 372 - 192

max_d = √2023 - 225 - 1369 - 361

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 372 - 202

max_d = √2023 - 225 - 1369 - 400

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 382)

max_c = Floor(√2023 - 225 - 1444)

max_c = Floor(√354)

max_c = Floor(18.814887722227)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 382)/2 = 177

When min_c = 14, then it is c2 = 196 ≥ 177, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 382 - 142

max_d = √2023 - 225 - 1444 - 196

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 382 - 152

max_d = √2023 - 225 - 1444 - 225

max_d = √129

max_d = 11.357816691601

Since max_d = 11.357816691601 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 382 - 162

max_d = √2023 - 225 - 1444 - 256

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 382 - 172

max_d = √2023 - 225 - 1444 - 289

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 382 - 182

max_d = √2023 - 225 - 1444 - 324

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 392)

max_c = Floor(√2023 - 225 - 1521)

max_c = Floor(√277)

max_c = Floor(16.643316977093)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 392)/2 = 138.5

When min_c = 12, then it is c2 = 144 ≥ 138.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 392 - 122

max_d = √2023 - 225 - 1521 - 144

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 392 - 132

max_d = √2023 - 225 - 1521 - 169

max_d = √108

max_d = 10.392304845413

Since max_d = 10.392304845413 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 392 - 142

max_d = √2023 - 225 - 1521 - 196

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (15, 39, 14, 9) is an integer solution proven below

152 + 392 + 142 + 92 → 225 + 1521 + 196 + 81 = 2023

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 392 - 152

max_d = √2023 - 225 - 1521 - 225

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 392 - 162

max_d = √2023 - 225 - 1521 - 256

max_d = √21

max_d = 4.5825756949558

Since max_d = 4.5825756949558 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 402)

max_c = Floor(√2023 - 225 - 1600)

max_c = Floor(√198)

max_c = Floor(14.07124727947)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 402)/2 = 99

When min_c = 10, then it is c2 = 100 ≥ 99, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 402 - 102

max_d = √2023 - 225 - 1600 - 100

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 402 - 112

max_d = √2023 - 225 - 1600 - 121

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 402 - 122

max_d = √2023 - 225 - 1600 - 144

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 402 - 132

max_d = √2023 - 225 - 1600 - 169

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 402 - 142

max_d = √2023 - 225 - 1600 - 196

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 412)

max_c = Floor(√2023 - 225 - 1681)

max_c = Floor(√117)

max_c = Floor(10.816653826392)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 412)/2 = 58.5

When min_c = 8, then it is c2 = 64 ≥ 58.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 412 - 82

max_d = √2023 - 225 - 1681 - 64

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 412 - 92

max_d = √2023 - 225 - 1681 - 81

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (15, 41, 9, 6) is an integer solution proven below

152 + 412 + 92 + 62 → 225 + 1681 + 81 + 36 = 2023

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 412 - 102

max_d = √2023 - 225 - 1681 - 100

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 152 - 422)

max_c = Floor(√2023 - 225 - 1764)

max_c = Floor(√34)

max_c = Floor(5.8309518948453)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 152 - 422)/2 = 17

When min_c = 5, then it is c2 = 25 ≥ 17, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 152 - 422 - 52

max_d = √2023 - 225 - 1764 - 25

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (15, 42, 5, 3) is an integer solution proven below

152 + 422 + 52 + 32 → 225 + 1764 + 25 + 9 = 2023

a = 16

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 162)

max_b = Floor(√2023 - 256)

max_b = Floor(√1767)

max_b = Floor(42.035699113967)

max_b = 42

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 162)/3 = 589

When min_b = 25, then it is b2 = 625 ≥ 589, so min_b = 25

Test values for b in the range of (min_b, max_b)

(25, 42)

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 252)

max_c = Floor(√2023 - 256 - 625)

max_c = Floor(√1142)

max_c = Floor(33.793490497432)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 252)/2 = 571

When min_c = 24, then it is c2 = 576 ≥ 571, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 252 - 242

max_d = √2023 - 256 - 625 - 576

max_d = √566

max_d = 23.790754506741

Since max_d = 23.790754506741 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 252 - 252

max_d = √2023 - 256 - 625 - 625

max_d = √517

max_d = 22.737634001804

Since max_d = 22.737634001804 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 252 - 262

max_d = √2023 - 256 - 625 - 676

max_d = √466

max_d = 21.587033144923

Since max_d = 21.587033144923 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 252 - 272

max_d = √2023 - 256 - 625 - 729

max_d = √413

max_d = 20.322401432902

Since max_d = 20.322401432902 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 252 - 282

max_d = √2023 - 256 - 625 - 784

max_d = √358

max_d = 18.920887928425

Since max_d = 18.920887928425 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 252 - 292

max_d = √2023 - 256 - 625 - 841

max_d = √301

max_d = 17.349351572897

Since max_d = 17.349351572897 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 252 - 302

max_d = √2023 - 256 - 625 - 900

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 252 - 312

max_d = √2023 - 256 - 625 - 961

max_d = √181

max_d = 13.453624047074

Since max_d = 13.453624047074 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 252 - 322

max_d = √2023 - 256 - 625 - 1024

max_d = √118

max_d = 10.8627804912

Since max_d = 10.8627804912 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 252 - 332

max_d = √2023 - 256 - 625 - 1089

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 262)

max_c = Floor(√2023 - 256 - 676)

max_c = Floor(√1091)

max_c = Floor(33.030289129827)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 262)/2 = 545.5

When min_c = 24, then it is c2 = 576 ≥ 545.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 262 - 242

max_d = √2023 - 256 - 676 - 576

max_d = √515

max_d = 22.69361143582

Since max_d = 22.69361143582 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 262 - 252

max_d = √2023 - 256 - 676 - 625

max_d = √466

max_d = 21.587033144923

Since max_d = 21.587033144923 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 262 - 262

max_d = √2023 - 256 - 676 - 676

max_d = √415

max_d = 20.371548787463

Since max_d = 20.371548787463 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 262 - 272

max_d = √2023 - 256 - 676 - 729

max_d = √362

max_d = 19.02629759044

Since max_d = 19.02629759044 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 262 - 282

max_d = √2023 - 256 - 676 - 784

max_d = √307

max_d = 17.521415467935

Since max_d = 17.521415467935 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 262 - 292

max_d = √2023 - 256 - 676 - 841

max_d = √250

max_d = 15.811388300842

Since max_d = 15.811388300842 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 262 - 302

max_d = √2023 - 256 - 676 - 900

max_d = √191

max_d = 13.820274961085

Since max_d = 13.820274961085 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 262 - 312

max_d = √2023 - 256 - 676 - 961

max_d = √130

max_d = 11.401754250991

Since max_d = 11.401754250991 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 262 - 322

max_d = √2023 - 256 - 676 - 1024

max_d = √67

max_d = 8.1853527718725

Since max_d = 8.1853527718725 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 262 - 332

max_d = √2023 - 256 - 676 - 1089

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 272)

max_c = Floor(√2023 - 256 - 729)

max_c = Floor(√1038)

max_c = Floor(32.218007387174)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 272)/2 = 519

When min_c = 23, then it is c2 = 529 ≥ 519, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 272 - 232

max_d = √2023 - 256 - 729 - 529

max_d = √509

max_d = 22.561028345357

Since max_d = 22.561028345357 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 272 - 242

max_d = √2023 - 256 - 729 - 576

max_d = √462

max_d = 21.494185260205

Since max_d = 21.494185260205 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 272 - 252

max_d = √2023 - 256 - 729 - 625

max_d = √413

max_d = 20.322401432902

Since max_d = 20.322401432902 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 272 - 262

max_d = √2023 - 256 - 729 - 676

max_d = √362

max_d = 19.02629759044

Since max_d = 19.02629759044 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 272 - 272

max_d = √2023 - 256 - 729 - 729

max_d = √309

max_d = 17.578395831247

Since max_d = 17.578395831247 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 272 - 282

max_d = √2023 - 256 - 729 - 784

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 272 - 292

max_d = √2023 - 256 - 729 - 841

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 272 - 302

max_d = √2023 - 256 - 729 - 900

max_d = √138

max_d = 11.747340124471

Since max_d = 11.747340124471 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 272 - 312

max_d = √2023 - 256 - 729 - 961

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 272 - 322

max_d = √2023 - 256 - 729 - 1024

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 282)

max_c = Floor(√2023 - 256 - 784)

max_c = Floor(√983)

max_c = Floor(31.352830813182)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 282)/2 = 491.5

When min_c = 23, then it is c2 = 529 ≥ 491.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 282 - 232

max_d = √2023 - 256 - 784 - 529

max_d = √454

max_d = 21.307275752663

Since max_d = 21.307275752663 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 282 - 242

max_d = √2023 - 256 - 784 - 576

max_d = √407

max_d = 20.174241001832

Since max_d = 20.174241001832 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 282 - 252

max_d = √2023 - 256 - 784 - 625

max_d = √358

max_d = 18.920887928425

Since max_d = 18.920887928425 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 282 - 262

max_d = √2023 - 256 - 784 - 676

max_d = √307

max_d = 17.521415467935

Since max_d = 17.521415467935 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 282 - 272

max_d = √2023 - 256 - 784 - 729

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 282 - 282

max_d = √2023 - 256 - 784 - 784

max_d = √199

max_d = 14.106735979666

Since max_d = 14.106735979666 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 282 - 292

max_d = √2023 - 256 - 784 - 841

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 282 - 302

max_d = √2023 - 256 - 784 - 900

max_d = √83

max_d = 9.1104335791443

Since max_d = 9.1104335791443 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 282 - 312

max_d = √2023 - 256 - 784 - 961

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 292)

max_c = Floor(√2023 - 256 - 841)

max_c = Floor(√926)

max_c = Floor(30.430248109406)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 292)/2 = 463

When min_c = 22, then it is c2 = 484 ≥ 463, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 292 - 222

max_d = √2023 - 256 - 841 - 484

max_d = √442

max_d = 21.023796041629

Since max_d = 21.023796041629 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 292 - 232

max_d = √2023 - 256 - 841 - 529

max_d = √397

max_d = 19.924858845171

Since max_d = 19.924858845171 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 292 - 242

max_d = √2023 - 256 - 841 - 576

max_d = √350

max_d = 18.70828693387

Since max_d = 18.70828693387 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 292 - 252

max_d = √2023 - 256 - 841 - 625

max_d = √301

max_d = 17.349351572897

Since max_d = 17.349351572897 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 292 - 262

max_d = √2023 - 256 - 841 - 676

max_d = √250

max_d = 15.811388300842

Since max_d = 15.811388300842 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 292 - 272

max_d = √2023 - 256 - 841 - 729

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 292 - 282

max_d = √2023 - 256 - 841 - 784

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 292 - 292

max_d = √2023 - 256 - 841 - 841

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 292 - 302

max_d = √2023 - 256 - 841 - 900

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 302)

max_c = Floor(√2023 - 256 - 900)

max_c = Floor(√867)

max_c = Floor(29.444863728671)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 302)/2 = 433.5

When min_c = 21, then it is c2 = 441 ≥ 433.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 302 - 212

max_d = √2023 - 256 - 900 - 441

max_d = √426

max_d = 20.63976744055

Since max_d = 20.63976744055 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 302 - 222

max_d = √2023 - 256 - 900 - 484

max_d = √383

max_d = 19.570385790781

Since max_d = 19.570385790781 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 302 - 232

max_d = √2023 - 256 - 900 - 529

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 302 - 242

max_d = √2023 - 256 - 900 - 576

max_d = √291

max_d = 17.058722109232

Since max_d = 17.058722109232 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 302 - 252

max_d = √2023 - 256 - 900 - 625

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 302 - 262

max_d = √2023 - 256 - 900 - 676

max_d = √191

max_d = 13.820274961085

Since max_d = 13.820274961085 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 302 - 272

max_d = √2023 - 256 - 900 - 729

max_d = √138

max_d = 11.747340124471

Since max_d = 11.747340124471 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 302 - 282

max_d = √2023 - 256 - 900 - 784

max_d = √83

max_d = 9.1104335791443

Since max_d = 9.1104335791443 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 302 - 292

max_d = √2023 - 256 - 900 - 841

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 312)

max_c = Floor(√2023 - 256 - 961)

max_c = Floor(√806)

max_c = Floor(28.390139133157)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 312)/2 = 403

When min_c = 21, then it is c2 = 441 ≥ 403, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 312 - 212

max_d = √2023 - 256 - 961 - 441

max_d = √365

max_d = 19.104973174543

Since max_d = 19.104973174543 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 312 - 222

max_d = √2023 - 256 - 961 - 484

max_d = √322

max_d = 17.944358444926

Since max_d = 17.944358444926 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 312 - 232

max_d = √2023 - 256 - 961 - 529

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 312 - 242

max_d = √2023 - 256 - 961 - 576

max_d = √230

max_d = 15.165750888103

Since max_d = 15.165750888103 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 312 - 252

max_d = √2023 - 256 - 961 - 625

max_d = √181

max_d = 13.453624047074

Since max_d = 13.453624047074 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 312 - 262

max_d = √2023 - 256 - 961 - 676

max_d = √130

max_d = 11.401754250991

Since max_d = 11.401754250991 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 312 - 272

max_d = √2023 - 256 - 961 - 729

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 312 - 282

max_d = √2023 - 256 - 961 - 784

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 322)

max_c = Floor(√2023 - 256 - 1024)

max_c = Floor(√743)

max_c = Floor(27.258026340878)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 322)/2 = 371.5

When min_c = 20, then it is c2 = 400 ≥ 371.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 322 - 202

max_d = √2023 - 256 - 1024 - 400

max_d = √343

max_d = 18.520259177452

Since max_d = 18.520259177452 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 322 - 212

max_d = √2023 - 256 - 1024 - 441

max_d = √302

max_d = 17.378147196983

Since max_d = 17.378147196983 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 322 - 222

max_d = √2023 - 256 - 1024 - 484

max_d = √259

max_d = 16.093476939431

Since max_d = 16.093476939431 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 322 - 232

max_d = √2023 - 256 - 1024 - 529

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 322 - 242

max_d = √2023 - 256 - 1024 - 576

max_d = √167

max_d = 12.92284798332

Since max_d = 12.92284798332 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 322 - 252

max_d = √2023 - 256 - 1024 - 625

max_d = √118

max_d = 10.8627804912

Since max_d = 10.8627804912 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 322 - 262

max_d = √2023 - 256 - 1024 - 676

max_d = √67

max_d = 8.1853527718725

Since max_d = 8.1853527718725 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 322 - 272

max_d = √2023 - 256 - 1024 - 729

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 332)

max_c = Floor(√2023 - 256 - 1089)

max_c = Floor(√678)

max_c = Floor(26.038433132583)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 332)/2 = 339

When min_c = 19, then it is c2 = 361 ≥ 339, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 332 - 192

max_d = √2023 - 256 - 1089 - 361

max_d = √317

max_d = 17.804493814765

Since max_d = 17.804493814765 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 332 - 202

max_d = √2023 - 256 - 1089 - 400

max_d = √278

max_d = 16.673332000533

Since max_d = 16.673332000533 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 332 - 212

max_d = √2023 - 256 - 1089 - 441

max_d = √237

max_d = 15.394804318341

Since max_d = 15.394804318341 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 332 - 222

max_d = √2023 - 256 - 1089 - 484

max_d = √194

max_d = 13.928388277184

Since max_d = 13.928388277184 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 332 - 232

max_d = √2023 - 256 - 1089 - 529

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 332 - 242

max_d = √2023 - 256 - 1089 - 576

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 332 - 252

max_d = √2023 - 256 - 1089 - 625

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 332 - 262

max_d = √2023 - 256 - 1089 - 676

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 342)

max_c = Floor(√2023 - 256 - 1156)

max_c = Floor(√611)

max_c = Floor(24.718414188617)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 342)/2 = 305.5

When min_c = 18, then it is c2 = 324 ≥ 305.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 342 - 182

max_d = √2023 - 256 - 1156 - 324

max_d = √287

max_d = 16.941074346097

Since max_d = 16.941074346097 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 342 - 192

max_d = √2023 - 256 - 1156 - 361

max_d = √250

max_d = 15.811388300842

Since max_d = 15.811388300842 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 342 - 202

max_d = √2023 - 256 - 1156 - 400

max_d = √211

max_d = 14.525839046334

Since max_d = 14.525839046334 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 342 - 212

max_d = √2023 - 256 - 1156 - 441

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 342 - 222

max_d = √2023 - 256 - 1156 - 484

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 342 - 232

max_d = √2023 - 256 - 1156 - 529

max_d = √82

max_d = 9.0553851381374

Since max_d = 9.0553851381374 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 342 - 242

max_d = √2023 - 256 - 1156 - 576

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 352)

max_c = Floor(√2023 - 256 - 1225)

max_c = Floor(√542)

max_c = Floor(23.280893453646)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 352)/2 = 271

When min_c = 17, then it is c2 = 289 ≥ 271, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 352 - 172

max_d = √2023 - 256 - 1225 - 289

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 352 - 182

max_d = √2023 - 256 - 1225 - 324

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 352 - 192

max_d = √2023 - 256 - 1225 - 361

max_d = √181

max_d = 13.453624047074

Since max_d = 13.453624047074 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 352 - 202

max_d = √2023 - 256 - 1225 - 400

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 352 - 212

max_d = √2023 - 256 - 1225 - 441

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 352 - 222

max_d = √2023 - 256 - 1225 - 484

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 352 - 232

max_d = √2023 - 256 - 1225 - 529

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 362)

max_c = Floor(√2023 - 256 - 1296)

max_c = Floor(√471)

max_c = Floor(21.702534414211)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 362)/2 = 235.5

When min_c = 16, then it is c2 = 256 ≥ 235.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 362 - 162

max_d = √2023 - 256 - 1296 - 256

max_d = √215

max_d = 14.662878298615

Since max_d = 14.662878298615 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 362 - 172

max_d = √2023 - 256 - 1296 - 289

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 362 - 182

max_d = √2023 - 256 - 1296 - 324

max_d = √147

max_d = 12.124355652982

Since max_d = 12.124355652982 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 362 - 192

max_d = √2023 - 256 - 1296 - 361

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 362 - 202

max_d = √2023 - 256 - 1296 - 400

max_d = √71

max_d = 8.4261497731764

Since max_d = 8.4261497731764 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 362 - 212

max_d = √2023 - 256 - 1296 - 441

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 372)

max_c = Floor(√2023 - 256 - 1369)

max_c = Floor(√398)

max_c = Floor(19.94993734326)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 372)/2 = 199

When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 372 - 152

max_d = √2023 - 256 - 1369 - 225

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 372 - 162

max_d = √2023 - 256 - 1369 - 256

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 372 - 172

max_d = √2023 - 256 - 1369 - 289

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 372 - 182

max_d = √2023 - 256 - 1369 - 324

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 372 - 192

max_d = √2023 - 256 - 1369 - 361

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 382)

max_c = Floor(√2023 - 256 - 1444)

max_c = Floor(√323)

max_c = Floor(17.972200755611)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 382)/2 = 161.5

When min_c = 13, then it is c2 = 169 ≥ 161.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 382 - 132

max_d = √2023 - 256 - 1444 - 169

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 382 - 142

max_d = √2023 - 256 - 1444 - 196

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 382 - 152

max_d = √2023 - 256 - 1444 - 225

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 382 - 162

max_d = √2023 - 256 - 1444 - 256

max_d = √67

max_d = 8.1853527718725

Since max_d = 8.1853527718725 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 382 - 172

max_d = √2023 - 256 - 1444 - 289

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 392)

max_c = Floor(√2023 - 256 - 1521)

max_c = Floor(√246)

max_c = Floor(15.684387141358)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 392)/2 = 123

When min_c = 12, then it is c2 = 144 ≥ 123, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 392 - 122

max_d = √2023 - 256 - 1521 - 144

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 392 - 132

max_d = √2023 - 256 - 1521 - 169

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 392 - 142

max_d = √2023 - 256 - 1521 - 196

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 392 - 152

max_d = √2023 - 256 - 1521 - 225

max_d = √21

max_d = 4.5825756949558

Since max_d = 4.5825756949558 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 402)

max_c = Floor(√2023 - 256 - 1600)

max_c = Floor(√167)

max_c = Floor(12.92284798332)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 402)/2 = 83.5

When min_c = 10, then it is c2 = 100 ≥ 83.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 402 - 102

max_d = √2023 - 256 - 1600 - 100

max_d = √67

max_d = 8.1853527718725

Since max_d = 8.1853527718725 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 402 - 112

max_d = √2023 - 256 - 1600 - 121

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 402 - 122

max_d = √2023 - 256 - 1600 - 144

max_d = √23

max_d = 4.7958315233127

Since max_d = 4.7958315233127 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 412)

max_c = Floor(√2023 - 256 - 1681)

max_c = Floor(√86)

max_c = Floor(9.2736184954957)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 412)/2 = 43

When min_c = 7, then it is c2 = 49 ≥ 43, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 412 - 72

max_d = √2023 - 256 - 1681 - 49

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 412 - 82

max_d = √2023 - 256 - 1681 - 64

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 162 - 412 - 92

max_d = √2023 - 256 - 1681 - 81

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 42

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 162 - 422)

max_c = Floor(√2023 - 256 - 1764)

max_c = Floor(√3)

max_c = Floor(1.7320508075689)

max_c = 1

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 162 - 422)/2 = 1.5

When min_c = 2, then it is c2 = 4 ≥ 1.5, so min_c = 2

a = 17

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 172)

max_b = Floor(√2023 - 289)

max_b = Floor(√1734)

max_b = Floor(41.641325627314)

max_b = 41

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 172)/3 = 578

When min_b = 25, then it is b2 = 625 ≥ 578, so min_b = 25

Test values for b in the range of (min_b, max_b)

(25, 41)

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 252)

max_c = Floor(√2023 - 289 - 625)

max_c = Floor(√1109)

max_c = Floor(33.301651610693)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 252)/2 = 554.5

When min_c = 24, then it is c2 = 576 ≥ 554.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 252 - 242

max_d = √2023 - 289 - 625 - 576

max_d = √533

max_d = 23.08679276123

Since max_d = 23.08679276123 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 252 - 252

max_d = √2023 - 289 - 625 - 625

max_d = √484

max_d = 22

Since max_d = 22, then (a, b, c, d) = (17, 25, 25, 22) is an integer solution proven below

172 + 252 + 252 + 222 → 289 + 625 + 625 + 484 = 2023

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 252 - 262

max_d = √2023 - 289 - 625 - 676

max_d = √433

max_d = 20.808652046685

Since max_d = 20.808652046685 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 252 - 272

max_d = √2023 - 289 - 625 - 729

max_d = √380

max_d = 19.493588689618

Since max_d = 19.493588689618 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 252 - 282

max_d = √2023 - 289 - 625 - 784

max_d = √325

max_d = 18.02775637732

Since max_d = 18.02775637732 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 252 - 292

max_d = √2023 - 289 - 625 - 841

max_d = √268

max_d = 16.370705543745

Since max_d = 16.370705543745 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 252 - 302

max_d = √2023 - 289 - 625 - 900

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 252 - 312

max_d = √2023 - 289 - 625 - 961

max_d = √148

max_d = 12.165525060596

Since max_d = 12.165525060596 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 252 - 322

max_d = √2023 - 289 - 625 - 1024

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 252 - 332

max_d = √2023 - 289 - 625 - 1089

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 262)

max_c = Floor(√2023 - 289 - 676)

max_c = Floor(√1058)

max_c = Floor(32.526911934581)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 262)/2 = 529

When min_c = 23, then it is c2 = 529 ≥ 529, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 262 - 232

max_d = √2023 - 289 - 676 - 529

max_d = √529

max_d = 23

Since max_d = 23, then (a, b, c, d) = (17, 26, 23, 23) is an integer solution proven below

172 + 262 + 232 + 232 → 289 + 676 + 529 + 529 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 262 - 242

max_d = √2023 - 289 - 676 - 576

max_d = √482

max_d = 21.9544984001

Since max_d = 21.9544984001 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 262 - 252

max_d = √2023 - 289 - 676 - 625

max_d = √433

max_d = 20.808652046685

Since max_d = 20.808652046685 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 262 - 262

max_d = √2023 - 289 - 676 - 676

max_d = √382

max_d = 19.544820285692

Since max_d = 19.544820285692 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 262 - 272

max_d = √2023 - 289 - 676 - 729

max_d = √329

max_d = 18.138357147217

Since max_d = 18.138357147217 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 262 - 282

max_d = √2023 - 289 - 676 - 784

max_d = √274

max_d = 16.552945357247

Since max_d = 16.552945357247 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 262 - 292

max_d = √2023 - 289 - 676 - 841

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 262 - 302

max_d = √2023 - 289 - 676 - 900

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 262 - 312

max_d = √2023 - 289 - 676 - 961

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 262 - 322

max_d = √2023 - 289 - 676 - 1024

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 272)

max_c = Floor(√2023 - 289 - 729)

max_c = Floor(√1005)

max_c = Floor(31.701734968295)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 272)/2 = 502.5

When min_c = 23, then it is c2 = 529 ≥ 502.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 272 - 232

max_d = √2023 - 289 - 729 - 529

max_d = √476

max_d = 21.817424229271

Since max_d = 21.817424229271 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 272 - 242

max_d = √2023 - 289 - 729 - 576

max_d = √429

max_d = 20.712315177208

Since max_d = 20.712315177208 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 272 - 252

max_d = √2023 - 289 - 729 - 625

max_d = √380

max_d = 19.493588689618

Since max_d = 19.493588689618 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 272 - 262

max_d = √2023 - 289 - 729 - 676

max_d = √329

max_d = 18.138357147217

Since max_d = 18.138357147217 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 272 - 272

max_d = √2023 - 289 - 729 - 729

max_d = √276

max_d = 16.613247725836

Since max_d = 16.613247725836 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 272 - 282

max_d = √2023 - 289 - 729 - 784

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 272 - 292

max_d = √2023 - 289 - 729 - 841

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 272 - 302

max_d = √2023 - 289 - 729 - 900

max_d = √105

max_d = 10.24695076596

Since max_d = 10.24695076596 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 272 - 312

max_d = √2023 - 289 - 729 - 961

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 282)

max_c = Floor(√2023 - 289 - 784)

max_c = Floor(√950)

max_c = Floor(30.822070014845)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 282)/2 = 475

When min_c = 22, then it is c2 = 484 ≥ 475, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 282 - 222

max_d = √2023 - 289 - 784 - 484

max_d = √466

max_d = 21.587033144923

Since max_d = 21.587033144923 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 282 - 232

max_d = √2023 - 289 - 784 - 529

max_d = √421

max_d = 20.518284528683

Since max_d = 20.518284528683 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 282 - 242

max_d = √2023 - 289 - 784 - 576

max_d = √374

max_d = 19.339079605814

Since max_d = 19.339079605814 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 282 - 252

max_d = √2023 - 289 - 784 - 625

max_d = √325

max_d = 18.02775637732

Since max_d = 18.02775637732 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 282 - 262

max_d = √2023 - 289 - 784 - 676

max_d = √274

max_d = 16.552945357247

Since max_d = 16.552945357247 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 282 - 272

max_d = √2023 - 289 - 784 - 729

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 282 - 282

max_d = √2023 - 289 - 784 - 784

max_d = √166

max_d = 12.884098726725

Since max_d = 12.884098726725 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 282 - 292

max_d = √2023 - 289 - 784 - 841

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 282 - 302

max_d = √2023 - 289 - 784 - 900

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 292)

max_c = Floor(√2023 - 289 - 841)

max_c = Floor(√893)

max_c = Floor(29.883105594968)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 292)/2 = 446.5

When min_c = 22, then it is c2 = 484 ≥ 446.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 292 - 222

max_d = √2023 - 289 - 841 - 484

max_d = √409

max_d = 20.223748416157

Since max_d = 20.223748416157 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 292 - 232

max_d = √2023 - 289 - 841 - 529

max_d = √364

max_d = 19.078784028339

Since max_d = 19.078784028339 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 292 - 242

max_d = √2023 - 289 - 841 - 576

max_d = √317

max_d = 17.804493814765

Since max_d = 17.804493814765 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 292 - 252

max_d = √2023 - 289 - 841 - 625

max_d = √268

max_d = 16.370705543745

Since max_d = 16.370705543745 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 292 - 262

max_d = √2023 - 289 - 841 - 676

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 292 - 272

max_d = √2023 - 289 - 841 - 729

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 292 - 282

max_d = √2023 - 289 - 841 - 784

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 292 - 292

max_d = √2023 - 289 - 841 - 841

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 302)

max_c = Floor(√2023 - 289 - 900)

max_c = Floor(√834)

max_c = Floor(28.879058156387)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 302)/2 = 417

When min_c = 21, then it is c2 = 441 ≥ 417, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 302 - 212

max_d = √2023 - 289 - 900 - 441

max_d = √393

max_d = 19.824227601599

Since max_d = 19.824227601599 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 302 - 222

max_d = √2023 - 289 - 900 - 484

max_d = √350

max_d = 18.70828693387

Since max_d = 18.70828693387 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 302 - 232

max_d = √2023 - 289 - 900 - 529

max_d = √305

max_d = 17.464249196573

Since max_d = 17.464249196573 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 302 - 242

max_d = √2023 - 289 - 900 - 576

max_d = √258

max_d = 16.062378404209

Since max_d = 16.062378404209 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 302 - 252

max_d = √2023 - 289 - 900 - 625

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 302 - 262

max_d = √2023 - 289 - 900 - 676

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 302 - 272

max_d = √2023 - 289 - 900 - 729

max_d = √105

max_d = 10.24695076596

Since max_d = 10.24695076596 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 302 - 282

max_d = √2023 - 289 - 900 - 784

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 312)

max_c = Floor(√2023 - 289 - 961)

max_c = Floor(√773)

max_c = Floor(27.802877548916)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 312)/2 = 386.5

When min_c = 20, then it is c2 = 400 ≥ 386.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 312 - 202

max_d = √2023 - 289 - 961 - 400

max_d = √373

max_d = 19.313207915828

Since max_d = 19.313207915828 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 312 - 212

max_d = √2023 - 289 - 961 - 441

max_d = √332

max_d = 18.220867158289

Since max_d = 18.220867158289 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 312 - 222

max_d = √2023 - 289 - 961 - 484

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (17, 31, 22, 17) is an integer solution proven below

172 + 312 + 222 + 172 → 289 + 961 + 484 + 289 = 2023

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 312 - 232

max_d = √2023 - 289 - 961 - 529

max_d = √244

max_d = 15.620499351813

Since max_d = 15.620499351813 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 312 - 242

max_d = √2023 - 289 - 961 - 576

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 312 - 252

max_d = √2023 - 289 - 961 - 625

max_d = √148

max_d = 12.165525060596

Since max_d = 12.165525060596 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 312 - 262

max_d = √2023 - 289 - 961 - 676

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 312 - 272

max_d = √2023 - 289 - 961 - 729

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 322)

max_c = Floor(√2023 - 289 - 1024)

max_c = Floor(√710)

max_c = Floor(26.645825188948)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 322)/2 = 355

When min_c = 19, then it is c2 = 361 ≥ 355, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 322 - 192

max_d = √2023 - 289 - 1024 - 361

max_d = √349

max_d = 18.681541692269

Since max_d = 18.681541692269 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 322 - 202

max_d = √2023 - 289 - 1024 - 400

max_d = √310

max_d = 17.606816861659

Since max_d = 17.606816861659 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 322 - 212

max_d = √2023 - 289 - 1024 - 441

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 322 - 222

max_d = √2023 - 289 - 1024 - 484

max_d = √226

max_d = 15.033296378373

Since max_d = 15.033296378373 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 322 - 232

max_d = √2023 - 289 - 1024 - 529

max_d = √181

max_d = 13.453624047074

Since max_d = 13.453624047074 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 322 - 242

max_d = √2023 - 289 - 1024 - 576

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 322 - 252

max_d = √2023 - 289 - 1024 - 625

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 322 - 262

max_d = √2023 - 289 - 1024 - 676

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 332)

max_c = Floor(√2023 - 289 - 1089)

max_c = Floor(√645)

max_c = Floor(25.396850198401)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 332)/2 = 322.5

When min_c = 18, then it is c2 = 324 ≥ 322.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 332 - 182

max_d = √2023 - 289 - 1089 - 324

max_d = √321

max_d = 17.916472867169

Since max_d = 17.916472867169 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 332 - 192

max_d = √2023 - 289 - 1089 - 361

max_d = √284

max_d = 16.852299546353

Since max_d = 16.852299546353 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 332 - 202

max_d = √2023 - 289 - 1089 - 400

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 332 - 212

max_d = √2023 - 289 - 1089 - 441

max_d = √204

max_d = 14.282856857086

Since max_d = 14.282856857086 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 332 - 222

max_d = √2023 - 289 - 1089 - 484

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 332 - 232

max_d = √2023 - 289 - 1089 - 529

max_d = √116

max_d = 10.770329614269

Since max_d = 10.770329614269 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 332 - 242

max_d = √2023 - 289 - 1089 - 576

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 332 - 252

max_d = √2023 - 289 - 1089 - 625

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 342)

max_c = Floor(√2023 - 289 - 1156)

max_c = Floor(√578)

max_c = Floor(24.041630560343)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 342)/2 = 289

When min_c = 17, then it is c2 = 289 ≥ 289, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 342 - 172

max_d = √2023 - 289 - 1156 - 289

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (17, 34, 17, 17) is an integer solution proven below

172 + 342 + 172 + 172 → 289 + 1156 + 289 + 289 = 2023

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 342 - 182

max_d = √2023 - 289 - 1156 - 324

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 342 - 192

max_d = √2023 - 289 - 1156 - 361

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 342 - 202

max_d = √2023 - 289 - 1156 - 400

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 342 - 212

max_d = √2023 - 289 - 1156 - 441

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 342 - 222

max_d = √2023 - 289 - 1156 - 484

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 342 - 232

max_d = √2023 - 289 - 1156 - 529

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (17, 34, 23, 7) is an integer solution proven below

172 + 342 + 232 + 72 → 289 + 1156 + 529 + 49 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 342 - 242

max_d = √2023 - 289 - 1156 - 576

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 352)

max_c = Floor(√2023 - 289 - 1225)

max_c = Floor(√509)

max_c = Floor(22.561028345357)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 352)/2 = 254.5

When min_c = 16, then it is c2 = 256 ≥ 254.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 352 - 162

max_d = √2023 - 289 - 1225 - 256

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 352 - 172

max_d = √2023 - 289 - 1225 - 289

max_d = √220

max_d = 14.832396974191

Since max_d = 14.832396974191 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 352 - 182

max_d = √2023 - 289 - 1225 - 324

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 352 - 192

max_d = √2023 - 289 - 1225 - 361

max_d = √148

max_d = 12.165525060596

Since max_d = 12.165525060596 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 352 - 202

max_d = √2023 - 289 - 1225 - 400

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 352 - 212

max_d = √2023 - 289 - 1225 - 441

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 352 - 222

max_d = √2023 - 289 - 1225 - 484

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (17, 35, 22, 5) is an integer solution proven below

172 + 352 + 222 + 52 → 289 + 1225 + 484 + 25 = 2023

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 362)

max_c = Floor(√2023 - 289 - 1296)

max_c = Floor(√438)

max_c = Floor(20.928449536456)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 362)/2 = 219

When min_c = 15, then it is c2 = 225 ≥ 219, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 362 - 152

max_d = √2023 - 289 - 1296 - 225

max_d = √213

max_d = 14.594519519326

Since max_d = 14.594519519326 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 362 - 162

max_d = √2023 - 289 - 1296 - 256

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 362 - 172

max_d = √2023 - 289 - 1296 - 289

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 362 - 182

max_d = √2023 - 289 - 1296 - 324

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 362 - 192

max_d = √2023 - 289 - 1296 - 361

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 362 - 202

max_d = √2023 - 289 - 1296 - 400

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 372)

max_c = Floor(√2023 - 289 - 1369)

max_c = Floor(√365)

max_c = Floor(19.104973174543)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 372)/2 = 182.5

When min_c = 14, then it is c2 = 196 ≥ 182.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 372 - 142

max_d = √2023 - 289 - 1369 - 196

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (17, 37, 14, 13) is an integer solution proven below

172 + 372 + 142 + 132 → 289 + 1369 + 196 + 169 = 2023

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 372 - 152

max_d = √2023 - 289 - 1369 - 225

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 372 - 162

max_d = √2023 - 289 - 1369 - 256

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 372 - 172

max_d = √2023 - 289 - 1369 - 289

max_d = √76

max_d = 8.7177978870813

Since max_d = 8.7177978870813 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 372 - 182

max_d = √2023 - 289 - 1369 - 324

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 372 - 192

max_d = √2023 - 289 - 1369 - 361

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (17, 37, 19, 2) is an integer solution proven below

172 + 372 + 192 + 22 → 289 + 1369 + 361 + 4 = 2023

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 382)

max_c = Floor(√2023 - 289 - 1444)

max_c = Floor(√290)

max_c = Floor(17.029386365926)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 382)/2 = 145

When min_c = 13, then it is c2 = 169 ≥ 145, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 382 - 132

max_d = √2023 - 289 - 1444 - 169

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (17, 38, 13, 11) is an integer solution proven below

172 + 382 + 132 + 112 → 289 + 1444 + 169 + 121 = 2023

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 382 - 142

max_d = √2023 - 289 - 1444 - 196

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 382 - 152

max_d = √2023 - 289 - 1444 - 225

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 382 - 162

max_d = √2023 - 289 - 1444 - 256

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 382 - 172

max_d = √2023 - 289 - 1444 - 289

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (17, 38, 17, 1) is an integer solution proven below

172 + 382 + 172 + 12 → 289 + 1444 + 289 + 1 = 2023

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 392)

max_c = Floor(√2023 - 289 - 1521)

max_c = Floor(√213)

max_c = Floor(14.594519519326)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 392)/2 = 106.5

When min_c = 11, then it is c2 = 121 ≥ 106.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 392 - 112

max_d = √2023 - 289 - 1521 - 121

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 392 - 122

max_d = √2023 - 289 - 1521 - 144

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 392 - 132

max_d = √2023 - 289 - 1521 - 169

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 392 - 142

max_d = √2023 - 289 - 1521 - 196

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 402)

max_c = Floor(√2023 - 289 - 1600)

max_c = Floor(√134)

max_c = Floor(11.57583690279)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 402)/2 = 67

When min_c = 9, then it is c2 = 81 ≥ 67, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 402 - 92

max_d = √2023 - 289 - 1600 - 81

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 402 - 102

max_d = √2023 - 289 - 1600 - 100

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 402 - 112

max_d = √2023 - 289 - 1600 - 121

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 172 - 412)

max_c = Floor(√2023 - 289 - 1681)

max_c = Floor(√53)

max_c = Floor(7.2801098892805)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 172 - 412)/2 = 26.5

When min_c = 6, then it is c2 = 36 ≥ 26.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 412 - 62

max_d = √2023 - 289 - 1681 - 36

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 172 - 412 - 72

max_d = √2023 - 289 - 1681 - 49

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (17, 41, 7, 2) is an integer solution proven below

172 + 412 + 72 + 22 → 289 + 1681 + 49 + 4 = 2023

a = 18

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 182)

max_b = Floor(√2023 - 324)

max_b = Floor(√1699)

max_b = Floor(41.21892769105)

max_b = 41

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 182)/3 = 566.33333333333

When min_b = 24, then it is b2 = 576 ≥ 566.33333333333, so min_b = 24

Test values for b in the range of (min_b, max_b)

(24, 41)

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 242)

max_c = Floor(√2023 - 324 - 576)

max_c = Floor(√1123)

max_c = Floor(33.511192160232)

max_c = 33

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 242)/2 = 561.5

When min_c = 24, then it is c2 = 576 ≥ 561.5, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 242 - 242

max_d = √2023 - 324 - 576 - 576

max_d = √547

max_d = 23.388031127053

Since max_d = 23.388031127053 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 242 - 252

max_d = √2023 - 324 - 576 - 625

max_d = √498

max_d = 22.315913604421

Since max_d = 22.315913604421 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 242 - 262

max_d = √2023 - 324 - 576 - 676

max_d = √447

max_d = 21.142374511866

Since max_d = 21.142374511866 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 242 - 272

max_d = √2023 - 324 - 576 - 729

max_d = √394

max_d = 19.849433241279

Since max_d = 19.849433241279 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 242 - 282

max_d = √2023 - 324 - 576 - 784

max_d = √339

max_d = 18.411952639522

Since max_d = 18.411952639522 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 242 - 292

max_d = √2023 - 324 - 576 - 841

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 242 - 302

max_d = √2023 - 324 - 576 - 900

max_d = √223

max_d = 14.933184523068

Since max_d = 14.933184523068 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 242 - 312

max_d = √2023 - 324 - 576 - 961

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 242 - 322

max_d = √2023 - 324 - 576 - 1024

max_d = √99

max_d = 9.9498743710662

Since max_d = 9.9498743710662 is not an integer, this is not a solution

c = 33

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 242 - 332

max_d = √2023 - 324 - 576 - 1089

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 252)

max_c = Floor(√2023 - 324 - 625)

max_c = Floor(√1074)

max_c = Floor(32.771939216348)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 252)/2 = 537

When min_c = 24, then it is c2 = 576 ≥ 537, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 252 - 242

max_d = √2023 - 324 - 625 - 576

max_d = √498

max_d = 22.315913604421

Since max_d = 22.315913604421 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 252 - 252

max_d = √2023 - 324 - 625 - 625

max_d = √449

max_d = 21.189620100417

Since max_d = 21.189620100417 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 252 - 262

max_d = √2023 - 324 - 625 - 676

max_d = √398

max_d = 19.94993734326

Since max_d = 19.94993734326 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 252 - 272

max_d = √2023 - 324 - 625 - 729

max_d = √345

max_d = 18.574175621007

Since max_d = 18.574175621007 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 252 - 282

max_d = √2023 - 324 - 625 - 784

max_d = √290

max_d = 17.029386365926

Since max_d = 17.029386365926 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 252 - 292

max_d = √2023 - 324 - 625 - 841

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 252 - 302

max_d = √2023 - 324 - 625 - 900

max_d = √174

max_d = 13.190905958273

Since max_d = 13.190905958273 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 252 - 312

max_d = √2023 - 324 - 625 - 961

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 252 - 322

max_d = √2023 - 324 - 625 - 1024

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 262)

max_c = Floor(√2023 - 324 - 676)

max_c = Floor(√1023)

max_c = Floor(31.984371183439)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 262)/2 = 511.5

When min_c = 23, then it is c2 = 529 ≥ 511.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 262 - 232

max_d = √2023 - 324 - 676 - 529

max_d = √494

max_d = 22.226110770893

Since max_d = 22.226110770893 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 262 - 242

max_d = √2023 - 324 - 676 - 576

max_d = √447

max_d = 21.142374511866

Since max_d = 21.142374511866 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 262 - 252

max_d = √2023 - 324 - 676 - 625

max_d = √398

max_d = 19.94993734326

Since max_d = 19.94993734326 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 262 - 262

max_d = √2023 - 324 - 676 - 676

max_d = √347

max_d = 18.627936010197

Since max_d = 18.627936010197 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 262 - 272

max_d = √2023 - 324 - 676 - 729

max_d = √294

max_d = 17.146428199482

Since max_d = 17.146428199482 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 262 - 282

max_d = √2023 - 324 - 676 - 784

max_d = √239

max_d = 15.45962483374

Since max_d = 15.45962483374 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 262 - 292

max_d = √2023 - 324 - 676 - 841

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 262 - 302

max_d = √2023 - 324 - 676 - 900

max_d = √123

max_d = 11.090536506409

Since max_d = 11.090536506409 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 262 - 312

max_d = √2023 - 324 - 676 - 961

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 272)

max_c = Floor(√2023 - 324 - 729)

max_c = Floor(√970)

max_c = Floor(31.144823004795)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 272)/2 = 485

When min_c = 23, then it is c2 = 529 ≥ 485, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 272 - 232

max_d = √2023 - 324 - 729 - 529

max_d = √441

max_d = 21

Since max_d = 21, then (a, b, c, d) = (18, 27, 23, 21) is an integer solution proven below

182 + 272 + 232 + 212 → 324 + 729 + 529 + 441 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 272 - 242

max_d = √2023 - 324 - 729 - 576

max_d = √394

max_d = 19.849433241279

Since max_d = 19.849433241279 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 272 - 252

max_d = √2023 - 324 - 729 - 625

max_d = √345

max_d = 18.574175621007

Since max_d = 18.574175621007 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 272 - 262

max_d = √2023 - 324 - 729 - 676

max_d = √294

max_d = 17.146428199482

Since max_d = 17.146428199482 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 272 - 272

max_d = √2023 - 324 - 729 - 729

max_d = √241

max_d = 15.52417469626

Since max_d = 15.52417469626 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 272 - 282

max_d = √2023 - 324 - 729 - 784

max_d = √186

max_d = 13.638181696986

Since max_d = 13.638181696986 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 272 - 292

max_d = √2023 - 324 - 729 - 841

max_d = √129

max_d = 11.357816691601

Since max_d = 11.357816691601 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 272 - 302

max_d = √2023 - 324 - 729 - 900

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 272 - 312

max_d = √2023 - 324 - 729 - 961

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (18, 27, 31, 3) is an integer solution proven below

182 + 272 + 312 + 32 → 324 + 729 + 961 + 9 = 2023

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 282)

max_c = Floor(√2023 - 324 - 784)

max_c = Floor(√915)

max_c = Floor(30.248966924508)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 282)/2 = 457.5

When min_c = 22, then it is c2 = 484 ≥ 457.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 282 - 222

max_d = √2023 - 324 - 784 - 484

max_d = √431

max_d = 20.760539492027

Since max_d = 20.760539492027 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 282 - 232

max_d = √2023 - 324 - 784 - 529

max_d = √386

max_d = 19.646882704388

Since max_d = 19.646882704388 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 282 - 242

max_d = √2023 - 324 - 784 - 576

max_d = √339

max_d = 18.411952639522

Since max_d = 18.411952639522 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 282 - 252

max_d = √2023 - 324 - 784 - 625

max_d = √290

max_d = 17.029386365926

Since max_d = 17.029386365926 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 282 - 262

max_d = √2023 - 324 - 784 - 676

max_d = √239

max_d = 15.45962483374

Since max_d = 15.45962483374 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 282 - 272

max_d = √2023 - 324 - 784 - 729

max_d = √186

max_d = 13.638181696986

Since max_d = 13.638181696986 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 282 - 282

max_d = √2023 - 324 - 784 - 784

max_d = √131

max_d = 11.44552314226

Since max_d = 11.44552314226 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 282 - 292

max_d = √2023 - 324 - 784 - 841

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 282 - 302

max_d = √2023 - 324 - 784 - 900

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 292)

max_c = Floor(√2023 - 324 - 841)

max_c = Floor(√858)

max_c = Floor(29.291637031754)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 292)/2 = 429

When min_c = 21, then it is c2 = 441 ≥ 429, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 292 - 212

max_d = √2023 - 324 - 841 - 441

max_d = √417

max_d = 20.420577856662

Since max_d = 20.420577856662 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 292 - 222

max_d = √2023 - 324 - 841 - 484

max_d = √374

max_d = 19.339079605814

Since max_d = 19.339079605814 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 292 - 232

max_d = √2023 - 324 - 841 - 529

max_d = √329

max_d = 18.138357147217

Since max_d = 18.138357147217 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 292 - 242

max_d = √2023 - 324 - 841 - 576

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 292 - 252

max_d = √2023 - 324 - 841 - 625

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 292 - 262

max_d = √2023 - 324 - 841 - 676

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 292 - 272

max_d = √2023 - 324 - 841 - 729

max_d = √129

max_d = 11.357816691601

Since max_d = 11.357816691601 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 292 - 282

max_d = √2023 - 324 - 841 - 784

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 292 - 292

max_d = √2023 - 324 - 841 - 841

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 302)

max_c = Floor(√2023 - 324 - 900)

max_c = Floor(√799)

max_c = Floor(28.266588050205)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 302)/2 = 399.5

When min_c = 20, then it is c2 = 400 ≥ 399.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 302 - 202

max_d = √2023 - 324 - 900 - 400

max_d = √399

max_d = 19.974984355438

Since max_d = 19.974984355438 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 302 - 212

max_d = √2023 - 324 - 900 - 441

max_d = √358

max_d = 18.920887928425

Since max_d = 18.920887928425 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 302 - 222

max_d = √2023 - 324 - 900 - 484

max_d = √315

max_d = 17.748239349299

Since max_d = 17.748239349299 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 302 - 232

max_d = √2023 - 324 - 900 - 529

max_d = √270

max_d = 16.431676725155

Since max_d = 16.431676725155 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 302 - 242

max_d = √2023 - 324 - 900 - 576

max_d = √223

max_d = 14.933184523068

Since max_d = 14.933184523068 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 302 - 252

max_d = √2023 - 324 - 900 - 625

max_d = √174

max_d = 13.190905958273

Since max_d = 13.190905958273 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 302 - 262

max_d = √2023 - 324 - 900 - 676

max_d = √123

max_d = 11.090536506409

Since max_d = 11.090536506409 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 302 - 272

max_d = √2023 - 324 - 900 - 729

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 302 - 282

max_d = √2023 - 324 - 900 - 784

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 312)

max_c = Floor(√2023 - 324 - 961)

max_c = Floor(√738)

max_c = Floor(27.166155414412)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 312)/2 = 369

When min_c = 20, then it is c2 = 400 ≥ 369, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 312 - 202

max_d = √2023 - 324 - 961 - 400

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 312 - 212

max_d = √2023 - 324 - 961 - 441

max_d = √297

max_d = 17.233687939614

Since max_d = 17.233687939614 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 312 - 222

max_d = √2023 - 324 - 961 - 484

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 312 - 232

max_d = √2023 - 324 - 961 - 529

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 312 - 242

max_d = √2023 - 324 - 961 - 576

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 312 - 252

max_d = √2023 - 324 - 961 - 625

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 312 - 262

max_d = √2023 - 324 - 961 - 676

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 312 - 272

max_d = √2023 - 324 - 961 - 729

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (18, 31, 27, 3) is an integer solution proven below

182 + 312 + 272 + 32 → 324 + 961 + 729 + 9 = 2023

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 322)

max_c = Floor(√2023 - 324 - 1024)

max_c = Floor(√675)

max_c = Floor(25.980762113533)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 322)/2 = 337.5

When min_c = 19, then it is c2 = 361 ≥ 337.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 322 - 192

max_d = √2023 - 324 - 1024 - 361

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 322 - 202

max_d = √2023 - 324 - 1024 - 400

max_d = √275

max_d = 16.583123951777

Since max_d = 16.583123951777 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 322 - 212

max_d = √2023 - 324 - 1024 - 441

max_d = √234

max_d = 15.297058540778

Since max_d = 15.297058540778 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 322 - 222

max_d = √2023 - 324 - 1024 - 484

max_d = √191

max_d = 13.820274961085

Since max_d = 13.820274961085 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 322 - 232

max_d = √2023 - 324 - 1024 - 529

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 322 - 242

max_d = √2023 - 324 - 1024 - 576

max_d = √99

max_d = 9.9498743710662

Since max_d = 9.9498743710662 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 322 - 252

max_d = √2023 - 324 - 1024 - 625

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 332)

max_c = Floor(√2023 - 324 - 1089)

max_c = Floor(√610)

max_c = Floor(24.698178070457)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 332)/2 = 305

When min_c = 18, then it is c2 = 324 ≥ 305, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 332 - 182

max_d = √2023 - 324 - 1089 - 324

max_d = √286

max_d = 16.911534525288

Since max_d = 16.911534525288 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 332 - 192

max_d = √2023 - 324 - 1089 - 361

max_d = √249

max_d = 15.779733838059

Since max_d = 15.779733838059 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 332 - 202

max_d = √2023 - 324 - 1089 - 400

max_d = √210

max_d = 14.491376746189

Since max_d = 14.491376746189 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 332 - 212

max_d = √2023 - 324 - 1089 - 441

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (18, 33, 21, 13) is an integer solution proven below

182 + 332 + 212 + 132 → 324 + 1089 + 441 + 169 = 2023

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 332 - 222

max_d = √2023 - 324 - 1089 - 484

max_d = √126

max_d = 11.224972160322

Since max_d = 11.224972160322 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 332 - 232

max_d = √2023 - 324 - 1089 - 529

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (18, 33, 23, 9) is an integer solution proven below

182 + 332 + 232 + 92 → 324 + 1089 + 529 + 81 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 332 - 242

max_d = √2023 - 324 - 1089 - 576

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 342)

max_c = Floor(√2023 - 324 - 1156)

max_c = Floor(√543)

max_c = Floor(23.302360395462)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 342)/2 = 271.5

When min_c = 17, then it is c2 = 289 ≥ 271.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 342 - 172

max_d = √2023 - 324 - 1156 - 289

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 342 - 182

max_d = √2023 - 324 - 1156 - 324

max_d = √219

max_d = 14.798648586949

Since max_d = 14.798648586949 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 342 - 192

max_d = √2023 - 324 - 1156 - 361

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 342 - 202

max_d = √2023 - 324 - 1156 - 400

max_d = √143

max_d = 11.958260743101

Since max_d = 11.958260743101 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 342 - 212

max_d = √2023 - 324 - 1156 - 441

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 342 - 222

max_d = √2023 - 324 - 1156 - 484

max_d = √59

max_d = 7.6811457478686

Since max_d = 7.6811457478686 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 342 - 232

max_d = √2023 - 324 - 1156 - 529

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 352)

max_c = Floor(√2023 - 324 - 1225)

max_c = Floor(√474)

max_c = Floor(21.771541057077)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 352)/2 = 237

When min_c = 16, then it is c2 = 256 ≥ 237, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 352 - 162

max_d = √2023 - 324 - 1225 - 256

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 352 - 172

max_d = √2023 - 324 - 1225 - 289

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 352 - 182

max_d = √2023 - 324 - 1225 - 324

max_d = √150

max_d = 12.247448713916

Since max_d = 12.247448713916 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 352 - 192

max_d = √2023 - 324 - 1225 - 361

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 352 - 202

max_d = √2023 - 324 - 1225 - 400

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 352 - 212

max_d = √2023 - 324 - 1225 - 441

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 362)

max_c = Floor(√2023 - 324 - 1296)

max_c = Floor(√403)

max_c = Floor(20.074859899885)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 362)/2 = 201.5

When min_c = 15, then it is c2 = 225 ≥ 201.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 362 - 152

max_d = √2023 - 324 - 1296 - 225

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 362 - 162

max_d = √2023 - 324 - 1296 - 256

max_d = √147

max_d = 12.124355652982

Since max_d = 12.124355652982 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 362 - 172

max_d = √2023 - 324 - 1296 - 289

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 362 - 182

max_d = √2023 - 324 - 1296 - 324

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 362 - 192

max_d = √2023 - 324 - 1296 - 361

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 362 - 202

max_d = √2023 - 324 - 1296 - 400

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 372)

max_c = Floor(√2023 - 324 - 1369)

max_c = Floor(√330)

max_c = Floor(18.165902124585)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 372)/2 = 165

When min_c = 13, then it is c2 = 169 ≥ 165, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 372 - 132

max_d = √2023 - 324 - 1369 - 169

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 372 - 142

max_d = √2023 - 324 - 1369 - 196

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 372 - 152

max_d = √2023 - 324 - 1369 - 225

max_d = √105

max_d = 10.24695076596

Since max_d = 10.24695076596 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 372 - 162

max_d = √2023 - 324 - 1369 - 256

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 372 - 172

max_d = √2023 - 324 - 1369 - 289

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 372 - 182

max_d = √2023 - 324 - 1369 - 324

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 382)

max_c = Floor(√2023 - 324 - 1444)

max_c = Floor(√255)

max_c = Floor(15.968719422671)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 382)/2 = 127.5

When min_c = 12, then it is c2 = 144 ≥ 127.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 382 - 122

max_d = √2023 - 324 - 1444 - 144

max_d = √111

max_d = 10.535653752853

Since max_d = 10.535653752853 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 382 - 132

max_d = √2023 - 324 - 1444 - 169

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 382 - 142

max_d = √2023 - 324 - 1444 - 196

max_d = √59

max_d = 7.6811457478686

Since max_d = 7.6811457478686 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 382 - 152

max_d = √2023 - 324 - 1444 - 225

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 392)

max_c = Floor(√2023 - 324 - 1521)

max_c = Floor(√178)

max_c = Floor(13.341664064126)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 392)/2 = 89

When min_c = 10, then it is c2 = 100 ≥ 89, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 392 - 102

max_d = √2023 - 324 - 1521 - 100

max_d = √78

max_d = 8.8317608663278

Since max_d = 8.8317608663278 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 392 - 112

max_d = √2023 - 324 - 1521 - 121

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 392 - 122

max_d = √2023 - 324 - 1521 - 144

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 392 - 132

max_d = √2023 - 324 - 1521 - 169

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (18, 39, 13, 3) is an integer solution proven below

182 + 392 + 132 + 32 → 324 + 1521 + 169 + 9 = 2023

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 402)

max_c = Floor(√2023 - 324 - 1600)

max_c = Floor(√99)

max_c = Floor(9.9498743710662)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 402)/2 = 49.5

When min_c = 8, then it is c2 = 64 ≥ 49.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 402 - 82

max_d = √2023 - 324 - 1600 - 64

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 402 - 92

max_d = √2023 - 324 - 1600 - 81

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 41

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 182 - 412)

max_c = Floor(√2023 - 324 - 1681)

max_c = Floor(√18)

max_c = Floor(4.2426406871193)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 182 - 412)/2 = 9

When min_c = 3, then it is c2 = 9 ≥ 9, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 412 - 32

max_d = √2023 - 324 - 1681 - 9

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (18, 41, 3, 3) is an integer solution proven below

182 + 412 + 32 + 32 → 324 + 1681 + 9 + 9 = 2023

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 182 - 412 - 42

max_d = √2023 - 324 - 1681 - 16

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 19

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 192)

max_b = Floor(√2023 - 361)

max_b = Floor(√1662)

max_b = Floor(40.767634221279)

max_b = 40

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 192)/3 = 554

When min_b = 24, then it is b2 = 576 ≥ 554, so min_b = 24

Test values for b in the range of (min_b, max_b)

(24, 40)

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 242)

max_c = Floor(√2023 - 361 - 576)

max_c = Floor(√1086)

max_c = Floor(32.954514106568)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 242)/2 = 543

When min_c = 24, then it is c2 = 576 ≥ 543, so min_c = 24

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 242 - 242

max_d = √2023 - 361 - 576 - 576

max_d = √510

max_d = 22.583179581272

Since max_d = 22.583179581272 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 242 - 252

max_d = √2023 - 361 - 576 - 625

max_d = √461

max_d = 21.470910553584

Since max_d = 21.470910553584 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 242 - 262

max_d = √2023 - 361 - 576 - 676

max_d = √410

max_d = 20.248456731317

Since max_d = 20.248456731317 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 242 - 272

max_d = √2023 - 361 - 576 - 729

max_d = √357

max_d = 18.894443627691

Since max_d = 18.894443627691 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 242 - 282

max_d = √2023 - 361 - 576 - 784

max_d = √302

max_d = 17.378147196983

Since max_d = 17.378147196983 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 242 - 292

max_d = √2023 - 361 - 576 - 841

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 242 - 302

max_d = √2023 - 361 - 576 - 900

max_d = √186

max_d = 13.638181696986

Since max_d = 13.638181696986 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 242 - 312

max_d = √2023 - 361 - 576 - 961

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 242 - 322

max_d = √2023 - 361 - 576 - 1024

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 252)

max_c = Floor(√2023 - 361 - 625)

max_c = Floor(√1037)

max_c = Floor(32.202484376209)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 252)/2 = 518.5

When min_c = 23, then it is c2 = 529 ≥ 518.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 252 - 232

max_d = √2023 - 361 - 625 - 529

max_d = √508

max_d = 22.538855339169

Since max_d = 22.538855339169 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 252 - 242

max_d = √2023 - 361 - 625 - 576

max_d = √461

max_d = 21.470910553584

Since max_d = 21.470910553584 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 252 - 252

max_d = √2023 - 361 - 625 - 625

max_d = √412

max_d = 20.297783130184

Since max_d = 20.297783130184 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 252 - 262

max_d = √2023 - 361 - 625 - 676

max_d = √361

max_d = 19

Since max_d = 19, then (a, b, c, d) = (19, 25, 26, 19) is an integer solution proven below

192 + 252 + 262 + 192 → 361 + 625 + 676 + 361 = 2023

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 252 - 272

max_d = √2023 - 361 - 625 - 729

max_d = √308

max_d = 17.549928774784

Since max_d = 17.549928774784 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 252 - 282

max_d = √2023 - 361 - 625 - 784

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 252 - 292

max_d = √2023 - 361 - 625 - 841

max_d = √196

max_d = 14

Since max_d = 14, then (a, b, c, d) = (19, 25, 29, 14) is an integer solution proven below

192 + 252 + 292 + 142 → 361 + 625 + 841 + 196 = 2023

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 252 - 302

max_d = √2023 - 361 - 625 - 900

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 252 - 312

max_d = √2023 - 361 - 625 - 961

max_d = √76

max_d = 8.7177978870813

Since max_d = 8.7177978870813 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 252 - 322

max_d = √2023 - 361 - 625 - 1024

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 262)

max_c = Floor(√2023 - 361 - 676)

max_c = Floor(√986)

max_c = Floor(31.400636936215)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 262)/2 = 493

When min_c = 23, then it is c2 = 529 ≥ 493, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 262 - 232

max_d = √2023 - 361 - 676 - 529

max_d = √457

max_d = 21.377558326432

Since max_d = 21.377558326432 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 262 - 242

max_d = √2023 - 361 - 676 - 576

max_d = √410

max_d = 20.248456731317

Since max_d = 20.248456731317 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 262 - 252

max_d = √2023 - 361 - 676 - 625

max_d = √361

max_d = 19

Since max_d = 19, then (a, b, c, d) = (19, 26, 25, 19) is an integer solution proven below

192 + 262 + 252 + 192 → 361 + 676 + 625 + 361 = 2023

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 262 - 262

max_d = √2023 - 361 - 676 - 676

max_d = √310

max_d = 17.606816861659

Since max_d = 17.606816861659 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 262 - 272

max_d = √2023 - 361 - 676 - 729

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 262 - 282

max_d = √2023 - 361 - 676 - 784

max_d = √202

max_d = 14.212670403552

Since max_d = 14.212670403552 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 262 - 292

max_d = √2023 - 361 - 676 - 841

max_d = √145

max_d = 12.041594578792

Since max_d = 12.041594578792 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 262 - 302

max_d = √2023 - 361 - 676 - 900

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 262 - 312

max_d = √2023 - 361 - 676 - 961

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (19, 26, 31, 5) is an integer solution proven below

192 + 262 + 312 + 52 → 361 + 676 + 961 + 25 = 2023

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 272)

max_c = Floor(√2023 - 361 - 729)

max_c = Floor(√933)

max_c = Floor(30.545048698603)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 272)/2 = 466.5

When min_c = 22, then it is c2 = 484 ≥ 466.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 272 - 222

max_d = √2023 - 361 - 729 - 484

max_d = √449

max_d = 21.189620100417

Since max_d = 21.189620100417 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 272 - 232

max_d = √2023 - 361 - 729 - 529

max_d = √404

max_d = 20.099751242242

Since max_d = 20.099751242242 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 272 - 242

max_d = √2023 - 361 - 729 - 576

max_d = √357

max_d = 18.894443627691

Since max_d = 18.894443627691 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 272 - 252

max_d = √2023 - 361 - 729 - 625

max_d = √308

max_d = 17.549928774784

Since max_d = 17.549928774784 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 272 - 262

max_d = √2023 - 361 - 729 - 676

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 272 - 272

max_d = √2023 - 361 - 729 - 729

max_d = √204

max_d = 14.282856857086

Since max_d = 14.282856857086 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 272 - 282

max_d = √2023 - 361 - 729 - 784

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 272 - 292

max_d = √2023 - 361 - 729 - 841

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 272 - 302

max_d = √2023 - 361 - 729 - 900

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 282)

max_c = Floor(√2023 - 361 - 784)

max_c = Floor(√878)

max_c = Floor(29.631064780058)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 282)/2 = 439

When min_c = 21, then it is c2 = 441 ≥ 439, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 282 - 212

max_d = √2023 - 361 - 784 - 441

max_d = √437

max_d = 20.904544960367

Since max_d = 20.904544960367 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 282 - 222

max_d = √2023 - 361 - 784 - 484

max_d = √394

max_d = 19.849433241279

Since max_d = 19.849433241279 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 282 - 232

max_d = √2023 - 361 - 784 - 529

max_d = √349

max_d = 18.681541692269

Since max_d = 18.681541692269 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 282 - 242

max_d = √2023 - 361 - 784 - 576

max_d = √302

max_d = 17.378147196983

Since max_d = 17.378147196983 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 282 - 252

max_d = √2023 - 361 - 784 - 625

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 282 - 262

max_d = √2023 - 361 - 784 - 676

max_d = √202

max_d = 14.212670403552

Since max_d = 14.212670403552 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 282 - 272

max_d = √2023 - 361 - 784 - 729

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 282 - 282

max_d = √2023 - 361 - 784 - 784

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 282 - 292

max_d = √2023 - 361 - 784 - 841

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 292)

max_c = Floor(√2023 - 361 - 841)

max_c = Floor(√821)

max_c = Floor(28.653097563789)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 292)/2 = 410.5

When min_c = 21, then it is c2 = 441 ≥ 410.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 292 - 212

max_d = √2023 - 361 - 841 - 441

max_d = √380

max_d = 19.493588689618

Since max_d = 19.493588689618 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 292 - 222

max_d = √2023 - 361 - 841 - 484

max_d = √337

max_d = 18.357559750686

Since max_d = 18.357559750686 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 292 - 232

max_d = √2023 - 361 - 841 - 529

max_d = √292

max_d = 17.088007490635

Since max_d = 17.088007490635 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 292 - 242

max_d = √2023 - 361 - 841 - 576

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 292 - 252

max_d = √2023 - 361 - 841 - 625

max_d = √196

max_d = 14

Since max_d = 14, then (a, b, c, d) = (19, 29, 25, 14) is an integer solution proven below

192 + 292 + 252 + 142 → 361 + 841 + 625 + 196 = 2023

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 292 - 262

max_d = √2023 - 361 - 841 - 676

max_d = √145

max_d = 12.041594578792

Since max_d = 12.041594578792 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 292 - 272

max_d = √2023 - 361 - 841 - 729

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 292 - 282

max_d = √2023 - 361 - 841 - 784

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 302)

max_c = Floor(√2023 - 361 - 900)

max_c = Floor(√762)

max_c = Floor(27.604347483685)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 302)/2 = 381

When min_c = 20, then it is c2 = 400 ≥ 381, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 302 - 202

max_d = √2023 - 361 - 900 - 400

max_d = √362

max_d = 19.02629759044

Since max_d = 19.02629759044 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 302 - 212

max_d = √2023 - 361 - 900 - 441

max_d = √321

max_d = 17.916472867169

Since max_d = 17.916472867169 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 302 - 222

max_d = √2023 - 361 - 900 - 484

max_d = √278

max_d = 16.673332000533

Since max_d = 16.673332000533 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 302 - 232

max_d = √2023 - 361 - 900 - 529

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 302 - 242

max_d = √2023 - 361 - 900 - 576

max_d = √186

max_d = 13.638181696986

Since max_d = 13.638181696986 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 302 - 252

max_d = √2023 - 361 - 900 - 625

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 302 - 262

max_d = √2023 - 361 - 900 - 676

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 302 - 272

max_d = √2023 - 361 - 900 - 729

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 312)

max_c = Floor(√2023 - 361 - 961)

max_c = Floor(√701)

max_c = Floor(26.476404589747)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 312)/2 = 350.5

When min_c = 19, then it is c2 = 361 ≥ 350.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 312 - 192

max_d = √2023 - 361 - 961 - 361

max_d = √340

max_d = 18.439088914586

Since max_d = 18.439088914586 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 312 - 202

max_d = √2023 - 361 - 961 - 400

max_d = √301

max_d = 17.349351572897

Since max_d = 17.349351572897 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 312 - 212

max_d = √2023 - 361 - 961 - 441

max_d = √260

max_d = 16.124515496597

Since max_d = 16.124515496597 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 312 - 222

max_d = √2023 - 361 - 961 - 484

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 312 - 232

max_d = √2023 - 361 - 961 - 529

max_d = √172

max_d = 13.114877048604

Since max_d = 13.114877048604 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 312 - 242

max_d = √2023 - 361 - 961 - 576

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 312 - 252

max_d = √2023 - 361 - 961 - 625

max_d = √76

max_d = 8.7177978870813

Since max_d = 8.7177978870813 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 312 - 262

max_d = √2023 - 361 - 961 - 676

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (19, 31, 26, 5) is an integer solution proven below

192 + 312 + 262 + 52 → 361 + 961 + 676 + 25 = 2023

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 322)

max_c = Floor(√2023 - 361 - 1024)

max_c = Floor(√638)

max_c = Floor(25.25866188063)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 322)/2 = 319

When min_c = 18, then it is c2 = 324 ≥ 319, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 322 - 182

max_d = √2023 - 361 - 1024 - 324

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 322 - 192

max_d = √2023 - 361 - 1024 - 361

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 322 - 202

max_d = √2023 - 361 - 1024 - 400

max_d = √238

max_d = 15.427248620542

Since max_d = 15.427248620542 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 322 - 212

max_d = √2023 - 361 - 1024 - 441

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 322 - 222

max_d = √2023 - 361 - 1024 - 484

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 322 - 232

max_d = √2023 - 361 - 1024 - 529

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 322 - 242

max_d = √2023 - 361 - 1024 - 576

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 322 - 252

max_d = √2023 - 361 - 1024 - 625

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 332)

max_c = Floor(√2023 - 361 - 1089)

max_c = Floor(√573)

max_c = Floor(23.937418407172)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 332)/2 = 286.5

When min_c = 17, then it is c2 = 289 ≥ 286.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 332 - 172

max_d = √2023 - 361 - 1089 - 289

max_d = √284

max_d = 16.852299546353

Since max_d = 16.852299546353 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 332 - 182

max_d = √2023 - 361 - 1089 - 324

max_d = √249

max_d = 15.779733838059

Since max_d = 15.779733838059 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 332 - 192

max_d = √2023 - 361 - 1089 - 361

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 332 - 202

max_d = √2023 - 361 - 1089 - 400

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 332 - 212

max_d = √2023 - 361 - 1089 - 441

max_d = √132

max_d = 11.489125293076

Since max_d = 11.489125293076 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 332 - 222

max_d = √2023 - 361 - 1089 - 484

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 332 - 232

max_d = √2023 - 361 - 1089 - 529

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 342)

max_c = Floor(√2023 - 361 - 1156)

max_c = Floor(√506)

max_c = Floor(22.494443758404)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 342)/2 = 253

When min_c = 16, then it is c2 = 256 ≥ 253, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 342 - 162

max_d = √2023 - 361 - 1156 - 256

max_d = √250

max_d = 15.811388300842

Since max_d = 15.811388300842 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 342 - 172

max_d = √2023 - 361 - 1156 - 289

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 342 - 182

max_d = √2023 - 361 - 1156 - 324

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 342 - 192

max_d = √2023 - 361 - 1156 - 361

max_d = √145

max_d = 12.041594578792

Since max_d = 12.041594578792 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 342 - 202

max_d = √2023 - 361 - 1156 - 400

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 342 - 212

max_d = √2023 - 361 - 1156 - 441

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 342 - 222

max_d = √2023 - 361 - 1156 - 484

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 352)

max_c = Floor(√2023 - 361 - 1225)

max_c = Floor(√437)

max_c = Floor(20.904544960367)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 352)/2 = 218.5

When min_c = 15, then it is c2 = 225 ≥ 218.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 352 - 152

max_d = √2023 - 361 - 1225 - 225

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 352 - 162

max_d = √2023 - 361 - 1225 - 256

max_d = √181

max_d = 13.453624047074

Since max_d = 13.453624047074 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 352 - 172

max_d = √2023 - 361 - 1225 - 289

max_d = √148

max_d = 12.165525060596

Since max_d = 12.165525060596 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 352 - 182

max_d = √2023 - 361 - 1225 - 324

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 352 - 192

max_d = √2023 - 361 - 1225 - 361

max_d = √76

max_d = 8.7177978870813

Since max_d = 8.7177978870813 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 352 - 202

max_d = √2023 - 361 - 1225 - 400

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 362)

max_c = Floor(√2023 - 361 - 1296)

max_c = Floor(√366)

max_c = Floor(19.131126469709)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 362)/2 = 183

When min_c = 14, then it is c2 = 196 ≥ 183, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 362 - 142

max_d = √2023 - 361 - 1296 - 196

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 362 - 152

max_d = √2023 - 361 - 1296 - 225

max_d = √141

max_d = 11.874342087038

Since max_d = 11.874342087038 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 362 - 162

max_d = √2023 - 361 - 1296 - 256

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 362 - 172

max_d = √2023 - 361 - 1296 - 289

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 362 - 182

max_d = √2023 - 361 - 1296 - 324

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 362 - 192

max_d = √2023 - 361 - 1296 - 361

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 372)

max_c = Floor(√2023 - 361 - 1369)

max_c = Floor(√293)

max_c = Floor(17.117242768624)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 372)/2 = 146.5

When min_c = 13, then it is c2 = 169 ≥ 146.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 372 - 132

max_d = √2023 - 361 - 1369 - 169

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 372 - 142

max_d = √2023 - 361 - 1369 - 196

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 372 - 152

max_d = √2023 - 361 - 1369 - 225

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 372 - 162

max_d = √2023 - 361 - 1369 - 256

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 372 - 172

max_d = √2023 - 361 - 1369 - 289

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (19, 37, 17, 2) is an integer solution proven below

192 + 372 + 172 + 22 → 361 + 1369 + 289 + 4 = 2023

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 382)

max_c = Floor(√2023 - 361 - 1444)

max_c = Floor(√218)

max_c = Floor(14.764823060233)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 382)/2 = 109

When min_c = 11, then it is c2 = 121 ≥ 109, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 382 - 112

max_d = √2023 - 361 - 1444 - 121

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 382 - 122

max_d = √2023 - 361 - 1444 - 144

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 382 - 132

max_d = √2023 - 361 - 1444 - 169

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (19, 38, 13, 7) is an integer solution proven below

192 + 382 + 132 + 72 → 361 + 1444 + 169 + 49 = 2023

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 382 - 142

max_d = √2023 - 361 - 1444 - 196

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 392)

max_c = Floor(√2023 - 361 - 1521)

max_c = Floor(√141)

max_c = Floor(11.874342087038)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 392)/2 = 70.5

When min_c = 9, then it is c2 = 81 ≥ 70.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 392 - 92

max_d = √2023 - 361 - 1521 - 81

max_d = √60

max_d = 7.7459666924148

Since max_d = 7.7459666924148 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 392 - 102

max_d = √2023 - 361 - 1521 - 100

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 392 - 112

max_d = √2023 - 361 - 1521 - 121

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 192 - 402)

max_c = Floor(√2023 - 361 - 1600)

max_c = Floor(√62)

max_c = Floor(7.8740078740118)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 192 - 402)/2 = 31

When min_c = 6, then it is c2 = 36 ≥ 31, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 402 - 62

max_d = √2023 - 361 - 1600 - 36

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 192 - 402 - 72

max_d = √2023 - 361 - 1600 - 49

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

a = 20

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 202)

max_b = Floor(√2023 - 400)

max_b = Floor(√1623)

max_b = Floor(40.286474156967)

max_b = 40

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 202)/3 = 541

When min_b = 24, then it is b2 = 576 ≥ 541, so min_b = 24

Test values for b in the range of (min_b, max_b)

(24, 40)

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 242)

max_c = Floor(√2023 - 400 - 576)

max_c = Floor(√1047)

max_c = Floor(32.357379374727)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 242)/2 = 523.5

When min_c = 23, then it is c2 = 529 ≥ 523.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 242 - 232

max_d = √2023 - 400 - 576 - 529

max_d = √518

max_d = 22.759613353482

Since max_d = 22.759613353482 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 242 - 242

max_d = √2023 - 400 - 576 - 576

max_d = √471

max_d = 21.702534414211

Since max_d = 21.702534414211 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 242 - 252

max_d = √2023 - 400 - 576 - 625

max_d = √422

max_d = 20.542638584174

Since max_d = 20.542638584174 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 242 - 262

max_d = √2023 - 400 - 576 - 676

max_d = √371

max_d = 19.261360284258

Since max_d = 19.261360284258 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 242 - 272

max_d = √2023 - 400 - 576 - 729

max_d = √318

max_d = 17.832554500127

Since max_d = 17.832554500127 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 242 - 282

max_d = √2023 - 400 - 576 - 784

max_d = √263

max_d = 16.217274740227

Since max_d = 16.217274740227 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 242 - 292

max_d = √2023 - 400 - 576 - 841

max_d = √206

max_d = 14.352700094407

Since max_d = 14.352700094407 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 242 - 302

max_d = √2023 - 400 - 576 - 900

max_d = √147

max_d = 12.124355652982

Since max_d = 12.124355652982 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 242 - 312

max_d = √2023 - 400 - 576 - 961

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 242 - 322

max_d = √2023 - 400 - 576 - 1024

max_d = √23

max_d = 4.7958315233127

Since max_d = 4.7958315233127 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 252)

max_c = Floor(√2023 - 400 - 625)

max_c = Floor(√998)

max_c = Floor(31.591137997863)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 252)/2 = 499

When min_c = 23, then it is c2 = 529 ≥ 499, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 252 - 232

max_d = √2023 - 400 - 625 - 529

max_d = √469

max_d = 21.656407827708

Since max_d = 21.656407827708 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 252 - 242

max_d = √2023 - 400 - 625 - 576

max_d = √422

max_d = 20.542638584174

Since max_d = 20.542638584174 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 252 - 252

max_d = √2023 - 400 - 625 - 625

max_d = √373

max_d = 19.313207915828

Since max_d = 19.313207915828 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 252 - 262

max_d = √2023 - 400 - 625 - 676

max_d = √322

max_d = 17.944358444926

Since max_d = 17.944358444926 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 252 - 272

max_d = √2023 - 400 - 625 - 729

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 252 - 282

max_d = √2023 - 400 - 625 - 784

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 252 - 292

max_d = √2023 - 400 - 625 - 841

max_d = √157

max_d = 12.529964086142

Since max_d = 12.529964086142 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 252 - 302

max_d = √2023 - 400 - 625 - 900

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 252 - 312

max_d = √2023 - 400 - 625 - 961

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 262)

max_c = Floor(√2023 - 400 - 676)

max_c = Floor(√947)

max_c = Floor(30.773365106858)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 262)/2 = 473.5

When min_c = 22, then it is c2 = 484 ≥ 473.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 262 - 222

max_d = √2023 - 400 - 676 - 484

max_d = √463

max_d = 21.51743479135

Since max_d = 21.51743479135 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 262 - 232

max_d = √2023 - 400 - 676 - 529

max_d = √418

max_d = 20.445048300261

Since max_d = 20.445048300261 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 262 - 242

max_d = √2023 - 400 - 676 - 576

max_d = √371

max_d = 19.261360284258

Since max_d = 19.261360284258 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 262 - 252

max_d = √2023 - 400 - 676 - 625

max_d = √322

max_d = 17.944358444926

Since max_d = 17.944358444926 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 262 - 262

max_d = √2023 - 400 - 676 - 676

max_d = √271

max_d = 16.462077633154

Since max_d = 16.462077633154 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 262 - 272

max_d = √2023 - 400 - 676 - 729

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 262 - 282

max_d = √2023 - 400 - 676 - 784

max_d = √163

max_d = 12.767145334804

Since max_d = 12.767145334804 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 262 - 292

max_d = √2023 - 400 - 676 - 841

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 262 - 302

max_d = √2023 - 400 - 676 - 900

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 272)

max_c = Floor(√2023 - 400 - 729)

max_c = Floor(√894)

max_c = Floor(29.899832775452)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 272)/2 = 447

When min_c = 22, then it is c2 = 484 ≥ 447, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 272 - 222

max_d = √2023 - 400 - 729 - 484

max_d = √410

max_d = 20.248456731317

Since max_d = 20.248456731317 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 272 - 232

max_d = √2023 - 400 - 729 - 529

max_d = √365

max_d = 19.104973174543

Since max_d = 19.104973174543 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 272 - 242

max_d = √2023 - 400 - 729 - 576

max_d = √318

max_d = 17.832554500127

Since max_d = 17.832554500127 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 272 - 252

max_d = √2023 - 400 - 729 - 625

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 272 - 262

max_d = √2023 - 400 - 729 - 676

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 272 - 272

max_d = √2023 - 400 - 729 - 729

max_d = √165

max_d = 12.845232578665

Since max_d = 12.845232578665 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 272 - 282

max_d = √2023 - 400 - 729 - 784

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 272 - 292

max_d = √2023 - 400 - 729 - 841

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 282)

max_c = Floor(√2023 - 400 - 784)

max_c = Floor(√839)

max_c = Floor(28.96549671592)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 282)/2 = 419.5

When min_c = 21, then it is c2 = 441 ≥ 419.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 282 - 212

max_d = √2023 - 400 - 784 - 441

max_d = √398

max_d = 19.94993734326

Since max_d = 19.94993734326 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 282 - 222

max_d = √2023 - 400 - 784 - 484

max_d = √355

max_d = 18.841443681417

Since max_d = 18.841443681417 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 282 - 232

max_d = √2023 - 400 - 784 - 529

max_d = √310

max_d = 17.606816861659

Since max_d = 17.606816861659 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 282 - 242

max_d = √2023 - 400 - 784 - 576

max_d = √263

max_d = 16.217274740227

Since max_d = 16.217274740227 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 282 - 252

max_d = √2023 - 400 - 784 - 625

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 282 - 262

max_d = √2023 - 400 - 784 - 676

max_d = √163

max_d = 12.767145334804

Since max_d = 12.767145334804 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 282 - 272

max_d = √2023 - 400 - 784 - 729

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 282 - 282

max_d = √2023 - 400 - 784 - 784

max_d = √55

max_d = 7.4161984870957

Since max_d = 7.4161984870957 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 292)

max_c = Floor(√2023 - 400 - 841)

max_c = Floor(√782)

max_c = Floor(27.964262908219)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 292)/2 = 391

When min_c = 20, then it is c2 = 400 ≥ 391, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 292 - 202

max_d = √2023 - 400 - 841 - 400

max_d = √382

max_d = 19.544820285692

Since max_d = 19.544820285692 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 292 - 212

max_d = √2023 - 400 - 841 - 441

max_d = √341

max_d = 18.466185312619

Since max_d = 18.466185312619 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 292 - 222

max_d = √2023 - 400 - 841 - 484

max_d = √298

max_d = 17.262676501632

Since max_d = 17.262676501632 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 292 - 232

max_d = √2023 - 400 - 841 - 529

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 292 - 242

max_d = √2023 - 400 - 841 - 576

max_d = √206

max_d = 14.352700094407

Since max_d = 14.352700094407 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 292 - 252

max_d = √2023 - 400 - 841 - 625

max_d = √157

max_d = 12.529964086142

Since max_d = 12.529964086142 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 292 - 262

max_d = √2023 - 400 - 841 - 676

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 292 - 272

max_d = √2023 - 400 - 841 - 729

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 302)

max_c = Floor(√2023 - 400 - 900)

max_c = Floor(√723)

max_c = Floor(26.888659319498)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 302)/2 = 361.5

When min_c = 20, then it is c2 = 400 ≥ 361.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 302 - 202

max_d = √2023 - 400 - 900 - 400

max_d = √323

max_d = 17.972200755611

Since max_d = 17.972200755611 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 302 - 212

max_d = √2023 - 400 - 900 - 441

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 302 - 222

max_d = √2023 - 400 - 900 - 484

max_d = √239

max_d = 15.45962483374

Since max_d = 15.45962483374 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 302 - 232

max_d = √2023 - 400 - 900 - 529

max_d = √194

max_d = 13.928388277184

Since max_d = 13.928388277184 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 302 - 242

max_d = √2023 - 400 - 900 - 576

max_d = √147

max_d = 12.124355652982

Since max_d = 12.124355652982 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 302 - 252

max_d = √2023 - 400 - 900 - 625

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 302 - 262

max_d = √2023 - 400 - 900 - 676

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 312)

max_c = Floor(√2023 - 400 - 961)

max_c = Floor(√662)

max_c = Floor(25.729360660537)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 312)/2 = 331

When min_c = 19, then it is c2 = 361 ≥ 331, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 312 - 192

max_d = √2023 - 400 - 961 - 361

max_d = √301

max_d = 17.349351572897

Since max_d = 17.349351572897 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 312 - 202

max_d = √2023 - 400 - 961 - 400

max_d = √262

max_d = 16.186414056239

Since max_d = 16.186414056239 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 312 - 212

max_d = √2023 - 400 - 961 - 441

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 312 - 222

max_d = √2023 - 400 - 961 - 484

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 312 - 232

max_d = √2023 - 400 - 961 - 529

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 312 - 242

max_d = √2023 - 400 - 961 - 576

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 312 - 252

max_d = √2023 - 400 - 961 - 625

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 322)

max_c = Floor(√2023 - 400 - 1024)

max_c = Floor(√599)

max_c = Floor(24.474476501041)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 322)/2 = 299.5

When min_c = 18, then it is c2 = 324 ≥ 299.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 322 - 182

max_d = √2023 - 400 - 1024 - 324

max_d = √275

max_d = 16.583123951777

Since max_d = 16.583123951777 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 322 - 192

max_d = √2023 - 400 - 1024 - 361

max_d = √238

max_d = 15.427248620542

Since max_d = 15.427248620542 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 322 - 202

max_d = √2023 - 400 - 1024 - 400

max_d = √199

max_d = 14.106735979666

Since max_d = 14.106735979666 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 322 - 212

max_d = √2023 - 400 - 1024 - 441

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 322 - 222

max_d = √2023 - 400 - 1024 - 484

max_d = √115

max_d = 10.723805294764

Since max_d = 10.723805294764 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 322 - 232

max_d = √2023 - 400 - 1024 - 529

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 322 - 242

max_d = √2023 - 400 - 1024 - 576

max_d = √23

max_d = 4.7958315233127

Since max_d = 4.7958315233127 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 332)

max_c = Floor(√2023 - 400 - 1089)

max_c = Floor(√534)

max_c = Floor(23.108440016583)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 332)/2 = 267

When min_c = 17, then it is c2 = 289 ≥ 267, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 332 - 172

max_d = √2023 - 400 - 1089 - 289

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 332 - 182

max_d = √2023 - 400 - 1089 - 324

max_d = √210

max_d = 14.491376746189

Since max_d = 14.491376746189 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 332 - 192

max_d = √2023 - 400 - 1089 - 361

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 332 - 202

max_d = √2023 - 400 - 1089 - 400

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 332 - 212

max_d = √2023 - 400 - 1089 - 441

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 332 - 222

max_d = √2023 - 400 - 1089 - 484

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 332 - 232

max_d = √2023 - 400 - 1089 - 529

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 342)

max_c = Floor(√2023 - 400 - 1156)

max_c = Floor(√467)

max_c = Floor(21.610182784974)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 342)/2 = 233.5

When min_c = 16, then it is c2 = 256 ≥ 233.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 342 - 162

max_d = √2023 - 400 - 1156 - 256

max_d = √211

max_d = 14.525839046334

Since max_d = 14.525839046334 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 342 - 172

max_d = √2023 - 400 - 1156 - 289

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 342 - 182

max_d = √2023 - 400 - 1156 - 324

max_d = √143

max_d = 11.958260743101

Since max_d = 11.958260743101 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 342 - 192

max_d = √2023 - 400 - 1156 - 361

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 342 - 202

max_d = √2023 - 400 - 1156 - 400

max_d = √67

max_d = 8.1853527718725

Since max_d = 8.1853527718725 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 342 - 212

max_d = √2023 - 400 - 1156 - 441

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 352)

max_c = Floor(√2023 - 400 - 1225)

max_c = Floor(√398)

max_c = Floor(19.94993734326)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 352)/2 = 199

When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 352 - 152

max_d = √2023 - 400 - 1225 - 225

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 352 - 162

max_d = √2023 - 400 - 1225 - 256

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 352 - 172

max_d = √2023 - 400 - 1225 - 289

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 352 - 182

max_d = √2023 - 400 - 1225 - 324

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 352 - 192

max_d = √2023 - 400 - 1225 - 361

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 362)

max_c = Floor(√2023 - 400 - 1296)

max_c = Floor(√327)

max_c = Floor(18.083141320025)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 362)/2 = 163.5

When min_c = 13, then it is c2 = 169 ≥ 163.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 362 - 132

max_d = √2023 - 400 - 1296 - 169

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 362 - 142

max_d = √2023 - 400 - 1296 - 196

max_d = √131

max_d = 11.44552314226

Since max_d = 11.44552314226 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 362 - 152

max_d = √2023 - 400 - 1296 - 225

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 362 - 162

max_d = √2023 - 400 - 1296 - 256

max_d = √71

max_d = 8.4261497731764

Since max_d = 8.4261497731764 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 362 - 172

max_d = √2023 - 400 - 1296 - 289

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 362 - 182

max_d = √2023 - 400 - 1296 - 324

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 372)

max_c = Floor(√2023 - 400 - 1369)

max_c = Floor(√254)

max_c = Floor(15.937377450509)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 372)/2 = 127

When min_c = 12, then it is c2 = 144 ≥ 127, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 372 - 122

max_d = √2023 - 400 - 1369 - 144

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 372 - 132

max_d = √2023 - 400 - 1369 - 169

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 372 - 142

max_d = √2023 - 400 - 1369 - 196

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 372 - 152

max_d = √2023 - 400 - 1369 - 225

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 382)

max_c = Floor(√2023 - 400 - 1444)

max_c = Floor(√179)

max_c = Floor(13.37908816026)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 382)/2 = 89.5

When min_c = 10, then it is c2 = 100 ≥ 89.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 382 - 102

max_d = √2023 - 400 - 1444 - 100

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 382 - 112

max_d = √2023 - 400 - 1444 - 121

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 382 - 122

max_d = √2023 - 400 - 1444 - 144

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 382 - 132

max_d = √2023 - 400 - 1444 - 169

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 392)

max_c = Floor(√2023 - 400 - 1521)

max_c = Floor(√102)

max_c = Floor(10.099504938362)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 392)/2 = 51

When min_c = 8, then it is c2 = 64 ≥ 51, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 392 - 82

max_d = √2023 - 400 - 1521 - 64

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 392 - 92

max_d = √2023 - 400 - 1521 - 81

max_d = √21

max_d = 4.5825756949558

Since max_d = 4.5825756949558 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 392 - 102

max_d = √2023 - 400 - 1521 - 100

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 40

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 202 - 402)

max_c = Floor(√2023 - 400 - 1600)

max_c = Floor(√23)

max_c = Floor(4.7958315233127)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 202 - 402)/2 = 11.5

When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 202 - 402 - 42

max_d = √2023 - 400 - 1600 - 16

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

a = 21

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 212)

max_b = Floor(√2023 - 441)

max_b = Floor(√1582)

max_b = Floor(39.774363602703)

max_b = 39

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 212)/3 = 527.33333333333

When min_b = 23, then it is b2 = 529 ≥ 527.33333333333, so min_b = 23

Test values for b in the range of (min_b, max_b)

(23, 39)

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 232)

max_c = Floor(√2023 - 441 - 529)

max_c = Floor(√1053)

max_c = Floor(32.449961479176)

max_c = 32

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 232)/2 = 526.5

When min_c = 23, then it is c2 = 529 ≥ 526.5, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 232 - 232

max_d = √2023 - 441 - 529 - 529

max_d = √524

max_d = 22.891046284519

Since max_d = 22.891046284519 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 232 - 242

max_d = √2023 - 441 - 529 - 576

max_d = √477

max_d = 21.840329667842

Since max_d = 21.840329667842 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 232 - 252

max_d = √2023 - 441 - 529 - 625

max_d = √428

max_d = 20.688160865577

Since max_d = 20.688160865577 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 232 - 262

max_d = √2023 - 441 - 529 - 676

max_d = √377

max_d = 19.416487838948

Since max_d = 19.416487838948 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 232 - 272

max_d = √2023 - 441 - 529 - 729

max_d = √324

max_d = 18

Since max_d = 18, then (a, b, c, d) = (21, 23, 27, 18) is an integer solution proven below

212 + 232 + 272 + 182 → 441 + 529 + 729 + 324 = 2023

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 232 - 282

max_d = √2023 - 441 - 529 - 784

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 232 - 292

max_d = √2023 - 441 - 529 - 841

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 232 - 302

max_d = √2023 - 441 - 529 - 900

max_d = √153

max_d = 12.369316876853

Since max_d = 12.369316876853 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 232 - 312

max_d = √2023 - 441 - 529 - 961

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 32

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 232 - 322

max_d = √2023 - 441 - 529 - 1024

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 242)

max_c = Floor(√2023 - 441 - 576)

max_c = Floor(√1006)

max_c = Floor(31.717503054307)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 242)/2 = 503

When min_c = 23, then it is c2 = 529 ≥ 503, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 242 - 232

max_d = √2023 - 441 - 576 - 529

max_d = √477

max_d = 21.840329667842

Since max_d = 21.840329667842 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 242 - 242

max_d = √2023 - 441 - 576 - 576

max_d = √430

max_d = 20.736441353328

Since max_d = 20.736441353328 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 242 - 252

max_d = √2023 - 441 - 576 - 625

max_d = √381

max_d = 19.519221295943

Since max_d = 19.519221295943 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 242 - 262

max_d = √2023 - 441 - 576 - 676

max_d = √330

max_d = 18.165902124585

Since max_d = 18.165902124585 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 242 - 272

max_d = √2023 - 441 - 576 - 729

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 242 - 282

max_d = √2023 - 441 - 576 - 784

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 242 - 292

max_d = √2023 - 441 - 576 - 841

max_d = √165

max_d = 12.845232578665

Since max_d = 12.845232578665 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 242 - 302

max_d = √2023 - 441 - 576 - 900

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 242 - 312

max_d = √2023 - 441 - 576 - 961

max_d = √45

max_d = 6.7082039324994

Since max_d = 6.7082039324994 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 252)

max_c = Floor(√2023 - 441 - 625)

max_c = Floor(√957)

max_c = Floor(30.935416596516)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 252)/2 = 478.5

When min_c = 22, then it is c2 = 484 ≥ 478.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 252 - 222

max_d = √2023 - 441 - 625 - 484

max_d = √473

max_d = 21.748563170932

Since max_d = 21.748563170932 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 252 - 232

max_d = √2023 - 441 - 625 - 529

max_d = √428

max_d = 20.688160865577

Since max_d = 20.688160865577 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 252 - 242

max_d = √2023 - 441 - 625 - 576

max_d = √381

max_d = 19.519221295943

Since max_d = 19.519221295943 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 252 - 252

max_d = √2023 - 441 - 625 - 625

max_d = √332

max_d = 18.220867158289

Since max_d = 18.220867158289 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 252 - 262

max_d = √2023 - 441 - 625 - 676

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 252 - 272

max_d = √2023 - 441 - 625 - 729

max_d = √228

max_d = 15.099668870541

Since max_d = 15.099668870541 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 252 - 282

max_d = √2023 - 441 - 625 - 784

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 252 - 292

max_d = √2023 - 441 - 625 - 841

max_d = √116

max_d = 10.770329614269

Since max_d = 10.770329614269 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 252 - 302

max_d = √2023 - 441 - 625 - 900

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 262)

max_c = Floor(√2023 - 441 - 676)

max_c = Floor(√906)

max_c = Floor(30.099833886585)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 262)/2 = 453

When min_c = 22, then it is c2 = 484 ≥ 453, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 262 - 222

max_d = √2023 - 441 - 676 - 484

max_d = √422

max_d = 20.542638584174

Since max_d = 20.542638584174 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 262 - 232

max_d = √2023 - 441 - 676 - 529

max_d = √377

max_d = 19.416487838948

Since max_d = 19.416487838948 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 262 - 242

max_d = √2023 - 441 - 676 - 576

max_d = √330

max_d = 18.165902124585

Since max_d = 18.165902124585 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 262 - 252

max_d = √2023 - 441 - 676 - 625

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 262 - 262

max_d = √2023 - 441 - 676 - 676

max_d = √230

max_d = 15.165750888103

Since max_d = 15.165750888103 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 262 - 272

max_d = √2023 - 441 - 676 - 729

max_d = √177

max_d = 13.30413469565

Since max_d = 13.30413469565 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 262 - 282

max_d = √2023 - 441 - 676 - 784

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 262 - 292

max_d = √2023 - 441 - 676 - 841

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 262 - 302

max_d = √2023 - 441 - 676 - 900

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 272)

max_c = Floor(√2023 - 441 - 729)

max_c = Floor(√853)

max_c = Floor(29.20616373302)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 272)/2 = 426.5

When min_c = 21, then it is c2 = 441 ≥ 426.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 272 - 212

max_d = √2023 - 441 - 729 - 441

max_d = √412

max_d = 20.297783130184

Since max_d = 20.297783130184 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 272 - 222

max_d = √2023 - 441 - 729 - 484

max_d = √369

max_d = 19.209372712299

Since max_d = 19.209372712299 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 272 - 232

max_d = √2023 - 441 - 729 - 529

max_d = √324

max_d = 18

Since max_d = 18, then (a, b, c, d) = (21, 27, 23, 18) is an integer solution proven below

212 + 272 + 232 + 182 → 441 + 729 + 529 + 324 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 272 - 242

max_d = √2023 - 441 - 729 - 576

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 272 - 252

max_d = √2023 - 441 - 729 - 625

max_d = √228

max_d = 15.099668870541

Since max_d = 15.099668870541 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 272 - 262

max_d = √2023 - 441 - 729 - 676

max_d = √177

max_d = 13.30413469565

Since max_d = 13.30413469565 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 272 - 272

max_d = √2023 - 441 - 729 - 729

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 272 - 282

max_d = √2023 - 441 - 729 - 784

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 272 - 292

max_d = √2023 - 441 - 729 - 841

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 282)

max_c = Floor(√2023 - 441 - 784)

max_c = Floor(√798)

max_c = Floor(28.248893783651)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 282)/2 = 399

When min_c = 20, then it is c2 = 400 ≥ 399, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 282 - 202

max_d = √2023 - 441 - 784 - 400

max_d = √398

max_d = 19.94993734326

Since max_d = 19.94993734326 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 282 - 212

max_d = √2023 - 441 - 784 - 441

max_d = √357

max_d = 18.894443627691

Since max_d = 18.894443627691 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 282 - 222

max_d = √2023 - 441 - 784 - 484

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 282 - 232

max_d = √2023 - 441 - 784 - 529

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 282 - 242

max_d = √2023 - 441 - 784 - 576

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 282 - 252

max_d = √2023 - 441 - 784 - 625

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 282 - 262

max_d = √2023 - 441 - 784 - 676

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 282 - 272

max_d = √2023 - 441 - 784 - 729

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 282 - 282

max_d = √2023 - 441 - 784 - 784

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 292)

max_c = Floor(√2023 - 441 - 841)

max_c = Floor(√741)

max_c = Floor(27.221315177632)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 292)/2 = 370.5

When min_c = 20, then it is c2 = 400 ≥ 370.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 292 - 202

max_d = √2023 - 441 - 841 - 400

max_d = √341

max_d = 18.466185312619

Since max_d = 18.466185312619 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 292 - 212

max_d = √2023 - 441 - 841 - 441

max_d = √300

max_d = 17.320508075689

Since max_d = 17.320508075689 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 292 - 222

max_d = √2023 - 441 - 841 - 484

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 292 - 232

max_d = √2023 - 441 - 841 - 529

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 292 - 242

max_d = √2023 - 441 - 841 - 576

max_d = √165

max_d = 12.845232578665

Since max_d = 12.845232578665 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 292 - 252

max_d = √2023 - 441 - 841 - 625

max_d = √116

max_d = 10.770329614269

Since max_d = 10.770329614269 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 292 - 262

max_d = √2023 - 441 - 841 - 676

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 292 - 272

max_d = √2023 - 441 - 841 - 729

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 302)

max_c = Floor(√2023 - 441 - 900)

max_c = Floor(√682)

max_c = Floor(26.115129714401)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 302)/2 = 341

When min_c = 19, then it is c2 = 361 ≥ 341, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 302 - 192

max_d = √2023 - 441 - 900 - 361

max_d = √321

max_d = 17.916472867169

Since max_d = 17.916472867169 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 302 - 202

max_d = √2023 - 441 - 900 - 400

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 302 - 212

max_d = √2023 - 441 - 900 - 441

max_d = √241

max_d = 15.52417469626

Since max_d = 15.52417469626 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 302 - 222

max_d = √2023 - 441 - 900 - 484

max_d = √198

max_d = 14.07124727947

Since max_d = 14.07124727947 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 302 - 232

max_d = √2023 - 441 - 900 - 529

max_d = √153

max_d = 12.369316876853

Since max_d = 12.369316876853 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 302 - 242

max_d = √2023 - 441 - 900 - 576

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 302 - 252

max_d = √2023 - 441 - 900 - 625

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 302 - 262

max_d = √2023 - 441 - 900 - 676

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 312)

max_c = Floor(√2023 - 441 - 961)

max_c = Floor(√621)

max_c = Floor(24.919871588754)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 312)/2 = 310.5

When min_c = 18, then it is c2 = 324 ≥ 310.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 312 - 182

max_d = √2023 - 441 - 961 - 324

max_d = √297

max_d = 17.233687939614

Since max_d = 17.233687939614 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 312 - 192

max_d = √2023 - 441 - 961 - 361

max_d = √260

max_d = 16.124515496597

Since max_d = 16.124515496597 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 312 - 202

max_d = √2023 - 441 - 961 - 400

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 312 - 212

max_d = √2023 - 441 - 961 - 441

max_d = √180

max_d = 13.416407864999

Since max_d = 13.416407864999 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 312 - 222

max_d = √2023 - 441 - 961 - 484

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 312 - 232

max_d = √2023 - 441 - 961 - 529

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 312 - 242

max_d = √2023 - 441 - 961 - 576

max_d = √45

max_d = 6.7082039324994

Since max_d = 6.7082039324994 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 322)

max_c = Floor(√2023 - 441 - 1024)

max_c = Floor(√558)

max_c = Floor(23.622023622035)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 322)/2 = 279

When min_c = 17, then it is c2 = 289 ≥ 279, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 322 - 172

max_d = √2023 - 441 - 1024 - 289

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 322 - 182

max_d = √2023 - 441 - 1024 - 324

max_d = √234

max_d = 15.297058540778

Since max_d = 15.297058540778 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 322 - 192

max_d = √2023 - 441 - 1024 - 361

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 322 - 202

max_d = √2023 - 441 - 1024 - 400

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 322 - 212

max_d = √2023 - 441 - 1024 - 441

max_d = √117

max_d = 10.816653826392

Since max_d = 10.816653826392 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 322 - 222

max_d = √2023 - 441 - 1024 - 484

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 322 - 232

max_d = √2023 - 441 - 1024 - 529

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 332)

max_c = Floor(√2023 - 441 - 1089)

max_c = Floor(√493)

max_c = Floor(22.203603311175)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 332)/2 = 246.5

When min_c = 16, then it is c2 = 256 ≥ 246.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 332 - 162

max_d = √2023 - 441 - 1089 - 256

max_d = √237

max_d = 15.394804318341

Since max_d = 15.394804318341 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 332 - 172

max_d = √2023 - 441 - 1089 - 289

max_d = √204

max_d = 14.282856857086

Since max_d = 14.282856857086 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 332 - 182

max_d = √2023 - 441 - 1089 - 324

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (21, 33, 18, 13) is an integer solution proven below

212 + 332 + 182 + 132 → 441 + 1089 + 324 + 169 = 2023

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 332 - 192

max_d = √2023 - 441 - 1089 - 361

max_d = √132

max_d = 11.489125293076

Since max_d = 11.489125293076 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 332 - 202

max_d = √2023 - 441 - 1089 - 400

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 332 - 212

max_d = √2023 - 441 - 1089 - 441

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 332 - 222

max_d = √2023 - 441 - 1089 - 484

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (21, 33, 22, 3) is an integer solution proven below

212 + 332 + 222 + 32 → 441 + 1089 + 484 + 9 = 2023

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 342)

max_c = Floor(√2023 - 441 - 1156)

max_c = Floor(√426)

max_c = Floor(20.63976744055)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 342)/2 = 213

When min_c = 15, then it is c2 = 225 ≥ 213, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 342 - 152

max_d = √2023 - 441 - 1156 - 225

max_d = √201

max_d = 14.177446878758

Since max_d = 14.177446878758 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 342 - 162

max_d = √2023 - 441 - 1156 - 256

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 342 - 172

max_d = √2023 - 441 - 1156 - 289

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 342 - 182

max_d = √2023 - 441 - 1156 - 324

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 342 - 192

max_d = √2023 - 441 - 1156 - 361

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 342 - 202

max_d = √2023 - 441 - 1156 - 400

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 352)

max_c = Floor(√2023 - 441 - 1225)

max_c = Floor(√357)

max_c = Floor(18.894443627691)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 352)/2 = 178.5

When min_c = 14, then it is c2 = 196 ≥ 178.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 352 - 142

max_d = √2023 - 441 - 1225 - 196

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 352 - 152

max_d = √2023 - 441 - 1225 - 225

max_d = √132

max_d = 11.489125293076

Since max_d = 11.489125293076 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 352 - 162

max_d = √2023 - 441 - 1225 - 256

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 352 - 172

max_d = √2023 - 441 - 1225 - 289

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 352 - 182

max_d = √2023 - 441 - 1225 - 324

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 362)

max_c = Floor(√2023 - 441 - 1296)

max_c = Floor(√286)

max_c = Floor(16.911534525288)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 362)/2 = 143

When min_c = 12, then it is c2 = 144 ≥ 143, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 362 - 122

max_d = √2023 - 441 - 1296 - 144

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 362 - 132

max_d = √2023 - 441 - 1296 - 169

max_d = √117

max_d = 10.816653826392

Since max_d = 10.816653826392 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 362 - 142

max_d = √2023 - 441 - 1296 - 196

max_d = √90

max_d = 9.4868329805051

Since max_d = 9.4868329805051 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 362 - 152

max_d = √2023 - 441 - 1296 - 225

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 362 - 162

max_d = √2023 - 441 - 1296 - 256

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 372)

max_c = Floor(√2023 - 441 - 1369)

max_c = Floor(√213)

max_c = Floor(14.594519519326)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 372)/2 = 106.5

When min_c = 11, then it is c2 = 121 ≥ 106.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 372 - 112

max_d = √2023 - 441 - 1369 - 121

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 372 - 122

max_d = √2023 - 441 - 1369 - 144

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 372 - 132

max_d = √2023 - 441 - 1369 - 169

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 372 - 142

max_d = √2023 - 441 - 1369 - 196

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 382)

max_c = Floor(√2023 - 441 - 1444)

max_c = Floor(√138)

max_c = Floor(11.747340124471)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 382)/2 = 69

When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 382 - 92

max_d = √2023 - 441 - 1444 - 81

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 382 - 102

max_d = √2023 - 441 - 1444 - 100

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 382 - 112

max_d = √2023 - 441 - 1444 - 121

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 212 - 392)

max_c = Floor(√2023 - 441 - 1521)

max_c = Floor(√61)

max_c = Floor(7.8102496759067)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 212 - 392)/2 = 30.5

When min_c = 6, then it is c2 = 36 ≥ 30.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 392 - 62

max_d = √2023 - 441 - 1521 - 36

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (21, 39, 6, 5) is an integer solution proven below

212 + 392 + 62 + 52 → 441 + 1521 + 36 + 25 = 2023

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 212 - 392 - 72

max_d = √2023 - 441 - 1521 - 49

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

a = 22

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 222)

max_b = Floor(√2023 - 484)

max_b = Floor(√1539)

max_b = Floor(39.230090491866)

max_b = 39

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 222)/3 = 513

When min_b = 23, then it is b2 = 529 ≥ 513, so min_b = 23

Test values for b in the range of (min_b, max_b)

(23, 39)

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 232)

max_c = Floor(√2023 - 484 - 529)

max_c = Floor(√1010)

max_c = Floor(31.780497164141)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 232)/2 = 505

When min_c = 23, then it is c2 = 529 ≥ 505, so min_c = 23

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 232 - 232

max_d = √2023 - 484 - 529 - 529

max_d = √481

max_d = 21.931712199461

Since max_d = 21.931712199461 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 232 - 242

max_d = √2023 - 484 - 529 - 576

max_d = √434

max_d = 20.832666656

Since max_d = 20.832666656 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 232 - 252

max_d = √2023 - 484 - 529 - 625

max_d = √385

max_d = 19.621416870349

Since max_d = 19.621416870349 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 232 - 262

max_d = √2023 - 484 - 529 - 676

max_d = √334

max_d = 18.275666882497

Since max_d = 18.275666882497 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 232 - 272

max_d = √2023 - 484 - 529 - 729

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 232 - 282

max_d = √2023 - 484 - 529 - 784

max_d = √226

max_d = 15.033296378373

Since max_d = 15.033296378373 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 232 - 292

max_d = √2023 - 484 - 529 - 841

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (22, 23, 29, 13) is an integer solution proven below

222 + 232 + 292 + 132 → 484 + 529 + 841 + 169 = 2023

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 232 - 302

max_d = √2023 - 484 - 529 - 900

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 232 - 312

max_d = √2023 - 484 - 529 - 961

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (22, 23, 31, 7) is an integer solution proven below

222 + 232 + 312 + 72 → 484 + 529 + 961 + 49 = 2023

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 242)

max_c = Floor(√2023 - 484 - 576)

max_c = Floor(√963)

max_c = Floor(31.032241298366)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 242)/2 = 481.5

When min_c = 22, then it is c2 = 484 ≥ 481.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 242 - 222

max_d = √2023 - 484 - 576 - 484

max_d = √479

max_d = 21.886068628239

Since max_d = 21.886068628239 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 242 - 232

max_d = √2023 - 484 - 576 - 529

max_d = √434

max_d = 20.832666656

Since max_d = 20.832666656 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 242 - 242

max_d = √2023 - 484 - 576 - 576

max_d = √387

max_d = 19.672315572906

Since max_d = 19.672315572906 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 242 - 252

max_d = √2023 - 484 - 576 - 625

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 242 - 262

max_d = √2023 - 484 - 576 - 676

max_d = √287

max_d = 16.941074346097

Since max_d = 16.941074346097 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 242 - 272

max_d = √2023 - 484 - 576 - 729

max_d = √234

max_d = 15.297058540778

Since max_d = 15.297058540778 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 242 - 282

max_d = √2023 - 484 - 576 - 784

max_d = √179

max_d = 13.37908816026

Since max_d = 13.37908816026 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 242 - 292

max_d = √2023 - 484 - 576 - 841

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 242 - 302

max_d = √2023 - 484 - 576 - 900

max_d = √63

max_d = 7.9372539331938

Since max_d = 7.9372539331938 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 242 - 312

max_d = √2023 - 484 - 576 - 961

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 252)

max_c = Floor(√2023 - 484 - 625)

max_c = Floor(√914)

max_c = Floor(30.232432915662)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 252)/2 = 457

When min_c = 22, then it is c2 = 484 ≥ 457, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 252 - 222

max_d = √2023 - 484 - 625 - 484

max_d = √430

max_d = 20.736441353328

Since max_d = 20.736441353328 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 252 - 232

max_d = √2023 - 484 - 625 - 529

max_d = √385

max_d = 19.621416870349

Since max_d = 19.621416870349 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 252 - 242

max_d = √2023 - 484 - 625 - 576

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 252 - 252

max_d = √2023 - 484 - 625 - 625

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (22, 25, 25, 17) is an integer solution proven below

222 + 252 + 252 + 172 → 484 + 625 + 625 + 289 = 2023

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 252 - 262

max_d = √2023 - 484 - 625 - 676

max_d = √238

max_d = 15.427248620542

Since max_d = 15.427248620542 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 252 - 272

max_d = √2023 - 484 - 625 - 729

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 252 - 282

max_d = √2023 - 484 - 625 - 784

max_d = √130

max_d = 11.401754250991

Since max_d = 11.401754250991 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 252 - 292

max_d = √2023 - 484 - 625 - 841

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 252 - 302

max_d = √2023 - 484 - 625 - 900

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 262)

max_c = Floor(√2023 - 484 - 676)

max_c = Floor(√863)

max_c = Floor(29.376861643137)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 262)/2 = 431.5

When min_c = 21, then it is c2 = 441 ≥ 431.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 262 - 212

max_d = √2023 - 484 - 676 - 441

max_d = √422

max_d = 20.542638584174

Since max_d = 20.542638584174 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 262 - 222

max_d = √2023 - 484 - 676 - 484

max_d = √379

max_d = 19.467922333932

Since max_d = 19.467922333932 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 262 - 232

max_d = √2023 - 484 - 676 - 529

max_d = √334

max_d = 18.275666882497

Since max_d = 18.275666882497 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 262 - 242

max_d = √2023 - 484 - 676 - 576

max_d = √287

max_d = 16.941074346097

Since max_d = 16.941074346097 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 262 - 252

max_d = √2023 - 484 - 676 - 625

max_d = √238

max_d = 15.427248620542

Since max_d = 15.427248620542 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 262 - 262

max_d = √2023 - 484 - 676 - 676

max_d = √187

max_d = 13.674794331177

Since max_d = 13.674794331177 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 262 - 272

max_d = √2023 - 484 - 676 - 729

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 262 - 282

max_d = √2023 - 484 - 676 - 784

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 262 - 292

max_d = √2023 - 484 - 676 - 841

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 272)

max_c = Floor(√2023 - 484 - 729)

max_c = Floor(√810)

max_c = Floor(28.460498941515)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 272)/2 = 405

When min_c = 21, then it is c2 = 441 ≥ 405, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 272 - 212

max_d = √2023 - 484 - 729 - 441

max_d = √369

max_d = 19.209372712299

Since max_d = 19.209372712299 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 272 - 222

max_d = √2023 - 484 - 729 - 484

max_d = √326

max_d = 18.055470085268

Since max_d = 18.055470085268 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 272 - 232

max_d = √2023 - 484 - 729 - 529

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 272 - 242

max_d = √2023 - 484 - 729 - 576

max_d = √234

max_d = 15.297058540778

Since max_d = 15.297058540778 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 272 - 252

max_d = √2023 - 484 - 729 - 625

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 272 - 262

max_d = √2023 - 484 - 729 - 676

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 272 - 272

max_d = √2023 - 484 - 729 - 729

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (22, 27, 27, 9) is an integer solution proven below

222 + 272 + 272 + 92 → 484 + 729 + 729 + 81 = 2023

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 272 - 282

max_d = √2023 - 484 - 729 - 784

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 282)

max_c = Floor(√2023 - 484 - 784)

max_c = Floor(√755)

max_c = Floor(27.477263328068)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 282)/2 = 377.5

When min_c = 20, then it is c2 = 400 ≥ 377.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 282 - 202

max_d = √2023 - 484 - 784 - 400

max_d = √355

max_d = 18.841443681417

Since max_d = 18.841443681417 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 282 - 212

max_d = √2023 - 484 - 784 - 441

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 282 - 222

max_d = √2023 - 484 - 784 - 484

max_d = √271

max_d = 16.462077633154

Since max_d = 16.462077633154 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 282 - 232

max_d = √2023 - 484 - 784 - 529

max_d = √226

max_d = 15.033296378373

Since max_d = 15.033296378373 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 282 - 242

max_d = √2023 - 484 - 784 - 576

max_d = √179

max_d = 13.37908816026

Since max_d = 13.37908816026 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 282 - 252

max_d = √2023 - 484 - 784 - 625

max_d = √130

max_d = 11.401754250991

Since max_d = 11.401754250991 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 282 - 262

max_d = √2023 - 484 - 784 - 676

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 282 - 272

max_d = √2023 - 484 - 784 - 729

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 292)

max_c = Floor(√2023 - 484 - 841)

max_c = Floor(√698)

max_c = Floor(26.419689627246)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 292)/2 = 349

When min_c = 19, then it is c2 = 361 ≥ 349, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 292 - 192

max_d = √2023 - 484 - 841 - 361

max_d = √337

max_d = 18.357559750686

Since max_d = 18.357559750686 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 292 - 202

max_d = √2023 - 484 - 841 - 400

max_d = √298

max_d = 17.262676501632

Since max_d = 17.262676501632 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 292 - 212

max_d = √2023 - 484 - 841 - 441

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 292 - 222

max_d = √2023 - 484 - 841 - 484

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 292 - 232

max_d = √2023 - 484 - 841 - 529

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (22, 29, 23, 13) is an integer solution proven below

222 + 292 + 232 + 132 → 484 + 841 + 529 + 169 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 292 - 242

max_d = √2023 - 484 - 841 - 576

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 292 - 252

max_d = √2023 - 484 - 841 - 625

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 292 - 262

max_d = √2023 - 484 - 841 - 676

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 302)

max_c = Floor(√2023 - 484 - 900)

max_c = Floor(√639)

max_c = Floor(25.278449319529)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 302)/2 = 319.5

When min_c = 18, then it is c2 = 324 ≥ 319.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 302 - 182

max_d = √2023 - 484 - 900 - 324

max_d = √315

max_d = 17.748239349299

Since max_d = 17.748239349299 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 302 - 192

max_d = √2023 - 484 - 900 - 361

max_d = √278

max_d = 16.673332000533

Since max_d = 16.673332000533 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 302 - 202

max_d = √2023 - 484 - 900 - 400

max_d = √239

max_d = 15.45962483374

Since max_d = 15.45962483374 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 302 - 212

max_d = √2023 - 484 - 900 - 441

max_d = √198

max_d = 14.07124727947

Since max_d = 14.07124727947 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 302 - 222

max_d = √2023 - 484 - 900 - 484

max_d = √155

max_d = 12.449899597989

Since max_d = 12.449899597989 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 302 - 232

max_d = √2023 - 484 - 900 - 529

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 302 - 242

max_d = √2023 - 484 - 900 - 576

max_d = √63

max_d = 7.9372539331938

Since max_d = 7.9372539331938 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 302 - 252

max_d = √2023 - 484 - 900 - 625

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 312)

max_c = Floor(√2023 - 484 - 961)

max_c = Floor(√578)

max_c = Floor(24.041630560343)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 312)/2 = 289

When min_c = 17, then it is c2 = 289 ≥ 289, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 312 - 172

max_d = √2023 - 484 - 961 - 289

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (22, 31, 17, 17) is an integer solution proven below

222 + 312 + 172 + 172 → 484 + 961 + 289 + 289 = 2023

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 312 - 182

max_d = √2023 - 484 - 961 - 324

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 312 - 192

max_d = √2023 - 484 - 961 - 361

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 312 - 202

max_d = √2023 - 484 - 961 - 400

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 312 - 212

max_d = √2023 - 484 - 961 - 441

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 312 - 222

max_d = √2023 - 484 - 961 - 484

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 312 - 232

max_d = √2023 - 484 - 961 - 529

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (22, 31, 23, 7) is an integer solution proven below

222 + 312 + 232 + 72 → 484 + 961 + 529 + 49 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 312 - 242

max_d = √2023 - 484 - 961 - 576

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 322)

max_c = Floor(√2023 - 484 - 1024)

max_c = Floor(√515)

max_c = Floor(22.69361143582)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 322)/2 = 257.5

When min_c = 17, then it is c2 = 289 ≥ 257.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 322 - 172

max_d = √2023 - 484 - 1024 - 289

max_d = √226

max_d = 15.033296378373

Since max_d = 15.033296378373 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 322 - 182

max_d = √2023 - 484 - 1024 - 324

max_d = √191

max_d = 13.820274961085

Since max_d = 13.820274961085 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 322 - 192

max_d = √2023 - 484 - 1024 - 361

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 322 - 202

max_d = √2023 - 484 - 1024 - 400

max_d = √115

max_d = 10.723805294764

Since max_d = 10.723805294764 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 322 - 212

max_d = √2023 - 484 - 1024 - 441

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 322 - 222

max_d = √2023 - 484 - 1024 - 484

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 332)

max_c = Floor(√2023 - 484 - 1089)

max_c = Floor(√450)

max_c = Floor(21.213203435596)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 332)/2 = 225

When min_c = 15, then it is c2 = 225 ≥ 225, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 332 - 152

max_d = √2023 - 484 - 1089 - 225

max_d = √225

max_d = 15

Since max_d = 15, then (a, b, c, d) = (22, 33, 15, 15) is an integer solution proven below

222 + 332 + 152 + 152 → 484 + 1089 + 225 + 225 = 2023

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 332 - 162

max_d = √2023 - 484 - 1089 - 256

max_d = √194

max_d = 13.928388277184

Since max_d = 13.928388277184 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 332 - 172

max_d = √2023 - 484 - 1089 - 289

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 332 - 182

max_d = √2023 - 484 - 1089 - 324

max_d = √126

max_d = 11.224972160322

Since max_d = 11.224972160322 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 332 - 192

max_d = √2023 - 484 - 1089 - 361

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 332 - 202

max_d = √2023 - 484 - 1089 - 400

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 332 - 212

max_d = √2023 - 484 - 1089 - 441

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (22, 33, 21, 3) is an integer solution proven below

222 + 332 + 212 + 32 → 484 + 1089 + 441 + 9 = 2023

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 342)

max_c = Floor(√2023 - 484 - 1156)

max_c = Floor(√383)

max_c = Floor(19.570385790781)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 342)/2 = 191.5

When min_c = 14, then it is c2 = 196 ≥ 191.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 342 - 142

max_d = √2023 - 484 - 1156 - 196

max_d = √187

max_d = 13.674794331177

Since max_d = 13.674794331177 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 342 - 152

max_d = √2023 - 484 - 1156 - 225

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 342 - 162

max_d = √2023 - 484 - 1156 - 256

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 342 - 172

max_d = √2023 - 484 - 1156 - 289

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 342 - 182

max_d = √2023 - 484 - 1156 - 324

max_d = √59

max_d = 7.6811457478686

Since max_d = 7.6811457478686 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 342 - 192

max_d = √2023 - 484 - 1156 - 361

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 352)

max_c = Floor(√2023 - 484 - 1225)

max_c = Floor(√314)

max_c = Floor(17.720045146669)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 352)/2 = 157

When min_c = 13, then it is c2 = 169 ≥ 157, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 352 - 132

max_d = √2023 - 484 - 1225 - 169

max_d = √145

max_d = 12.041594578792

Since max_d = 12.041594578792 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 352 - 142

max_d = √2023 - 484 - 1225 - 196

max_d = √118

max_d = 10.8627804912

Since max_d = 10.8627804912 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 352 - 152

max_d = √2023 - 484 - 1225 - 225

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 352 - 162

max_d = √2023 - 484 - 1225 - 256

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 352 - 172

max_d = √2023 - 484 - 1225 - 289

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (22, 35, 17, 5) is an integer solution proven below

222 + 352 + 172 + 52 → 484 + 1225 + 289 + 25 = 2023

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 362)

max_c = Floor(√2023 - 484 - 1296)

max_c = Floor(√243)

max_c = Floor(15.58845726812)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 362)/2 = 121.5

When min_c = 12, then it is c2 = 144 ≥ 121.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 362 - 122

max_d = √2023 - 484 - 1296 - 144

max_d = √99

max_d = 9.9498743710662

Since max_d = 9.9498743710662 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 362 - 132

max_d = √2023 - 484 - 1296 - 169

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 362 - 142

max_d = √2023 - 484 - 1296 - 196

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 362 - 152

max_d = √2023 - 484 - 1296 - 225

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 372)

max_c = Floor(√2023 - 484 - 1369)

max_c = Floor(√170)

max_c = Floor(13.038404810405)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 372)/2 = 85

When min_c = 10, then it is c2 = 100 ≥ 85, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 372 - 102

max_d = √2023 - 484 - 1369 - 100

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 372 - 112

max_d = √2023 - 484 - 1369 - 121

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (22, 37, 11, 7) is an integer solution proven below

222 + 372 + 112 + 72 → 484 + 1369 + 121 + 49 = 2023

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 372 - 122

max_d = √2023 - 484 - 1369 - 144

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 372 - 132

max_d = √2023 - 484 - 1369 - 169

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (22, 37, 13, 1) is an integer solution proven below

222 + 372 + 132 + 12 → 484 + 1369 + 169 + 1 = 2023

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 382)

max_c = Floor(√2023 - 484 - 1444)

max_c = Floor(√95)

max_c = Floor(9.746794344809)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 382)/2 = 47.5

When min_c = 7, then it is c2 = 49 ≥ 47.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 382 - 72

max_d = √2023 - 484 - 1444 - 49

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 382 - 82

max_d = √2023 - 484 - 1444 - 64

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 382 - 92

max_d = √2023 - 484 - 1444 - 81

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 39

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 222 - 392)

max_c = Floor(√2023 - 484 - 1521)

max_c = Floor(√18)

max_c = Floor(4.2426406871193)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 222 - 392)/2 = 9

When min_c = 3, then it is c2 = 9 ≥ 9, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 392 - 32

max_d = √2023 - 484 - 1521 - 9

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (22, 39, 3, 3) is an integer solution proven below

222 + 392 + 32 + 32 → 484 + 1521 + 9 + 9 = 2023

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 222 - 392 - 42

max_d = √2023 - 484 - 1521 - 16

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 23

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 232)

max_b = Floor(√2023 - 529)

max_b = Floor(√1494)

max_b = Floor(38.652296180175)

max_b = 38

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 232)/3 = 498

When min_b = 23, then it is b2 = 529 ≥ 498, so min_b = 23

Test values for b in the range of (min_b, max_b)

(23, 38)

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 232)

max_c = Floor(√2023 - 529 - 529)

max_c = Floor(√965)

max_c = Floor(31.064449134018)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 232)/2 = 482.5

When min_c = 22, then it is c2 = 484 ≥ 482.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 232 - 222

max_d = √2023 - 529 - 529 - 484

max_d = √481

max_d = 21.931712199461

Since max_d = 21.931712199461 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 232 - 232

max_d = √2023 - 529 - 529 - 529

max_d = √436

max_d = 20.880613017821

Since max_d = 20.880613017821 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 232 - 242

max_d = √2023 - 529 - 529 - 576

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 232 - 252

max_d = √2023 - 529 - 529 - 625

max_d = √340

max_d = 18.439088914586

Since max_d = 18.439088914586 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 232 - 262

max_d = √2023 - 529 - 529 - 676

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (23, 23, 26, 17) is an integer solution proven below

232 + 232 + 262 + 172 → 529 + 529 + 676 + 289 = 2023

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 232 - 272

max_d = √2023 - 529 - 529 - 729

max_d = √236

max_d = 15.362291495737

Since max_d = 15.362291495737 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 232 - 282

max_d = √2023 - 529 - 529 - 784

max_d = √181

max_d = 13.453624047074

Since max_d = 13.453624047074 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 232 - 292

max_d = √2023 - 529 - 529 - 841

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 232 - 302

max_d = √2023 - 529 - 529 - 900

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 232 - 312

max_d = √2023 - 529 - 529 - 961

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (23, 23, 31, 2) is an integer solution proven below

232 + 232 + 312 + 22 → 529 + 529 + 961 + 4 = 2023

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 242)

max_c = Floor(√2023 - 529 - 576)

max_c = Floor(√918)

max_c = Floor(30.298514815086)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 242)/2 = 459

When min_c = 22, then it is c2 = 484 ≥ 459, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 242 - 222

max_d = √2023 - 529 - 576 - 484

max_d = √434

max_d = 20.832666656

Since max_d = 20.832666656 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 242 - 232

max_d = √2023 - 529 - 576 - 529

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 242 - 242

max_d = √2023 - 529 - 576 - 576

max_d = √342

max_d = 18.493242008907

Since max_d = 18.493242008907 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 242 - 252

max_d = √2023 - 529 - 576 - 625

max_d = √293

max_d = 17.117242768624

Since max_d = 17.117242768624 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 242 - 262

max_d = √2023 - 529 - 576 - 676

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 242 - 272

max_d = √2023 - 529 - 576 - 729

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 242 - 282

max_d = √2023 - 529 - 576 - 784

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 242 - 292

max_d = √2023 - 529 - 576 - 841

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 242 - 302

max_d = √2023 - 529 - 576 - 900

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 252)

max_c = Floor(√2023 - 529 - 625)

max_c = Floor(√869)

max_c = Floor(29.478805945967)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 252)/2 = 434.5

When min_c = 21, then it is c2 = 441 ≥ 434.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 252 - 212

max_d = √2023 - 529 - 625 - 441

max_d = √428

max_d = 20.688160865577

Since max_d = 20.688160865577 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 252 - 222

max_d = √2023 - 529 - 625 - 484

max_d = √385

max_d = 19.621416870349

Since max_d = 19.621416870349 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 252 - 232

max_d = √2023 - 529 - 625 - 529

max_d = √340

max_d = 18.439088914586

Since max_d = 18.439088914586 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 252 - 242

max_d = √2023 - 529 - 625 - 576

max_d = √293

max_d = 17.117242768624

Since max_d = 17.117242768624 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 252 - 252

max_d = √2023 - 529 - 625 - 625

max_d = √244

max_d = 15.620499351813

Since max_d = 15.620499351813 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 252 - 262

max_d = √2023 - 529 - 625 - 676

max_d = √193

max_d = 13.89244398945

Since max_d = 13.89244398945 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 252 - 272

max_d = √2023 - 529 - 625 - 729

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 252 - 282

max_d = √2023 - 529 - 625 - 784

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 252 - 292

max_d = √2023 - 529 - 625 - 841

max_d = √28

max_d = 5.2915026221292

Since max_d = 5.2915026221292 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 262)

max_c = Floor(√2023 - 529 - 676)

max_c = Floor(√818)

max_c = Floor(28.60069929215)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 262)/2 = 409

When min_c = 21, then it is c2 = 441 ≥ 409, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 262 - 212

max_d = √2023 - 529 - 676 - 441

max_d = √377

max_d = 19.416487838948

Since max_d = 19.416487838948 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 262 - 222

max_d = √2023 - 529 - 676 - 484

max_d = √334

max_d = 18.275666882497

Since max_d = 18.275666882497 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 262 - 232

max_d = √2023 - 529 - 676 - 529

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (23, 26, 23, 17) is an integer solution proven below

232 + 262 + 232 + 172 → 529 + 676 + 529 + 289 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 262 - 242

max_d = √2023 - 529 - 676 - 576

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 262 - 252

max_d = √2023 - 529 - 676 - 625

max_d = √193

max_d = 13.89244398945

Since max_d = 13.89244398945 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 262 - 262

max_d = √2023 - 529 - 676 - 676

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 262 - 272

max_d = √2023 - 529 - 676 - 729

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 262 - 282

max_d = √2023 - 529 - 676 - 784

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 272)

max_c = Floor(√2023 - 529 - 729)

max_c = Floor(√765)

max_c = Floor(27.658633371879)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 272)/2 = 382.5

When min_c = 20, then it is c2 = 400 ≥ 382.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 272 - 202

max_d = √2023 - 529 - 729 - 400

max_d = √365

max_d = 19.104973174543

Since max_d = 19.104973174543 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 272 - 212

max_d = √2023 - 529 - 729 - 441

max_d = √324

max_d = 18

Since max_d = 18, then (a, b, c, d) = (23, 27, 21, 18) is an integer solution proven below

232 + 272 + 212 + 182 → 529 + 729 + 441 + 324 = 2023

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 272 - 222

max_d = √2023 - 529 - 729 - 484

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 272 - 232

max_d = √2023 - 529 - 729 - 529

max_d = √236

max_d = 15.362291495737

Since max_d = 15.362291495737 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 272 - 242

max_d = √2023 - 529 - 729 - 576

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 272 - 252

max_d = √2023 - 529 - 729 - 625

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 272 - 262

max_d = √2023 - 529 - 729 - 676

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 272 - 272

max_d = √2023 - 529 - 729 - 729

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (23, 27, 27, 6) is an integer solution proven below

232 + 272 + 272 + 62 → 529 + 729 + 729 + 36 = 2023

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 282)

max_c = Floor(√2023 - 529 - 784)

max_c = Floor(√710)

max_c = Floor(26.645825188948)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 282)/2 = 355

When min_c = 19, then it is c2 = 361 ≥ 355, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 282 - 192

max_d = √2023 - 529 - 784 - 361

max_d = √349

max_d = 18.681541692269

Since max_d = 18.681541692269 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 282 - 202

max_d = √2023 - 529 - 784 - 400

max_d = √310

max_d = 17.606816861659

Since max_d = 17.606816861659 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 282 - 212

max_d = √2023 - 529 - 784 - 441

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 282 - 222

max_d = √2023 - 529 - 784 - 484

max_d = √226

max_d = 15.033296378373

Since max_d = 15.033296378373 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 282 - 232

max_d = √2023 - 529 - 784 - 529

max_d = √181

max_d = 13.453624047074

Since max_d = 13.453624047074 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 282 - 242

max_d = √2023 - 529 - 784 - 576

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 282 - 252

max_d = √2023 - 529 - 784 - 625

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 282 - 262

max_d = √2023 - 529 - 784 - 676

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 292)

max_c = Floor(√2023 - 529 - 841)

max_c = Floor(√653)

max_c = Floor(25.553864678361)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 292)/2 = 326.5

When min_c = 19, then it is c2 = 361 ≥ 326.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 292 - 192

max_d = √2023 - 529 - 841 - 361

max_d = √292

max_d = 17.088007490635

Since max_d = 17.088007490635 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 292 - 202

max_d = √2023 - 529 - 841 - 400

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 292 - 212

max_d = √2023 - 529 - 841 - 441

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 292 - 222

max_d = √2023 - 529 - 841 - 484

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (23, 29, 22, 13) is an integer solution proven below

232 + 292 + 222 + 132 → 529 + 841 + 484 + 169 = 2023

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 292 - 232

max_d = √2023 - 529 - 841 - 529

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 292 - 242

max_d = √2023 - 529 - 841 - 576

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 292 - 252

max_d = √2023 - 529 - 841 - 625

max_d = √28

max_d = 5.2915026221292

Since max_d = 5.2915026221292 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 302)

max_c = Floor(√2023 - 529 - 900)

max_c = Floor(√594)

max_c = Floor(24.372115213908)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 302)/2 = 297

When min_c = 18, then it is c2 = 324 ≥ 297, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 302 - 182

max_d = √2023 - 529 - 900 - 324

max_d = √270

max_d = 16.431676725155

Since max_d = 16.431676725155 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 302 - 192

max_d = √2023 - 529 - 900 - 361

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 302 - 202

max_d = √2023 - 529 - 900 - 400

max_d = √194

max_d = 13.928388277184

Since max_d = 13.928388277184 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 302 - 212

max_d = √2023 - 529 - 900 - 441

max_d = √153

max_d = 12.369316876853

Since max_d = 12.369316876853 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 302 - 222

max_d = √2023 - 529 - 900 - 484

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 302 - 232

max_d = √2023 - 529 - 900 - 529

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 302 - 242

max_d = √2023 - 529 - 900 - 576

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 312)

max_c = Floor(√2023 - 529 - 961)

max_c = Floor(√533)

max_c = Floor(23.08679276123)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 312)/2 = 266.5

When min_c = 17, then it is c2 = 289 ≥ 266.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 312 - 172

max_d = √2023 - 529 - 961 - 289

max_d = √244

max_d = 15.620499351813

Since max_d = 15.620499351813 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 312 - 182

max_d = √2023 - 529 - 961 - 324

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 312 - 192

max_d = √2023 - 529 - 961 - 361

max_d = √172

max_d = 13.114877048604

Since max_d = 13.114877048604 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 312 - 202

max_d = √2023 - 529 - 961 - 400

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 312 - 212

max_d = √2023 - 529 - 961 - 441

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 312 - 222

max_d = √2023 - 529 - 961 - 484

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (23, 31, 22, 7) is an integer solution proven below

232 + 312 + 222 + 72 → 529 + 961 + 484 + 49 = 2023

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 312 - 232

max_d = √2023 - 529 - 961 - 529

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (23, 31, 23, 2) is an integer solution proven below

232 + 312 + 232 + 22 → 529 + 961 + 529 + 4 = 2023

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 322)

max_c = Floor(√2023 - 529 - 1024)

max_c = Floor(√470)

max_c = Floor(21.679483388679)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 322)/2 = 235

When min_c = 16, then it is c2 = 256 ≥ 235, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 322 - 162

max_d = √2023 - 529 - 1024 - 256

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 322 - 172

max_d = √2023 - 529 - 1024 - 289

max_d = √181

max_d = 13.453624047074

Since max_d = 13.453624047074 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 322 - 182

max_d = √2023 - 529 - 1024 - 324

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 322 - 192

max_d = √2023 - 529 - 1024 - 361

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 322 - 202

max_d = √2023 - 529 - 1024 - 400

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 322 - 212

max_d = √2023 - 529 - 1024 - 441

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 332)

max_c = Floor(√2023 - 529 - 1089)

max_c = Floor(√405)

max_c = Floor(20.124611797498)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 332)/2 = 202.5

When min_c = 15, then it is c2 = 225 ≥ 202.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 332 - 152

max_d = √2023 - 529 - 1089 - 225

max_d = √180

max_d = 13.416407864999

Since max_d = 13.416407864999 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 332 - 162

max_d = √2023 - 529 - 1089 - 256

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 332 - 172

max_d = √2023 - 529 - 1089 - 289

max_d = √116

max_d = 10.770329614269

Since max_d = 10.770329614269 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 332 - 182

max_d = √2023 - 529 - 1089 - 324

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (23, 33, 18, 9) is an integer solution proven below

232 + 332 + 182 + 92 → 529 + 1089 + 324 + 81 = 2023

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 332 - 192

max_d = √2023 - 529 - 1089 - 361

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 332 - 202

max_d = √2023 - 529 - 1089 - 400

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 342)

max_c = Floor(√2023 - 529 - 1156)

max_c = Floor(√338)

max_c = Floor(18.38477631085)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 342)/2 = 169

When min_c = 13, then it is c2 = 169 ≥ 169, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 342 - 132

max_d = √2023 - 529 - 1156 - 169

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (23, 34, 13, 13) is an integer solution proven below

232 + 342 + 132 + 132 → 529 + 1156 + 169 + 169 = 2023

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 342 - 142

max_d = √2023 - 529 - 1156 - 196

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 342 - 152

max_d = √2023 - 529 - 1156 - 225

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 342 - 162

max_d = √2023 - 529 - 1156 - 256

max_d = √82

max_d = 9.0553851381374

Since max_d = 9.0553851381374 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 342 - 172

max_d = √2023 - 529 - 1156 - 289

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (23, 34, 17, 7) is an integer solution proven below

232 + 342 + 172 + 72 → 529 + 1156 + 289 + 49 = 2023

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 342 - 182

max_d = √2023 - 529 - 1156 - 324

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 352)

max_c = Floor(√2023 - 529 - 1225)

max_c = Floor(√269)

max_c = Floor(16.401219466857)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 352)/2 = 134.5

When min_c = 12, then it is c2 = 144 ≥ 134.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 352 - 122

max_d = √2023 - 529 - 1225 - 144

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 352 - 132

max_d = √2023 - 529 - 1225 - 169

max_d = √100

max_d = 10

Since max_d = 10, then (a, b, c, d) = (23, 35, 13, 10) is an integer solution proven below

232 + 352 + 132 + 102 → 529 + 1225 + 169 + 100 = 2023

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 352 - 142

max_d = √2023 - 529 - 1225 - 196

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 352 - 152

max_d = √2023 - 529 - 1225 - 225

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 352 - 162

max_d = √2023 - 529 - 1225 - 256

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 362)

max_c = Floor(√2023 - 529 - 1296)

max_c = Floor(√198)

max_c = Floor(14.07124727947)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 362)/2 = 99

When min_c = 10, then it is c2 = 100 ≥ 99, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 362 - 102

max_d = √2023 - 529 - 1296 - 100

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 362 - 112

max_d = √2023 - 529 - 1296 - 121

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 362 - 122

max_d = √2023 - 529 - 1296 - 144

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 362 - 132

max_d = √2023 - 529 - 1296 - 169

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 362 - 142

max_d = √2023 - 529 - 1296 - 196

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 372)

max_c = Floor(√2023 - 529 - 1369)

max_c = Floor(√125)

max_c = Floor(11.180339887499)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 372)/2 = 62.5

When min_c = 8, then it is c2 = 64 ≥ 62.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 372 - 82

max_d = √2023 - 529 - 1369 - 64

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 372 - 92

max_d = √2023 - 529 - 1369 - 81

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 372 - 102

max_d = √2023 - 529 - 1369 - 100

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (23, 37, 10, 5) is an integer solution proven below

232 + 372 + 102 + 52 → 529 + 1369 + 100 + 25 = 2023

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 372 - 112

max_d = √2023 - 529 - 1369 - 121

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (23, 37, 11, 2) is an integer solution proven below

232 + 372 + 112 + 22 → 529 + 1369 + 121 + 4 = 2023

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 232 - 382)

max_c = Floor(√2023 - 529 - 1444)

max_c = Floor(√50)

max_c = Floor(7.0710678118655)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 232 - 382)/2 = 25

When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 382 - 52

max_d = √2023 - 529 - 1444 - 25

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (23, 38, 5, 5) is an integer solution proven below

232 + 382 + 52 + 52 → 529 + 1444 + 25 + 25 = 2023

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 382 - 62

max_d = √2023 - 529 - 1444 - 36

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 232 - 382 - 72

max_d = √2023 - 529 - 1444 - 49

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (23, 38, 7, 1) is an integer solution proven below

232 + 382 + 72 + 12 → 529 + 1444 + 49 + 1 = 2023

a = 24

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 242)

max_b = Floor(√2023 - 576)

max_b = Floor(√1447)

max_b = Floor(38.03945320322)

max_b = 38

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 242)/3 = 482.33333333333

When min_b = 22, then it is b2 = 484 ≥ 482.33333333333, so min_b = 22

Test values for b in the range of (min_b, max_b)

(22, 38)

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 222)

max_c = Floor(√2023 - 576 - 484)

max_c = Floor(√963)

max_c = Floor(31.032241298366)

max_c = 31

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 222)/2 = 481.5

When min_c = 22, then it is c2 = 484 ≥ 481.5, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 222 - 222

max_d = √2023 - 576 - 484 - 484

max_d = √479

max_d = 21.886068628239

Since max_d = 21.886068628239 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 222 - 232

max_d = √2023 - 576 - 484 - 529

max_d = √434

max_d = 20.832666656

Since max_d = 20.832666656 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 222 - 242

max_d = √2023 - 576 - 484 - 576

max_d = √387

max_d = 19.672315572906

Since max_d = 19.672315572906 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 222 - 252

max_d = √2023 - 576 - 484 - 625

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 222 - 262

max_d = √2023 - 576 - 484 - 676

max_d = √287

max_d = 16.941074346097

Since max_d = 16.941074346097 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 222 - 272

max_d = √2023 - 576 - 484 - 729

max_d = √234

max_d = 15.297058540778

Since max_d = 15.297058540778 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 222 - 282

max_d = √2023 - 576 - 484 - 784

max_d = √179

max_d = 13.37908816026

Since max_d = 13.37908816026 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 222 - 292

max_d = √2023 - 576 - 484 - 841

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 222 - 302

max_d = √2023 - 576 - 484 - 900

max_d = √63

max_d = 7.9372539331938

Since max_d = 7.9372539331938 is not an integer, this is not a solution

c = 31

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 222 - 312

max_d = √2023 - 576 - 484 - 961

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 232)

max_c = Floor(√2023 - 576 - 529)

max_c = Floor(√918)

max_c = Floor(30.298514815086)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 232)/2 = 459

When min_c = 22, then it is c2 = 484 ≥ 459, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 232 - 222

max_d = √2023 - 576 - 529 - 484

max_d = √434

max_d = 20.832666656

Since max_d = 20.832666656 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 232 - 232

max_d = √2023 - 576 - 529 - 529

max_d = √389

max_d = 19.723082923316

Since max_d = 19.723082923316 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 232 - 242

max_d = √2023 - 576 - 529 - 576

max_d = √342

max_d = 18.493242008907

Since max_d = 18.493242008907 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 232 - 252

max_d = √2023 - 576 - 529 - 625

max_d = √293

max_d = 17.117242768624

Since max_d = 17.117242768624 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 232 - 262

max_d = √2023 - 576 - 529 - 676

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 232 - 272

max_d = √2023 - 576 - 529 - 729

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 232 - 282

max_d = √2023 - 576 - 529 - 784

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 232 - 292

max_d = √2023 - 576 - 529 - 841

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 232 - 302

max_d = √2023 - 576 - 529 - 900

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 242)

max_c = Floor(√2023 - 576 - 576)

max_c = Floor(√871)

max_c = Floor(29.512709126747)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 242)/2 = 435.5

When min_c = 21, then it is c2 = 441 ≥ 435.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 242 - 212

max_d = √2023 - 576 - 576 - 441

max_d = √430

max_d = 20.736441353328

Since max_d = 20.736441353328 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 242 - 222

max_d = √2023 - 576 - 576 - 484

max_d = √387

max_d = 19.672315572906

Since max_d = 19.672315572906 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 242 - 232

max_d = √2023 - 576 - 576 - 529

max_d = √342

max_d = 18.493242008907

Since max_d = 18.493242008907 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 242 - 242

max_d = √2023 - 576 - 576 - 576

max_d = √295

max_d = 17.175564037318

Since max_d = 17.175564037318 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 242 - 252

max_d = √2023 - 576 - 576 - 625

max_d = √246

max_d = 15.684387141358

Since max_d = 15.684387141358 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 242 - 262

max_d = √2023 - 576 - 576 - 676

max_d = √195

max_d = 13.964240043769

Since max_d = 13.964240043769 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 242 - 272

max_d = √2023 - 576 - 576 - 729

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 242 - 282

max_d = √2023 - 576 - 576 - 784

max_d = √87

max_d = 9.3273790530888

Since max_d = 9.3273790530888 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 242 - 292

max_d = √2023 - 576 - 576 - 841

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 252)

max_c = Floor(√2023 - 576 - 625)

max_c = Floor(√822)

max_c = Floor(28.670542373663)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 252)/2 = 411

When min_c = 21, then it is c2 = 441 ≥ 411, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 252 - 212

max_d = √2023 - 576 - 625 - 441

max_d = √381

max_d = 19.519221295943

Since max_d = 19.519221295943 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 252 - 222

max_d = √2023 - 576 - 625 - 484

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 252 - 232

max_d = √2023 - 576 - 625 - 529

max_d = √293

max_d = 17.117242768624

Since max_d = 17.117242768624 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 252 - 242

max_d = √2023 - 576 - 625 - 576

max_d = √246

max_d = 15.684387141358

Since max_d = 15.684387141358 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 252 - 252

max_d = √2023 - 576 - 625 - 625

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 252 - 262

max_d = √2023 - 576 - 625 - 676

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 252 - 272

max_d = √2023 - 576 - 625 - 729

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 252 - 282

max_d = √2023 - 576 - 625 - 784

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 262)

max_c = Floor(√2023 - 576 - 676)

max_c = Floor(√771)

max_c = Floor(27.76688675383)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 262)/2 = 385.5

When min_c = 20, then it is c2 = 400 ≥ 385.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 262 - 202

max_d = √2023 - 576 - 676 - 400

max_d = √371

max_d = 19.261360284258

Since max_d = 19.261360284258 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 262 - 212

max_d = √2023 - 576 - 676 - 441

max_d = √330

max_d = 18.165902124585

Since max_d = 18.165902124585 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 262 - 222

max_d = √2023 - 576 - 676 - 484

max_d = √287

max_d = 16.941074346097

Since max_d = 16.941074346097 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 262 - 232

max_d = √2023 - 576 - 676 - 529

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 262 - 242

max_d = √2023 - 576 - 676 - 576

max_d = √195

max_d = 13.964240043769

Since max_d = 13.964240043769 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 262 - 252

max_d = √2023 - 576 - 676 - 625

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 262 - 262

max_d = √2023 - 576 - 676 - 676

max_d = √95

max_d = 9.746794344809

Since max_d = 9.746794344809 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 262 - 272

max_d = √2023 - 576 - 676 - 729

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 272)

max_c = Floor(√2023 - 576 - 729)

max_c = Floor(√718)

max_c = Floor(26.795522013949)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 272)/2 = 359

When min_c = 19, then it is c2 = 361 ≥ 359, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 272 - 192

max_d = √2023 - 576 - 729 - 361

max_d = √357

max_d = 18.894443627691

Since max_d = 18.894443627691 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 272 - 202

max_d = √2023 - 576 - 729 - 400

max_d = √318

max_d = 17.832554500127

Since max_d = 17.832554500127 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 272 - 212

max_d = √2023 - 576 - 729 - 441

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 272 - 222

max_d = √2023 - 576 - 729 - 484

max_d = √234

max_d = 15.297058540778

Since max_d = 15.297058540778 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 272 - 232

max_d = √2023 - 576 - 729 - 529

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 272 - 242

max_d = √2023 - 576 - 729 - 576

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 272 - 252

max_d = √2023 - 576 - 729 - 625

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 272 - 262

max_d = √2023 - 576 - 729 - 676

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 282)

max_c = Floor(√2023 - 576 - 784)

max_c = Floor(√663)

max_c = Floor(25.748786379167)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 282)/2 = 331.5

When min_c = 19, then it is c2 = 361 ≥ 331.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 282 - 192

max_d = √2023 - 576 - 784 - 361

max_d = √302

max_d = 17.378147196983

Since max_d = 17.378147196983 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 282 - 202

max_d = √2023 - 576 - 784 - 400

max_d = √263

max_d = 16.217274740227

Since max_d = 16.217274740227 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 282 - 212

max_d = √2023 - 576 - 784 - 441

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 282 - 222

max_d = √2023 - 576 - 784 - 484

max_d = √179

max_d = 13.37908816026

Since max_d = 13.37908816026 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 282 - 232

max_d = √2023 - 576 - 784 - 529

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 282 - 242

max_d = √2023 - 576 - 784 - 576

max_d = √87

max_d = 9.3273790530888

Since max_d = 9.3273790530888 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 282 - 252

max_d = √2023 - 576 - 784 - 625

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 292)

max_c = Floor(√2023 - 576 - 841)

max_c = Floor(√606)

max_c = Floor(24.617067250182)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 292)/2 = 303

When min_c = 18, then it is c2 = 324 ≥ 303, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 292 - 182

max_d = √2023 - 576 - 841 - 324

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 292 - 192

max_d = √2023 - 576 - 841 - 361

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 292 - 202

max_d = √2023 - 576 - 841 - 400

max_d = √206

max_d = 14.352700094407

Since max_d = 14.352700094407 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 292 - 212

max_d = √2023 - 576 - 841 - 441

max_d = √165

max_d = 12.845232578665

Since max_d = 12.845232578665 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 292 - 222

max_d = √2023 - 576 - 841 - 484

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 292 - 232

max_d = √2023 - 576 - 841 - 529

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 292 - 242

max_d = √2023 - 576 - 841 - 576

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 302)

max_c = Floor(√2023 - 576 - 900)

max_c = Floor(√547)

max_c = Floor(23.388031127053)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 302)/2 = 273.5

When min_c = 17, then it is c2 = 289 ≥ 273.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 302 - 172

max_d = √2023 - 576 - 900 - 289

max_d = √258

max_d = 16.062378404209

Since max_d = 16.062378404209 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 302 - 182

max_d = √2023 - 576 - 900 - 324

max_d = √223

max_d = 14.933184523068

Since max_d = 14.933184523068 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 302 - 192

max_d = √2023 - 576 - 900 - 361

max_d = √186

max_d = 13.638181696986

Since max_d = 13.638181696986 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 302 - 202

max_d = √2023 - 576 - 900 - 400

max_d = √147

max_d = 12.124355652982

Since max_d = 12.124355652982 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 302 - 212

max_d = √2023 - 576 - 900 - 441

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 302 - 222

max_d = √2023 - 576 - 900 - 484

max_d = √63

max_d = 7.9372539331938

Since max_d = 7.9372539331938 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 302 - 232

max_d = √2023 - 576 - 900 - 529

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 312)

max_c = Floor(√2023 - 576 - 961)

max_c = Floor(√486)

max_c = Floor(22.045407685049)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 312)/2 = 243

When min_c = 16, then it is c2 = 256 ≥ 243, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 312 - 162

max_d = √2023 - 576 - 961 - 256

max_d = √230

max_d = 15.165750888103

Since max_d = 15.165750888103 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 312 - 172

max_d = √2023 - 576 - 961 - 289

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 312 - 182

max_d = √2023 - 576 - 961 - 324

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 312 - 192

max_d = √2023 - 576 - 961 - 361

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 312 - 202

max_d = √2023 - 576 - 961 - 400

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 312 - 212

max_d = √2023 - 576 - 961 - 441

max_d = √45

max_d = 6.7082039324994

Since max_d = 6.7082039324994 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 312 - 222

max_d = √2023 - 576 - 961 - 484

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 322)

max_c = Floor(√2023 - 576 - 1024)

max_c = Floor(√423)

max_c = Floor(20.566963801203)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 322)/2 = 211.5

When min_c = 15, then it is c2 = 225 ≥ 211.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 322 - 152

max_d = √2023 - 576 - 1024 - 225

max_d = √198

max_d = 14.07124727947

Since max_d = 14.07124727947 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 322 - 162

max_d = √2023 - 576 - 1024 - 256

max_d = √167

max_d = 12.92284798332

Since max_d = 12.92284798332 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 322 - 172

max_d = √2023 - 576 - 1024 - 289

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 322 - 182

max_d = √2023 - 576 - 1024 - 324

max_d = √99

max_d = 9.9498743710662

Since max_d = 9.9498743710662 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 322 - 192

max_d = √2023 - 576 - 1024 - 361

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 322 - 202

max_d = √2023 - 576 - 1024 - 400

max_d = √23

max_d = 4.7958315233127

Since max_d = 4.7958315233127 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 332)

max_c = Floor(√2023 - 576 - 1089)

max_c = Floor(√358)

max_c = Floor(18.920887928425)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 332)/2 = 179

When min_c = 14, then it is c2 = 196 ≥ 179, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 332 - 142

max_d = √2023 - 576 - 1089 - 196

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 332 - 152

max_d = √2023 - 576 - 1089 - 225

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 332 - 162

max_d = √2023 - 576 - 1089 - 256

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 332 - 172

max_d = √2023 - 576 - 1089 - 289

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 332 - 182

max_d = √2023 - 576 - 1089 - 324

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 342)

max_c = Floor(√2023 - 576 - 1156)

max_c = Floor(√291)

max_c = Floor(17.058722109232)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 342)/2 = 145.5

When min_c = 13, then it is c2 = 169 ≥ 145.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 342 - 132

max_d = √2023 - 576 - 1156 - 169

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 342 - 142

max_d = √2023 - 576 - 1156 - 196

max_d = √95

max_d = 9.746794344809

Since max_d = 9.746794344809 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 342 - 152

max_d = √2023 - 576 - 1156 - 225

max_d = √66

max_d = 8.124038404636

Since max_d = 8.124038404636 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 342 - 162

max_d = √2023 - 576 - 1156 - 256

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 342 - 172

max_d = √2023 - 576 - 1156 - 289

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 352)

max_c = Floor(√2023 - 576 - 1225)

max_c = Floor(√222)

max_c = Floor(14.899664425751)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 352)/2 = 111

When min_c = 11, then it is c2 = 121 ≥ 111, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 352 - 112

max_d = √2023 - 576 - 1225 - 121

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 352 - 122

max_d = √2023 - 576 - 1225 - 144

max_d = √78

max_d = 8.8317608663278

Since max_d = 8.8317608663278 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 352 - 132

max_d = √2023 - 576 - 1225 - 169

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 352 - 142

max_d = √2023 - 576 - 1225 - 196

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 362)

max_c = Floor(√2023 - 576 - 1296)

max_c = Floor(√151)

max_c = Floor(12.288205727445)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 362)/2 = 75.5

When min_c = 9, then it is c2 = 81 ≥ 75.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 362 - 92

max_d = √2023 - 576 - 1296 - 81

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 362 - 102

max_d = √2023 - 576 - 1296 - 100

max_d = √51

max_d = 7.1414284285429

Since max_d = 7.1414284285429 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 362 - 112

max_d = √2023 - 576 - 1296 - 121

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 362 - 122

max_d = √2023 - 576 - 1296 - 144

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 372)

max_c = Floor(√2023 - 576 - 1369)

max_c = Floor(√78)

max_c = Floor(8.8317608663278)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 372)/2 = 39

When min_c = 7, then it is c2 = 49 ≥ 39, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 372 - 72

max_d = √2023 - 576 - 1369 - 49

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 242 - 372 - 82

max_d = √2023 - 576 - 1369 - 64

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 38

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 242 - 382)

max_c = Floor(√2023 - 576 - 1444)

max_c = Floor(√3)

max_c = Floor(1.7320508075689)

max_c = 1

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 242 - 382)/2 = 1.5

When min_c = 2, then it is c2 = 4 ≥ 1.5, so min_c = 2

a = 25

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 252)

max_b = Floor(√2023 - 625)

max_b = Floor(√1398)

max_b = Floor(37.38983819168)

max_b = 37

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 252)/3 = 466

When min_b = 22, then it is b2 = 484 ≥ 466, so min_b = 22

Test values for b in the range of (min_b, max_b)

(22, 37)

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 222)

max_c = Floor(√2023 - 625 - 484)

max_c = Floor(√914)

max_c = Floor(30.232432915662)

max_c = 30

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 222)/2 = 457

When min_c = 22, then it is c2 = 484 ≥ 457, so min_c = 22

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 222 - 222

max_d = √2023 - 625 - 484 - 484

max_d = √430

max_d = 20.736441353328

Since max_d = 20.736441353328 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 222 - 232

max_d = √2023 - 625 - 484 - 529

max_d = √385

max_d = 19.621416870349

Since max_d = 19.621416870349 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 222 - 242

max_d = √2023 - 625 - 484 - 576

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 222 - 252

max_d = √2023 - 625 - 484 - 625

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (25, 22, 25, 17) is an integer solution proven below

252 + 222 + 252 + 172 → 625 + 484 + 625 + 289 = 2023

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 222 - 262

max_d = √2023 - 625 - 484 - 676

max_d = √238

max_d = 15.427248620542

Since max_d = 15.427248620542 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 222 - 272

max_d = √2023 - 625 - 484 - 729

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 222 - 282

max_d = √2023 - 625 - 484 - 784

max_d = √130

max_d = 11.401754250991

Since max_d = 11.401754250991 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 222 - 292

max_d = √2023 - 625 - 484 - 841

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 30

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 222 - 302

max_d = √2023 - 625 - 484 - 900

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 232)

max_c = Floor(√2023 - 625 - 529)

max_c = Floor(√869)

max_c = Floor(29.478805945967)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 232)/2 = 434.5

When min_c = 21, then it is c2 = 441 ≥ 434.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 232 - 212

max_d = √2023 - 625 - 529 - 441

max_d = √428

max_d = 20.688160865577

Since max_d = 20.688160865577 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 232 - 222

max_d = √2023 - 625 - 529 - 484

max_d = √385

max_d = 19.621416870349

Since max_d = 19.621416870349 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 232 - 232

max_d = √2023 - 625 - 529 - 529

max_d = √340

max_d = 18.439088914586

Since max_d = 18.439088914586 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 232 - 242

max_d = √2023 - 625 - 529 - 576

max_d = √293

max_d = 17.117242768624

Since max_d = 17.117242768624 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 232 - 252

max_d = √2023 - 625 - 529 - 625

max_d = √244

max_d = 15.620499351813

Since max_d = 15.620499351813 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 232 - 262

max_d = √2023 - 625 - 529 - 676

max_d = √193

max_d = 13.89244398945

Since max_d = 13.89244398945 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 232 - 272

max_d = √2023 - 625 - 529 - 729

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 232 - 282

max_d = √2023 - 625 - 529 - 784

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 232 - 292

max_d = √2023 - 625 - 529 - 841

max_d = √28

max_d = 5.2915026221292

Since max_d = 5.2915026221292 is not an integer, this is not a solution

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 242)

max_c = Floor(√2023 - 625 - 576)

max_c = Floor(√822)

max_c = Floor(28.670542373663)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 242)/2 = 411

When min_c = 21, then it is c2 = 441 ≥ 411, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 242 - 212

max_d = √2023 - 625 - 576 - 441

max_d = √381

max_d = 19.519221295943

Since max_d = 19.519221295943 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 242 - 222

max_d = √2023 - 625 - 576 - 484

max_d = √338

max_d = 18.38477631085

Since max_d = 18.38477631085 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 242 - 232

max_d = √2023 - 625 - 576 - 529

max_d = √293

max_d = 17.117242768624

Since max_d = 17.117242768624 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 242 - 242

max_d = √2023 - 625 - 576 - 576

max_d = √246

max_d = 15.684387141358

Since max_d = 15.684387141358 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 242 - 252

max_d = √2023 - 625 - 576 - 625

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 242 - 262

max_d = √2023 - 625 - 576 - 676

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 242 - 272

max_d = √2023 - 625 - 576 - 729

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 242 - 282

max_d = √2023 - 625 - 576 - 784

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 252)

max_c = Floor(√2023 - 625 - 625)

max_c = Floor(√773)

max_c = Floor(27.802877548916)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 252)/2 = 386.5

When min_c = 20, then it is c2 = 400 ≥ 386.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 252 - 202

max_d = √2023 - 625 - 625 - 400

max_d = √373

max_d = 19.313207915828

Since max_d = 19.313207915828 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 252 - 212

max_d = √2023 - 625 - 625 - 441

max_d = √332

max_d = 18.220867158289

Since max_d = 18.220867158289 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 252 - 222

max_d = √2023 - 625 - 625 - 484

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (25, 25, 22, 17) is an integer solution proven below

252 + 252 + 222 + 172 → 625 + 625 + 484 + 289 = 2023

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 252 - 232

max_d = √2023 - 625 - 625 - 529

max_d = √244

max_d = 15.620499351813

Since max_d = 15.620499351813 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 252 - 242

max_d = √2023 - 625 - 625 - 576

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 252 - 252

max_d = √2023 - 625 - 625 - 625

max_d = √148

max_d = 12.165525060596

Since max_d = 12.165525060596 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 252 - 262

max_d = √2023 - 625 - 625 - 676

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 252 - 272

max_d = √2023 - 625 - 625 - 729

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 262)

max_c = Floor(√2023 - 625 - 676)

max_c = Floor(√722)

max_c = Floor(26.870057685089)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 262)/2 = 361

When min_c = 19, then it is c2 = 361 ≥ 361, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 262 - 192

max_d = √2023 - 625 - 676 - 361

max_d = √361

max_d = 19

Since max_d = 19, then (a, b, c, d) = (25, 26, 19, 19) is an integer solution proven below

252 + 262 + 192 + 192 → 625 + 676 + 361 + 361 = 2023

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 262 - 202

max_d = √2023 - 625 - 676 - 400

max_d = √322

max_d = 17.944358444926

Since max_d = 17.944358444926 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 262 - 212

max_d = √2023 - 625 - 676 - 441

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 262 - 222

max_d = √2023 - 625 - 676 - 484

max_d = √238

max_d = 15.427248620542

Since max_d = 15.427248620542 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 262 - 232

max_d = √2023 - 625 - 676 - 529

max_d = √193

max_d = 13.89244398945

Since max_d = 13.89244398945 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 262 - 242

max_d = √2023 - 625 - 676 - 576

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 262 - 252

max_d = √2023 - 625 - 676 - 625

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 262 - 262

max_d = √2023 - 625 - 676 - 676

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 272)

max_c = Floor(√2023 - 625 - 729)

max_c = Floor(√669)

max_c = Floor(25.865034312755)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 272)/2 = 334.5

When min_c = 19, then it is c2 = 361 ≥ 334.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 272 - 192

max_d = √2023 - 625 - 729 - 361

max_d = √308

max_d = 17.549928774784

Since max_d = 17.549928774784 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 272 - 202

max_d = √2023 - 625 - 729 - 400

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 272 - 212

max_d = √2023 - 625 - 729 - 441

max_d = √228

max_d = 15.099668870541

Since max_d = 15.099668870541 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 272 - 222

max_d = √2023 - 625 - 729 - 484

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 272 - 232

max_d = √2023 - 625 - 729 - 529

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 272 - 242

max_d = √2023 - 625 - 729 - 576

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 272 - 252

max_d = √2023 - 625 - 729 - 625

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 282)

max_c = Floor(√2023 - 625 - 784)

max_c = Floor(√614)

max_c = Floor(24.779023386728)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 282)/2 = 307

When min_c = 18, then it is c2 = 324 ≥ 307, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 282 - 182

max_d = √2023 - 625 - 784 - 324

max_d = √290

max_d = 17.029386365926

Since max_d = 17.029386365926 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 282 - 192

max_d = √2023 - 625 - 784 - 361

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 282 - 202

max_d = √2023 - 625 - 784 - 400

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 282 - 212

max_d = √2023 - 625 - 784 - 441

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 282 - 222

max_d = √2023 - 625 - 784 - 484

max_d = √130

max_d = 11.401754250991

Since max_d = 11.401754250991 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 282 - 232

max_d = √2023 - 625 - 784 - 529

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 282 - 242

max_d = √2023 - 625 - 784 - 576

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 292)

max_c = Floor(√2023 - 625 - 841)

max_c = Floor(√557)

max_c = Floor(23.600847442412)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 292)/2 = 278.5

When min_c = 17, then it is c2 = 289 ≥ 278.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 292 - 172

max_d = √2023 - 625 - 841 - 289

max_d = √268

max_d = 16.370705543745

Since max_d = 16.370705543745 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 292 - 182

max_d = √2023 - 625 - 841 - 324

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 292 - 192

max_d = √2023 - 625 - 841 - 361

max_d = √196

max_d = 14

Since max_d = 14, then (a, b, c, d) = (25, 29, 19, 14) is an integer solution proven below

252 + 292 + 192 + 142 → 625 + 841 + 361 + 196 = 2023

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 292 - 202

max_d = √2023 - 625 - 841 - 400

max_d = √157

max_d = 12.529964086142

Since max_d = 12.529964086142 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 292 - 212

max_d = √2023 - 625 - 841 - 441

max_d = √116

max_d = 10.770329614269

Since max_d = 10.770329614269 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 292 - 222

max_d = √2023 - 625 - 841 - 484

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 292 - 232

max_d = √2023 - 625 - 841 - 529

max_d = √28

max_d = 5.2915026221292

Since max_d = 5.2915026221292 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 302)

max_c = Floor(√2023 - 625 - 900)

max_c = Floor(√498)

max_c = Floor(22.315913604421)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 302)/2 = 249

When min_c = 16, then it is c2 = 256 ≥ 249, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 302 - 162

max_d = √2023 - 625 - 900 - 256

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 302 - 172

max_d = √2023 - 625 - 900 - 289

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 302 - 182

max_d = √2023 - 625 - 900 - 324

max_d = √174

max_d = 13.190905958273

Since max_d = 13.190905958273 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 302 - 192

max_d = √2023 - 625 - 900 - 361

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 302 - 202

max_d = √2023 - 625 - 900 - 400

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 302 - 212

max_d = √2023 - 625 - 900 - 441

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 302 - 222

max_d = √2023 - 625 - 900 - 484

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 312)

max_c = Floor(√2023 - 625 - 961)

max_c = Floor(√437)

max_c = Floor(20.904544960367)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 312)/2 = 218.5

When min_c = 15, then it is c2 = 225 ≥ 218.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 312 - 152

max_d = √2023 - 625 - 961 - 225

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 312 - 162

max_d = √2023 - 625 - 961 - 256

max_d = √181

max_d = 13.453624047074

Since max_d = 13.453624047074 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 312 - 172

max_d = √2023 - 625 - 961 - 289

max_d = √148

max_d = 12.165525060596

Since max_d = 12.165525060596 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 312 - 182

max_d = √2023 - 625 - 961 - 324

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 312 - 192

max_d = √2023 - 625 - 961 - 361

max_d = √76

max_d = 8.7177978870813

Since max_d = 8.7177978870813 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 312 - 202

max_d = √2023 - 625 - 961 - 400

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 322)

max_c = Floor(√2023 - 625 - 1024)

max_c = Floor(√374)

max_c = Floor(19.339079605814)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 322)/2 = 187

When min_c = 14, then it is c2 = 196 ≥ 187, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 322 - 142

max_d = √2023 - 625 - 1024 - 196

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 322 - 152

max_d = √2023 - 625 - 1024 - 225

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 322 - 162

max_d = √2023 - 625 - 1024 - 256

max_d = √118

max_d = 10.8627804912

Since max_d = 10.8627804912 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 322 - 172

max_d = √2023 - 625 - 1024 - 289

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 322 - 182

max_d = √2023 - 625 - 1024 - 324

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 322 - 192

max_d = √2023 - 625 - 1024 - 361

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 332)

max_c = Floor(√2023 - 625 - 1089)

max_c = Floor(√309)

max_c = Floor(17.578395831247)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 332)/2 = 154.5

When min_c = 13, then it is c2 = 169 ≥ 154.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 332 - 132

max_d = √2023 - 625 - 1089 - 169

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 332 - 142

max_d = √2023 - 625 - 1089 - 196

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 332 - 152

max_d = √2023 - 625 - 1089 - 225

max_d = √84

max_d = 9.1651513899117

Since max_d = 9.1651513899117 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 332 - 162

max_d = √2023 - 625 - 1089 - 256

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 332 - 172

max_d = √2023 - 625 - 1089 - 289

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 342)

max_c = Floor(√2023 - 625 - 1156)

max_c = Floor(√242)

max_c = Floor(15.556349186104)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 342)/2 = 121

When min_c = 11, then it is c2 = 121 ≥ 121, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 342 - 112

max_d = √2023 - 625 - 1156 - 121

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (25, 34, 11, 11) is an integer solution proven below

252 + 342 + 112 + 112 → 625 + 1156 + 121 + 121 = 2023

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 342 - 122

max_d = √2023 - 625 - 1156 - 144

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 342 - 132

max_d = √2023 - 625 - 1156 - 169

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 342 - 142

max_d = √2023 - 625 - 1156 - 196

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 342 - 152

max_d = √2023 - 625 - 1156 - 225

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 352)

max_c = Floor(√2023 - 625 - 1225)

max_c = Floor(√173)

max_c = Floor(13.152946437966)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 352)/2 = 86.5

When min_c = 10, then it is c2 = 100 ≥ 86.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 352 - 102

max_d = √2023 - 625 - 1225 - 100

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 352 - 112

max_d = √2023 - 625 - 1225 - 121

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 352 - 122

max_d = √2023 - 625 - 1225 - 144

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 352 - 132

max_d = √2023 - 625 - 1225 - 169

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (25, 35, 13, 2) is an integer solution proven below

252 + 352 + 132 + 22 → 625 + 1225 + 169 + 4 = 2023

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 362)

max_c = Floor(√2023 - 625 - 1296)

max_c = Floor(√102)

max_c = Floor(10.099504938362)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 362)/2 = 51

When min_c = 8, then it is c2 = 64 ≥ 51, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 362 - 82

max_d = √2023 - 625 - 1296 - 64

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 362 - 92

max_d = √2023 - 625 - 1296 - 81

max_d = √21

max_d = 4.5825756949558

Since max_d = 4.5825756949558 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 362 - 102

max_d = √2023 - 625 - 1296 - 100

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 37

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 252 - 372)

max_c = Floor(√2023 - 625 - 1369)

max_c = Floor(√29)

max_c = Floor(5.3851648071345)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 252 - 372)/2 = 14.5

When min_c = 4, then it is c2 = 16 ≥ 14.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 372 - 42

max_d = √2023 - 625 - 1369 - 16

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 252 - 372 - 52

max_d = √2023 - 625 - 1369 - 25

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (25, 37, 5, 2) is an integer solution proven below

252 + 372 + 52 + 22 → 625 + 1369 + 25 + 4 = 2023

a = 26

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 262)

max_b = Floor(√2023 - 676)

max_b = Floor(√1347)

max_b = Floor(36.701498607005)

max_b = 36

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 262)/3 = 449

When min_b = 22, then it is b2 = 484 ≥ 449, so min_b = 22

Test values for b in the range of (min_b, max_b)

(22, 36)

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 222)

max_c = Floor(√2023 - 676 - 484)

max_c = Floor(√863)

max_c = Floor(29.376861643137)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 222)/2 = 431.5

When min_c = 21, then it is c2 = 441 ≥ 431.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 222 - 212

max_d = √2023 - 676 - 484 - 441

max_d = √422

max_d = 20.542638584174

Since max_d = 20.542638584174 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 222 - 222

max_d = √2023 - 676 - 484 - 484

max_d = √379

max_d = 19.467922333932

Since max_d = 19.467922333932 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 222 - 232

max_d = √2023 - 676 - 484 - 529

max_d = √334

max_d = 18.275666882497

Since max_d = 18.275666882497 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 222 - 242

max_d = √2023 - 676 - 484 - 576

max_d = √287

max_d = 16.941074346097

Since max_d = 16.941074346097 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 222 - 252

max_d = √2023 - 676 - 484 - 625

max_d = √238

max_d = 15.427248620542

Since max_d = 15.427248620542 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 222 - 262

max_d = √2023 - 676 - 484 - 676

max_d = √187

max_d = 13.674794331177

Since max_d = 13.674794331177 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 222 - 272

max_d = √2023 - 676 - 484 - 729

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 222 - 282

max_d = √2023 - 676 - 484 - 784

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 222 - 292

max_d = √2023 - 676 - 484 - 841

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 232)

max_c = Floor(√2023 - 676 - 529)

max_c = Floor(√818)

max_c = Floor(28.60069929215)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 232)/2 = 409

When min_c = 21, then it is c2 = 441 ≥ 409, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 232 - 212

max_d = √2023 - 676 - 529 - 441

max_d = √377

max_d = 19.416487838948

Since max_d = 19.416487838948 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 232 - 222

max_d = √2023 - 676 - 529 - 484

max_d = √334

max_d = 18.275666882497

Since max_d = 18.275666882497 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 232 - 232

max_d = √2023 - 676 - 529 - 529

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (26, 23, 23, 17) is an integer solution proven below

262 + 232 + 232 + 172 → 676 + 529 + 529 + 289 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 232 - 242

max_d = √2023 - 676 - 529 - 576

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 232 - 252

max_d = √2023 - 676 - 529 - 625

max_d = √193

max_d = 13.89244398945

Since max_d = 13.89244398945 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 232 - 262

max_d = √2023 - 676 - 529 - 676

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 232 - 272

max_d = √2023 - 676 - 529 - 729

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 232 - 282

max_d = √2023 - 676 - 529 - 784

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 242)

max_c = Floor(√2023 - 676 - 576)

max_c = Floor(√771)

max_c = Floor(27.76688675383)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 242)/2 = 385.5

When min_c = 20, then it is c2 = 400 ≥ 385.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 242 - 202

max_d = √2023 - 676 - 576 - 400

max_d = √371

max_d = 19.261360284258

Since max_d = 19.261360284258 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 242 - 212

max_d = √2023 - 676 - 576 - 441

max_d = √330

max_d = 18.165902124585

Since max_d = 18.165902124585 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 242 - 222

max_d = √2023 - 676 - 576 - 484

max_d = √287

max_d = 16.941074346097

Since max_d = 16.941074346097 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 242 - 232

max_d = √2023 - 676 - 576 - 529

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 242 - 242

max_d = √2023 - 676 - 576 - 576

max_d = √195

max_d = 13.964240043769

Since max_d = 13.964240043769 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 242 - 252

max_d = √2023 - 676 - 576 - 625

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 242 - 262

max_d = √2023 - 676 - 576 - 676

max_d = √95

max_d = 9.746794344809

Since max_d = 9.746794344809 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 242 - 272

max_d = √2023 - 676 - 576 - 729

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 252)

max_c = Floor(√2023 - 676 - 625)

max_c = Floor(√722)

max_c = Floor(26.870057685089)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 252)/2 = 361

When min_c = 19, then it is c2 = 361 ≥ 361, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 252 - 192

max_d = √2023 - 676 - 625 - 361

max_d = √361

max_d = 19

Since max_d = 19, then (a, b, c, d) = (26, 25, 19, 19) is an integer solution proven below

262 + 252 + 192 + 192 → 676 + 625 + 361 + 361 = 2023

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 252 - 202

max_d = √2023 - 676 - 625 - 400

max_d = √322

max_d = 17.944358444926

Since max_d = 17.944358444926 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 252 - 212

max_d = √2023 - 676 - 625 - 441

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 252 - 222

max_d = √2023 - 676 - 625 - 484

max_d = √238

max_d = 15.427248620542

Since max_d = 15.427248620542 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 252 - 232

max_d = √2023 - 676 - 625 - 529

max_d = √193

max_d = 13.89244398945

Since max_d = 13.89244398945 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 252 - 242

max_d = √2023 - 676 - 625 - 576

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 252 - 252

max_d = √2023 - 676 - 625 - 625

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 252 - 262

max_d = √2023 - 676 - 625 - 676

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 262)

max_c = Floor(√2023 - 676 - 676)

max_c = Floor(√671)

max_c = Floor(25.903667693977)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 262)/2 = 335.5

When min_c = 19, then it is c2 = 361 ≥ 335.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 262 - 192

max_d = √2023 - 676 - 676 - 361

max_d = √310

max_d = 17.606816861659

Since max_d = 17.606816861659 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 262 - 202

max_d = √2023 - 676 - 676 - 400

max_d = √271

max_d = 16.462077633154

Since max_d = 16.462077633154 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 262 - 212

max_d = √2023 - 676 - 676 - 441

max_d = √230

max_d = 15.165750888103

Since max_d = 15.165750888103 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 262 - 222

max_d = √2023 - 676 - 676 - 484

max_d = √187

max_d = 13.674794331177

Since max_d = 13.674794331177 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 262 - 232

max_d = √2023 - 676 - 676 - 529

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 262 - 242

max_d = √2023 - 676 - 676 - 576

max_d = √95

max_d = 9.746794344809

Since max_d = 9.746794344809 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 262 - 252

max_d = √2023 - 676 - 676 - 625

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 272)

max_c = Floor(√2023 - 676 - 729)

max_c = Floor(√618)

max_c = Floor(24.859605789312)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 272)/2 = 309

When min_c = 18, then it is c2 = 324 ≥ 309, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 272 - 182

max_d = √2023 - 676 - 729 - 324

max_d = √294

max_d = 17.146428199482

Since max_d = 17.146428199482 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 272 - 192

max_d = √2023 - 676 - 729 - 361

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 272 - 202

max_d = √2023 - 676 - 729 - 400

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 272 - 212

max_d = √2023 - 676 - 729 - 441

max_d = √177

max_d = 13.30413469565

Since max_d = 13.30413469565 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 272 - 222

max_d = √2023 - 676 - 729 - 484

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 272 - 232

max_d = √2023 - 676 - 729 - 529

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 272 - 242

max_d = √2023 - 676 - 729 - 576

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 282)

max_c = Floor(√2023 - 676 - 784)

max_c = Floor(√563)

max_c = Floor(23.727621035409)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 282)/2 = 281.5

When min_c = 17, then it is c2 = 289 ≥ 281.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 282 - 172

max_d = √2023 - 676 - 784 - 289

max_d = √274

max_d = 16.552945357247

Since max_d = 16.552945357247 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 282 - 182

max_d = √2023 - 676 - 784 - 324

max_d = √239

max_d = 15.45962483374

Since max_d = 15.45962483374 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 282 - 192

max_d = √2023 - 676 - 784 - 361

max_d = √202

max_d = 14.212670403552

Since max_d = 14.212670403552 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 282 - 202

max_d = √2023 - 676 - 784 - 400

max_d = √163

max_d = 12.767145334804

Since max_d = 12.767145334804 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 282 - 212

max_d = √2023 - 676 - 784 - 441

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 282 - 222

max_d = √2023 - 676 - 784 - 484

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 282 - 232

max_d = √2023 - 676 - 784 - 529

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 292)

max_c = Floor(√2023 - 676 - 841)

max_c = Floor(√506)

max_c = Floor(22.494443758404)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 292)/2 = 253

When min_c = 16, then it is c2 = 256 ≥ 253, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 292 - 162

max_d = √2023 - 676 - 841 - 256

max_d = √250

max_d = 15.811388300842

Since max_d = 15.811388300842 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 292 - 172

max_d = √2023 - 676 - 841 - 289

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 292 - 182

max_d = √2023 - 676 - 841 - 324

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 292 - 192

max_d = √2023 - 676 - 841 - 361

max_d = √145

max_d = 12.041594578792

Since max_d = 12.041594578792 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 292 - 202

max_d = √2023 - 676 - 841 - 400

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 292 - 212

max_d = √2023 - 676 - 841 - 441

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 292 - 222

max_d = √2023 - 676 - 841 - 484

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 302)

max_c = Floor(√2023 - 676 - 900)

max_c = Floor(√447)

max_c = Floor(21.142374511866)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 302)/2 = 223.5

When min_c = 15, then it is c2 = 225 ≥ 223.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 302 - 152

max_d = √2023 - 676 - 900 - 225

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 302 - 162

max_d = √2023 - 676 - 900 - 256

max_d = √191

max_d = 13.820274961085

Since max_d = 13.820274961085 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 302 - 172

max_d = √2023 - 676 - 900 - 289

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 302 - 182

max_d = √2023 - 676 - 900 - 324

max_d = √123

max_d = 11.090536506409

Since max_d = 11.090536506409 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 302 - 192

max_d = √2023 - 676 - 900 - 361

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 302 - 202

max_d = √2023 - 676 - 900 - 400

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 302 - 212

max_d = √2023 - 676 - 900 - 441

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 312)

max_c = Floor(√2023 - 676 - 961)

max_c = Floor(√386)

max_c = Floor(19.646882704388)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 312)/2 = 193

When min_c = 14, then it is c2 = 196 ≥ 193, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 312 - 142

max_d = √2023 - 676 - 961 - 196

max_d = √190

max_d = 13.78404875209

Since max_d = 13.78404875209 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 312 - 152

max_d = √2023 - 676 - 961 - 225

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 312 - 162

max_d = √2023 - 676 - 961 - 256

max_d = √130

max_d = 11.401754250991

Since max_d = 11.401754250991 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 312 - 172

max_d = √2023 - 676 - 961 - 289

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 312 - 182

max_d = √2023 - 676 - 961 - 324

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 312 - 192

max_d = √2023 - 676 - 961 - 361

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (26, 31, 19, 5) is an integer solution proven below

262 + 312 + 192 + 52 → 676 + 961 + 361 + 25 = 2023

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 322)

max_c = Floor(√2023 - 676 - 1024)

max_c = Floor(√323)

max_c = Floor(17.972200755611)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 322)/2 = 161.5

When min_c = 13, then it is c2 = 169 ≥ 161.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 322 - 132

max_d = √2023 - 676 - 1024 - 169

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 322 - 142

max_d = √2023 - 676 - 1024 - 196

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 322 - 152

max_d = √2023 - 676 - 1024 - 225

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 322 - 162

max_d = √2023 - 676 - 1024 - 256

max_d = √67

max_d = 8.1853527718725

Since max_d = 8.1853527718725 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 322 - 172

max_d = √2023 - 676 - 1024 - 289

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 332)

max_c = Floor(√2023 - 676 - 1089)

max_c = Floor(√258)

max_c = Floor(16.062378404209)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 332)/2 = 129

When min_c = 12, then it is c2 = 144 ≥ 129, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 332 - 122

max_d = √2023 - 676 - 1089 - 144

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 332 - 132

max_d = √2023 - 676 - 1089 - 169

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 332 - 142

max_d = √2023 - 676 - 1089 - 196

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 332 - 152

max_d = √2023 - 676 - 1089 - 225

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 332 - 162

max_d = √2023 - 676 - 1089 - 256

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 342)

max_c = Floor(√2023 - 676 - 1156)

max_c = Floor(√191)

max_c = Floor(13.820274961085)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 342)/2 = 95.5

When min_c = 10, then it is c2 = 100 ≥ 95.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 342 - 102

max_d = √2023 - 676 - 1156 - 100

max_d = √91

max_d = 9.5393920141695

Since max_d = 9.5393920141695 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 342 - 112

max_d = √2023 - 676 - 1156 - 121

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 342 - 122

max_d = √2023 - 676 - 1156 - 144

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 342 - 132

max_d = √2023 - 676 - 1156 - 169

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 352)

max_c = Floor(√2023 - 676 - 1225)

max_c = Floor(√122)

max_c = Floor(11.045361017187)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 352)/2 = 61

When min_c = 8, then it is c2 = 64 ≥ 61, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 352 - 82

max_d = √2023 - 676 - 1225 - 64

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 352 - 92

max_d = √2023 - 676 - 1225 - 81

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 352 - 102

max_d = √2023 - 676 - 1225 - 100

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 352 - 112

max_d = √2023 - 676 - 1225 - 121

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (26, 35, 11, 1) is an integer solution proven below

262 + 352 + 112 + 12 → 676 + 1225 + 121 + 1 = 2023

b = 36

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 262 - 362)

max_c = Floor(√2023 - 676 - 1296)

max_c = Floor(√51)

max_c = Floor(7.1414284285429)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 262 - 362)/2 = 25.5

When min_c = 6, then it is c2 = 36 ≥ 25.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 362 - 62

max_d = √2023 - 676 - 1296 - 36

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 262 - 362 - 72

max_d = √2023 - 676 - 1296 - 49

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 27

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 272)

max_b = Floor(√2023 - 729)

max_b = Floor(√1294)

max_b = Floor(35.97221149721)

max_b = 35

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 272)/3 = 431.33333333333

When min_b = 21, then it is b2 = 441 ≥ 431.33333333333, so min_b = 21

Test values for b in the range of (min_b, max_b)

(21, 35)

b = 21

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 212)

max_c = Floor(√2023 - 729 - 441)

max_c = Floor(√853)

max_c = Floor(29.20616373302)

max_c = 29

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 212)/2 = 426.5

When min_c = 21, then it is c2 = 441 ≥ 426.5, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 212 - 212

max_d = √2023 - 729 - 441 - 441

max_d = √412

max_d = 20.297783130184

Since max_d = 20.297783130184 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 212 - 222

max_d = √2023 - 729 - 441 - 484

max_d = √369

max_d = 19.209372712299

Since max_d = 19.209372712299 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 212 - 232

max_d = √2023 - 729 - 441 - 529

max_d = √324

max_d = 18

Since max_d = 18, then (a, b, c, d) = (27, 21, 23, 18) is an integer solution proven below

272 + 212 + 232 + 182 → 729 + 441 + 529 + 324 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 212 - 242

max_d = √2023 - 729 - 441 - 576

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 212 - 252

max_d = √2023 - 729 - 441 - 625

max_d = √228

max_d = 15.099668870541

Since max_d = 15.099668870541 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 212 - 262

max_d = √2023 - 729 - 441 - 676

max_d = √177

max_d = 13.30413469565

Since max_d = 13.30413469565 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 212 - 272

max_d = √2023 - 729 - 441 - 729

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 212 - 282

max_d = √2023 - 729 - 441 - 784

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 29

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 212 - 292

max_d = √2023 - 729 - 441 - 841

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 222)

max_c = Floor(√2023 - 729 - 484)

max_c = Floor(√810)

max_c = Floor(28.460498941515)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 222)/2 = 405

When min_c = 21, then it is c2 = 441 ≥ 405, so min_c = 21

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 222 - 212

max_d = √2023 - 729 - 484 - 441

max_d = √369

max_d = 19.209372712299

Since max_d = 19.209372712299 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 222 - 222

max_d = √2023 - 729 - 484 - 484

max_d = √326

max_d = 18.055470085268

Since max_d = 18.055470085268 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 222 - 232

max_d = √2023 - 729 - 484 - 529

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 222 - 242

max_d = √2023 - 729 - 484 - 576

max_d = √234

max_d = 15.297058540778

Since max_d = 15.297058540778 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 222 - 252

max_d = √2023 - 729 - 484 - 625

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 222 - 262

max_d = √2023 - 729 - 484 - 676

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 222 - 272

max_d = √2023 - 729 - 484 - 729

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (27, 22, 27, 9) is an integer solution proven below

272 + 222 + 272 + 92 → 729 + 484 + 729 + 81 = 2023

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 222 - 282

max_d = √2023 - 729 - 484 - 784

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 232)

max_c = Floor(√2023 - 729 - 529)

max_c = Floor(√765)

max_c = Floor(27.658633371879)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 232)/2 = 382.5

When min_c = 20, then it is c2 = 400 ≥ 382.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 232 - 202

max_d = √2023 - 729 - 529 - 400

max_d = √365

max_d = 19.104973174543

Since max_d = 19.104973174543 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 232 - 212

max_d = √2023 - 729 - 529 - 441

max_d = √324

max_d = 18

Since max_d = 18, then (a, b, c, d) = (27, 23, 21, 18) is an integer solution proven below

272 + 232 + 212 + 182 → 729 + 529 + 441 + 324 = 2023

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 232 - 222

max_d = √2023 - 729 - 529 - 484

max_d = √281

max_d = 16.76305461424

Since max_d = 16.76305461424 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 232 - 232

max_d = √2023 - 729 - 529 - 529

max_d = √236

max_d = 15.362291495737

Since max_d = 15.362291495737 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 232 - 242

max_d = √2023 - 729 - 529 - 576

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 232 - 252

max_d = √2023 - 729 - 529 - 625

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 232 - 262

max_d = √2023 - 729 - 529 - 676

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 232 - 272

max_d = √2023 - 729 - 529 - 729

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (27, 23, 27, 6) is an integer solution proven below

272 + 232 + 272 + 62 → 729 + 529 + 729 + 36 = 2023

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 242)

max_c = Floor(√2023 - 729 - 576)

max_c = Floor(√718)

max_c = Floor(26.795522013949)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 242)/2 = 359

When min_c = 19, then it is c2 = 361 ≥ 359, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 242 - 192

max_d = √2023 - 729 - 576 - 361

max_d = √357

max_d = 18.894443627691

Since max_d = 18.894443627691 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 242 - 202

max_d = √2023 - 729 - 576 - 400

max_d = √318

max_d = 17.832554500127

Since max_d = 17.832554500127 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 242 - 212

max_d = √2023 - 729 - 576 - 441

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 242 - 222

max_d = √2023 - 729 - 576 - 484

max_d = √234

max_d = 15.297058540778

Since max_d = 15.297058540778 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 242 - 232

max_d = √2023 - 729 - 576 - 529

max_d = √189

max_d = 13.747727084868

Since max_d = 13.747727084868 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 242 - 242

max_d = √2023 - 729 - 576 - 576

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 242 - 252

max_d = √2023 - 729 - 576 - 625

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 242 - 262

max_d = √2023 - 729 - 576 - 676

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 252)

max_c = Floor(√2023 - 729 - 625)

max_c = Floor(√669)

max_c = Floor(25.865034312755)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 252)/2 = 334.5

When min_c = 19, then it is c2 = 361 ≥ 334.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 252 - 192

max_d = √2023 - 729 - 625 - 361

max_d = √308

max_d = 17.549928774784

Since max_d = 17.549928774784 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 252 - 202

max_d = √2023 - 729 - 625 - 400

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 252 - 212

max_d = √2023 - 729 - 625 - 441

max_d = √228

max_d = 15.099668870541

Since max_d = 15.099668870541 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 252 - 222

max_d = √2023 - 729 - 625 - 484

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 252 - 232

max_d = √2023 - 729 - 625 - 529

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 252 - 242

max_d = √2023 - 729 - 625 - 576

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 252 - 252

max_d = √2023 - 729 - 625 - 625

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 262)

max_c = Floor(√2023 - 729 - 676)

max_c = Floor(√618)

max_c = Floor(24.859605789312)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 262)/2 = 309

When min_c = 18, then it is c2 = 324 ≥ 309, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 262 - 182

max_d = √2023 - 729 - 676 - 324

max_d = √294

max_d = 17.146428199482

Since max_d = 17.146428199482 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 262 - 192

max_d = √2023 - 729 - 676 - 361

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 262 - 202

max_d = √2023 - 729 - 676 - 400

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 262 - 212

max_d = √2023 - 729 - 676 - 441

max_d = √177

max_d = 13.30413469565

Since max_d = 13.30413469565 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 262 - 222

max_d = √2023 - 729 - 676 - 484

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 262 - 232

max_d = √2023 - 729 - 676 - 529

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 262 - 242

max_d = √2023 - 729 - 676 - 576

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 272)

max_c = Floor(√2023 - 729 - 729)

max_c = Floor(√565)

max_c = Floor(23.769728648009)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 272)/2 = 282.5

When min_c = 17, then it is c2 = 289 ≥ 282.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 272 - 172

max_d = √2023 - 729 - 729 - 289

max_d = √276

max_d = 16.613247725836

Since max_d = 16.613247725836 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 272 - 182

max_d = √2023 - 729 - 729 - 324

max_d = √241

max_d = 15.52417469626

Since max_d = 15.52417469626 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 272 - 192

max_d = √2023 - 729 - 729 - 361

max_d = √204

max_d = 14.282856857086

Since max_d = 14.282856857086 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 272 - 202

max_d = √2023 - 729 - 729 - 400

max_d = √165

max_d = 12.845232578665

Since max_d = 12.845232578665 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 272 - 212

max_d = √2023 - 729 - 729 - 441

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 272 - 222

max_d = √2023 - 729 - 729 - 484

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (27, 27, 22, 9) is an integer solution proven below

272 + 272 + 222 + 92 → 729 + 729 + 484 + 81 = 2023

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 272 - 232

max_d = √2023 - 729 - 729 - 529

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (27, 27, 23, 6) is an integer solution proven below

272 + 272 + 232 + 62 → 729 + 729 + 529 + 36 = 2023

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 282)

max_c = Floor(√2023 - 729 - 784)

max_c = Floor(√510)

max_c = Floor(22.583179581272)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 282)/2 = 255

When min_c = 16, then it is c2 = 256 ≥ 255, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 282 - 162

max_d = √2023 - 729 - 784 - 256

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 282 - 172

max_d = √2023 - 729 - 784 - 289

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 282 - 182

max_d = √2023 - 729 - 784 - 324

max_d = √186

max_d = 13.638181696986

Since max_d = 13.638181696986 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 282 - 192

max_d = √2023 - 729 - 784 - 361

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 282 - 202

max_d = √2023 - 729 - 784 - 400

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 282 - 212

max_d = √2023 - 729 - 784 - 441

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 282 - 222

max_d = √2023 - 729 - 784 - 484

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 292)

max_c = Floor(√2023 - 729 - 841)

max_c = Floor(√453)

max_c = Floor(21.283796653793)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 292)/2 = 226.5

When min_c = 16, then it is c2 = 256 ≥ 226.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 292 - 162

max_d = √2023 - 729 - 841 - 256

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 292 - 172

max_d = √2023 - 729 - 841 - 289

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 292 - 182

max_d = √2023 - 729 - 841 - 324

max_d = √129

max_d = 11.357816691601

Since max_d = 11.357816691601 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 292 - 192

max_d = √2023 - 729 - 841 - 361

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 292 - 202

max_d = √2023 - 729 - 841 - 400

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 292 - 212

max_d = √2023 - 729 - 841 - 441

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 302)

max_c = Floor(√2023 - 729 - 900)

max_c = Floor(√394)

max_c = Floor(19.849433241279)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 302)/2 = 197

When min_c = 15, then it is c2 = 225 ≥ 197, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 302 - 152

max_d = √2023 - 729 - 900 - 225

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (27, 30, 15, 13) is an integer solution proven below

272 + 302 + 152 + 132 → 729 + 900 + 225 + 169 = 2023

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 302 - 162

max_d = √2023 - 729 - 900 - 256

max_d = √138

max_d = 11.747340124471

Since max_d = 11.747340124471 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 302 - 172

max_d = √2023 - 729 - 900 - 289

max_d = √105

max_d = 10.24695076596

Since max_d = 10.24695076596 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 302 - 182

max_d = √2023 - 729 - 900 - 324

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 302 - 192

max_d = √2023 - 729 - 900 - 361

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 312)

max_c = Floor(√2023 - 729 - 961)

max_c = Floor(√333)

max_c = Floor(18.248287590895)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 312)/2 = 166.5

When min_c = 13, then it is c2 = 169 ≥ 166.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 312 - 132

max_d = √2023 - 729 - 961 - 169

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 312 - 142

max_d = √2023 - 729 - 961 - 196

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 312 - 152

max_d = √2023 - 729 - 961 - 225

max_d = √108

max_d = 10.392304845413

Since max_d = 10.392304845413 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 312 - 162

max_d = √2023 - 729 - 961 - 256

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 312 - 172

max_d = √2023 - 729 - 961 - 289

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 312 - 182

max_d = √2023 - 729 - 961 - 324

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (27, 31, 18, 3) is an integer solution proven below

272 + 312 + 182 + 32 → 729 + 961 + 324 + 9 = 2023

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 322)

max_c = Floor(√2023 - 729 - 1024)

max_c = Floor(√270)

max_c = Floor(16.431676725155)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 322)/2 = 135

When min_c = 12, then it is c2 = 144 ≥ 135, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 322 - 122

max_d = √2023 - 729 - 1024 - 144

max_d = √126

max_d = 11.224972160322

Since max_d = 11.224972160322 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 322 - 132

max_d = √2023 - 729 - 1024 - 169

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 322 - 142

max_d = √2023 - 729 - 1024 - 196

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 322 - 152

max_d = √2023 - 729 - 1024 - 225

max_d = √45

max_d = 6.7082039324994

Since max_d = 6.7082039324994 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 322 - 162

max_d = √2023 - 729 - 1024 - 256

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 332)

max_c = Floor(√2023 - 729 - 1089)

max_c = Floor(√205)

max_c = Floor(14.317821063276)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 332)/2 = 102.5

When min_c = 11, then it is c2 = 121 ≥ 102.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 332 - 112

max_d = √2023 - 729 - 1089 - 121

max_d = √84

max_d = 9.1651513899117

Since max_d = 9.1651513899117 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 332 - 122

max_d = √2023 - 729 - 1089 - 144

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 332 - 132

max_d = √2023 - 729 - 1089 - 169

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (27, 33, 13, 6) is an integer solution proven below

272 + 332 + 132 + 62 → 729 + 1089 + 169 + 36 = 2023

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 332 - 142

max_d = √2023 - 729 - 1089 - 196

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (27, 33, 14, 3) is an integer solution proven below

272 + 332 + 142 + 32 → 729 + 1089 + 196 + 9 = 2023

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 342)

max_c = Floor(√2023 - 729 - 1156)

max_c = Floor(√138)

max_c = Floor(11.747340124471)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 342)/2 = 69

When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 342 - 92

max_d = √2023 - 729 - 1156 - 81

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 342 - 102

max_d = √2023 - 729 - 1156 - 100

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 342 - 112

max_d = √2023 - 729 - 1156 - 121

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 272 - 352)

max_c = Floor(√2023 - 729 - 1225)

max_c = Floor(√69)

max_c = Floor(8.3066238629181)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 272 - 352)/2 = 34.5

When min_c = 6, then it is c2 = 36 ≥ 34.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 352 - 62

max_d = √2023 - 729 - 1225 - 36

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 352 - 72

max_d = √2023 - 729 - 1225 - 49

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 272 - 352 - 82

max_d = √2023 - 729 - 1225 - 64

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

a = 28

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 282)

max_b = Floor(√2023 - 784)

max_b = Floor(√1239)

max_b = Floor(35.199431813596)

max_b = 35

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 282)/3 = 413

When min_b = 21, then it is b2 = 441 ≥ 413, so min_b = 21

Test values for b in the range of (min_b, max_b)

(21, 35)

b = 21

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 212)

max_c = Floor(√2023 - 784 - 441)

max_c = Floor(√798)

max_c = Floor(28.248893783651)

max_c = 28

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 212)/2 = 399

When min_c = 20, then it is c2 = 400 ≥ 399, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 212 - 202

max_d = √2023 - 784 - 441 - 400

max_d = √398

max_d = 19.94993734326

Since max_d = 19.94993734326 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 212 - 212

max_d = √2023 - 784 - 441 - 441

max_d = √357

max_d = 18.894443627691

Since max_d = 18.894443627691 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 212 - 222

max_d = √2023 - 784 - 441 - 484

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 212 - 232

max_d = √2023 - 784 - 441 - 529

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 212 - 242

max_d = √2023 - 784 - 441 - 576

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 212 - 252

max_d = √2023 - 784 - 441 - 625

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 212 - 262

max_d = √2023 - 784 - 441 - 676

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 212 - 272

max_d = √2023 - 784 - 441 - 729

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 28

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 212 - 282

max_d = √2023 - 784 - 441 - 784

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 222)

max_c = Floor(√2023 - 784 - 484)

max_c = Floor(√755)

max_c = Floor(27.477263328068)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 222)/2 = 377.5

When min_c = 20, then it is c2 = 400 ≥ 377.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 222 - 202

max_d = √2023 - 784 - 484 - 400

max_d = √355

max_d = 18.841443681417

Since max_d = 18.841443681417 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 222 - 212

max_d = √2023 - 784 - 484 - 441

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 222 - 222

max_d = √2023 - 784 - 484 - 484

max_d = √271

max_d = 16.462077633154

Since max_d = 16.462077633154 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 222 - 232

max_d = √2023 - 784 - 484 - 529

max_d = √226

max_d = 15.033296378373

Since max_d = 15.033296378373 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 222 - 242

max_d = √2023 - 784 - 484 - 576

max_d = √179

max_d = 13.37908816026

Since max_d = 13.37908816026 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 222 - 252

max_d = √2023 - 784 - 484 - 625

max_d = √130

max_d = 11.401754250991

Since max_d = 11.401754250991 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 222 - 262

max_d = √2023 - 784 - 484 - 676

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 222 - 272

max_d = √2023 - 784 - 484 - 729

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 232)

max_c = Floor(√2023 - 784 - 529)

max_c = Floor(√710)

max_c = Floor(26.645825188948)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 232)/2 = 355

When min_c = 19, then it is c2 = 361 ≥ 355, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 232 - 192

max_d = √2023 - 784 - 529 - 361

max_d = √349

max_d = 18.681541692269

Since max_d = 18.681541692269 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 232 - 202

max_d = √2023 - 784 - 529 - 400

max_d = √310

max_d = 17.606816861659

Since max_d = 17.606816861659 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 232 - 212

max_d = √2023 - 784 - 529 - 441

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 232 - 222

max_d = √2023 - 784 - 529 - 484

max_d = √226

max_d = 15.033296378373

Since max_d = 15.033296378373 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 232 - 232

max_d = √2023 - 784 - 529 - 529

max_d = √181

max_d = 13.453624047074

Since max_d = 13.453624047074 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 232 - 242

max_d = √2023 - 784 - 529 - 576

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 232 - 252

max_d = √2023 - 784 - 529 - 625

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 232 - 262

max_d = √2023 - 784 - 529 - 676

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 242)

max_c = Floor(√2023 - 784 - 576)

max_c = Floor(√663)

max_c = Floor(25.748786379167)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 242)/2 = 331.5

When min_c = 19, then it is c2 = 361 ≥ 331.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 242 - 192

max_d = √2023 - 784 - 576 - 361

max_d = √302

max_d = 17.378147196983

Since max_d = 17.378147196983 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 242 - 202

max_d = √2023 - 784 - 576 - 400

max_d = √263

max_d = 16.217274740227

Since max_d = 16.217274740227 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 242 - 212

max_d = √2023 - 784 - 576 - 441

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 242 - 222

max_d = √2023 - 784 - 576 - 484

max_d = √179

max_d = 13.37908816026

Since max_d = 13.37908816026 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 242 - 232

max_d = √2023 - 784 - 576 - 529

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 242 - 242

max_d = √2023 - 784 - 576 - 576

max_d = √87

max_d = 9.3273790530888

Since max_d = 9.3273790530888 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 242 - 252

max_d = √2023 - 784 - 576 - 625

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 252)

max_c = Floor(√2023 - 784 - 625)

max_c = Floor(√614)

max_c = Floor(24.779023386728)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 252)/2 = 307

When min_c = 18, then it is c2 = 324 ≥ 307, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 252 - 182

max_d = √2023 - 784 - 625 - 324

max_d = √290

max_d = 17.029386365926

Since max_d = 17.029386365926 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 252 - 192

max_d = √2023 - 784 - 625 - 361

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 252 - 202

max_d = √2023 - 784 - 625 - 400

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 252 - 212

max_d = √2023 - 784 - 625 - 441

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 252 - 222

max_d = √2023 - 784 - 625 - 484

max_d = √130

max_d = 11.401754250991

Since max_d = 11.401754250991 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 252 - 232

max_d = √2023 - 784 - 625 - 529

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 252 - 242

max_d = √2023 - 784 - 625 - 576

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 262)

max_c = Floor(√2023 - 784 - 676)

max_c = Floor(√563)

max_c = Floor(23.727621035409)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 262)/2 = 281.5

When min_c = 17, then it is c2 = 289 ≥ 281.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 262 - 172

max_d = √2023 - 784 - 676 - 289

max_d = √274

max_d = 16.552945357247

Since max_d = 16.552945357247 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 262 - 182

max_d = √2023 - 784 - 676 - 324

max_d = √239

max_d = 15.45962483374

Since max_d = 15.45962483374 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 262 - 192

max_d = √2023 - 784 - 676 - 361

max_d = √202

max_d = 14.212670403552

Since max_d = 14.212670403552 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 262 - 202

max_d = √2023 - 784 - 676 - 400

max_d = √163

max_d = 12.767145334804

Since max_d = 12.767145334804 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 262 - 212

max_d = √2023 - 784 - 676 - 441

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 262 - 222

max_d = √2023 - 784 - 676 - 484

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 262 - 232

max_d = √2023 - 784 - 676 - 529

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 272)

max_c = Floor(√2023 - 784 - 729)

max_c = Floor(√510)

max_c = Floor(22.583179581272)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 272)/2 = 255

When min_c = 16, then it is c2 = 256 ≥ 255, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 272 - 162

max_d = √2023 - 784 - 729 - 256

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 272 - 172

max_d = √2023 - 784 - 729 - 289

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 272 - 182

max_d = √2023 - 784 - 729 - 324

max_d = √186

max_d = 13.638181696986

Since max_d = 13.638181696986 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 272 - 192

max_d = √2023 - 784 - 729 - 361

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 272 - 202

max_d = √2023 - 784 - 729 - 400

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 272 - 212

max_d = √2023 - 784 - 729 - 441

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 272 - 222

max_d = √2023 - 784 - 729 - 484

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 282)

max_c = Floor(√2023 - 784 - 784)

max_c = Floor(√455)

max_c = Floor(21.330729007702)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 282)/2 = 227.5

When min_c = 16, then it is c2 = 256 ≥ 227.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 282 - 162

max_d = √2023 - 784 - 784 - 256

max_d = √199

max_d = 14.106735979666

Since max_d = 14.106735979666 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 282 - 172

max_d = √2023 - 784 - 784 - 289

max_d = √166

max_d = 12.884098726725

Since max_d = 12.884098726725 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 282 - 182

max_d = √2023 - 784 - 784 - 324

max_d = √131

max_d = 11.44552314226

Since max_d = 11.44552314226 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 282 - 192

max_d = √2023 - 784 - 784 - 361

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 282 - 202

max_d = √2023 - 784 - 784 - 400

max_d = √55

max_d = 7.4161984870957

Since max_d = 7.4161984870957 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 282 - 212

max_d = √2023 - 784 - 784 - 441

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 292)

max_c = Floor(√2023 - 784 - 841)

max_c = Floor(√398)

max_c = Floor(19.94993734326)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 292)/2 = 199

When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 292 - 152

max_d = √2023 - 784 - 841 - 225

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 292 - 162

max_d = √2023 - 784 - 841 - 256

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 292 - 172

max_d = √2023 - 784 - 841 - 289

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 292 - 182

max_d = √2023 - 784 - 841 - 324

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 292 - 192

max_d = √2023 - 784 - 841 - 361

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 302)

max_c = Floor(√2023 - 784 - 900)

max_c = Floor(√339)

max_c = Floor(18.411952639522)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 302)/2 = 169.5

When min_c = 14, then it is c2 = 196 ≥ 169.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 302 - 142

max_d = √2023 - 784 - 900 - 196

max_d = √143

max_d = 11.958260743101

Since max_d = 11.958260743101 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 302 - 152

max_d = √2023 - 784 - 900 - 225

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 302 - 162

max_d = √2023 - 784 - 900 - 256

max_d = √83

max_d = 9.1104335791443

Since max_d = 9.1104335791443 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 302 - 172

max_d = √2023 - 784 - 900 - 289

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 302 - 182

max_d = √2023 - 784 - 900 - 324

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 312)

max_c = Floor(√2023 - 784 - 961)

max_c = Floor(√278)

max_c = Floor(16.673332000533)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 312)/2 = 139

When min_c = 12, then it is c2 = 144 ≥ 139, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 312 - 122

max_d = √2023 - 784 - 961 - 144

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 312 - 132

max_d = √2023 - 784 - 961 - 169

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 312 - 142

max_d = √2023 - 784 - 961 - 196

max_d = √82

max_d = 9.0553851381374

Since max_d = 9.0553851381374 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 312 - 152

max_d = √2023 - 784 - 961 - 225

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 312 - 162

max_d = √2023 - 784 - 961 - 256

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 322)

max_c = Floor(√2023 - 784 - 1024)

max_c = Floor(√215)

max_c = Floor(14.662878298615)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 322)/2 = 107.5

When min_c = 11, then it is c2 = 121 ≥ 107.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 322 - 112

max_d = √2023 - 784 - 1024 - 121

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 322 - 122

max_d = √2023 - 784 - 1024 - 144

max_d = √71

max_d = 8.4261497731764

Since max_d = 8.4261497731764 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 322 - 132

max_d = √2023 - 784 - 1024 - 169

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 322 - 142

max_d = √2023 - 784 - 1024 - 196

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 332)

max_c = Floor(√2023 - 784 - 1089)

max_c = Floor(√150)

max_c = Floor(12.247448713916)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 332)/2 = 75

When min_c = 9, then it is c2 = 81 ≥ 75, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 332 - 92

max_d = √2023 - 784 - 1089 - 81

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 332 - 102

max_d = √2023 - 784 - 1089 - 100

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 332 - 112

max_d = √2023 - 784 - 1089 - 121

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 332 - 122

max_d = √2023 - 784 - 1089 - 144

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 342)

max_c = Floor(√2023 - 784 - 1156)

max_c = Floor(√83)

max_c = Floor(9.1104335791443)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 342)/2 = 41.5

When min_c = 7, then it is c2 = 49 ≥ 41.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 342 - 72

max_d = √2023 - 784 - 1156 - 49

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 342 - 82

max_d = √2023 - 784 - 1156 - 64

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 342 - 92

max_d = √2023 - 784 - 1156 - 81

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 35

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 282 - 352)

max_c = Floor(√2023 - 784 - 1225)

max_c = Floor(√14)

max_c = Floor(3.7416573867739)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 282 - 352)/2 = 7

When min_c = 3, then it is c2 = 9 ≥ 7, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 282 - 352 - 32

max_d = √2023 - 784 - 1225 - 9

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

a = 29

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 292)

max_b = Floor(√2023 - 841)

max_b = Floor(√1182)

max_b = Floor(34.380226875342)

max_b = 34

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 292)/3 = 394

When min_b = 20, then it is b2 = 400 ≥ 394, so min_b = 20

Test values for b in the range of (min_b, max_b)

(20, 34)

b = 20

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 202)

max_c = Floor(√2023 - 841 - 400)

max_c = Floor(√782)

max_c = Floor(27.964262908219)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 202)/2 = 391

When min_c = 20, then it is c2 = 400 ≥ 391, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 202 - 202

max_d = √2023 - 841 - 400 - 400

max_d = √382

max_d = 19.544820285692

Since max_d = 19.544820285692 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 202 - 212

max_d = √2023 - 841 - 400 - 441

max_d = √341

max_d = 18.466185312619

Since max_d = 18.466185312619 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 202 - 222

max_d = √2023 - 841 - 400 - 484

max_d = √298

max_d = 17.262676501632

Since max_d = 17.262676501632 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 202 - 232

max_d = √2023 - 841 - 400 - 529

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 202 - 242

max_d = √2023 - 841 - 400 - 576

max_d = √206

max_d = 14.352700094407

Since max_d = 14.352700094407 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 202 - 252

max_d = √2023 - 841 - 400 - 625

max_d = √157

max_d = 12.529964086142

Since max_d = 12.529964086142 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 202 - 262

max_d = √2023 - 841 - 400 - 676

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 202 - 272

max_d = √2023 - 841 - 400 - 729

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

b = 21

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 212)

max_c = Floor(√2023 - 841 - 441)

max_c = Floor(√741)

max_c = Floor(27.221315177632)

max_c = 27

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 212)/2 = 370.5

When min_c = 20, then it is c2 = 400 ≥ 370.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 212 - 202

max_d = √2023 - 841 - 441 - 400

max_d = √341

max_d = 18.466185312619

Since max_d = 18.466185312619 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 212 - 212

max_d = √2023 - 841 - 441 - 441

max_d = √300

max_d = 17.320508075689

Since max_d = 17.320508075689 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 212 - 222

max_d = √2023 - 841 - 441 - 484

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 212 - 232

max_d = √2023 - 841 - 441 - 529

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 212 - 242

max_d = √2023 - 841 - 441 - 576

max_d = √165

max_d = 12.845232578665

Since max_d = 12.845232578665 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 212 - 252

max_d = √2023 - 841 - 441 - 625

max_d = √116

max_d = 10.770329614269

Since max_d = 10.770329614269 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 212 - 262

max_d = √2023 - 841 - 441 - 676

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 27

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 212 - 272

max_d = √2023 - 841 - 441 - 729

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 222)

max_c = Floor(√2023 - 841 - 484)

max_c = Floor(√698)

max_c = Floor(26.419689627246)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 222)/2 = 349

When min_c = 19, then it is c2 = 361 ≥ 349, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 222 - 192

max_d = √2023 - 841 - 484 - 361

max_d = √337

max_d = 18.357559750686

Since max_d = 18.357559750686 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 222 - 202

max_d = √2023 - 841 - 484 - 400

max_d = √298

max_d = 17.262676501632

Since max_d = 17.262676501632 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 222 - 212

max_d = √2023 - 841 - 484 - 441

max_d = √257

max_d = 16.031219541881

Since max_d = 16.031219541881 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 222 - 222

max_d = √2023 - 841 - 484 - 484

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 222 - 232

max_d = √2023 - 841 - 484 - 529

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (29, 22, 23, 13) is an integer solution proven below

292 + 222 + 232 + 132 → 841 + 484 + 529 + 169 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 222 - 242

max_d = √2023 - 841 - 484 - 576

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 222 - 252

max_d = √2023 - 841 - 484 - 625

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 222 - 262

max_d = √2023 - 841 - 484 - 676

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 232)

max_c = Floor(√2023 - 841 - 529)

max_c = Floor(√653)

max_c = Floor(25.553864678361)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 232)/2 = 326.5

When min_c = 19, then it is c2 = 361 ≥ 326.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 232 - 192

max_d = √2023 - 841 - 529 - 361

max_d = √292

max_d = 17.088007490635

Since max_d = 17.088007490635 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 232 - 202

max_d = √2023 - 841 - 529 - 400

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 232 - 212

max_d = √2023 - 841 - 529 - 441

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 232 - 222

max_d = √2023 - 841 - 529 - 484

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (29, 23, 22, 13) is an integer solution proven below

292 + 232 + 222 + 132 → 841 + 529 + 484 + 169 = 2023

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 232 - 232

max_d = √2023 - 841 - 529 - 529

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 232 - 242

max_d = √2023 - 841 - 529 - 576

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 232 - 252

max_d = √2023 - 841 - 529 - 625

max_d = √28

max_d = 5.2915026221292

Since max_d = 5.2915026221292 is not an integer, this is not a solution

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 242)

max_c = Floor(√2023 - 841 - 576)

max_c = Floor(√606)

max_c = Floor(24.617067250182)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 242)/2 = 303

When min_c = 18, then it is c2 = 324 ≥ 303, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 242 - 182

max_d = √2023 - 841 - 576 - 324

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 242 - 192

max_d = √2023 - 841 - 576 - 361

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 242 - 202

max_d = √2023 - 841 - 576 - 400

max_d = √206

max_d = 14.352700094407

Since max_d = 14.352700094407 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 242 - 212

max_d = √2023 - 841 - 576 - 441

max_d = √165

max_d = 12.845232578665

Since max_d = 12.845232578665 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 242 - 222

max_d = √2023 - 841 - 576 - 484

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 242 - 232

max_d = √2023 - 841 - 576 - 529

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 242 - 242

max_d = √2023 - 841 - 576 - 576

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 252)

max_c = Floor(√2023 - 841 - 625)

max_c = Floor(√557)

max_c = Floor(23.600847442412)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 252)/2 = 278.5

When min_c = 17, then it is c2 = 289 ≥ 278.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 252 - 172

max_d = √2023 - 841 - 625 - 289

max_d = √268

max_d = 16.370705543745

Since max_d = 16.370705543745 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 252 - 182

max_d = √2023 - 841 - 625 - 324

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 252 - 192

max_d = √2023 - 841 - 625 - 361

max_d = √196

max_d = 14

Since max_d = 14, then (a, b, c, d) = (29, 25, 19, 14) is an integer solution proven below

292 + 252 + 192 + 142 → 841 + 625 + 361 + 196 = 2023

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 252 - 202

max_d = √2023 - 841 - 625 - 400

max_d = √157

max_d = 12.529964086142

Since max_d = 12.529964086142 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 252 - 212

max_d = √2023 - 841 - 625 - 441

max_d = √116

max_d = 10.770329614269

Since max_d = 10.770329614269 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 252 - 222

max_d = √2023 - 841 - 625 - 484

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 252 - 232

max_d = √2023 - 841 - 625 - 529

max_d = √28

max_d = 5.2915026221292

Since max_d = 5.2915026221292 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 262)

max_c = Floor(√2023 - 841 - 676)

max_c = Floor(√506)

max_c = Floor(22.494443758404)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 262)/2 = 253

When min_c = 16, then it is c2 = 256 ≥ 253, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 262 - 162

max_d = √2023 - 841 - 676 - 256

max_d = √250

max_d = 15.811388300842

Since max_d = 15.811388300842 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 262 - 172

max_d = √2023 - 841 - 676 - 289

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 262 - 182

max_d = √2023 - 841 - 676 - 324

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 262 - 192

max_d = √2023 - 841 - 676 - 361

max_d = √145

max_d = 12.041594578792

Since max_d = 12.041594578792 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 262 - 202

max_d = √2023 - 841 - 676 - 400

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 262 - 212

max_d = √2023 - 841 - 676 - 441

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 262 - 222

max_d = √2023 - 841 - 676 - 484

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 272)

max_c = Floor(√2023 - 841 - 729)

max_c = Floor(√453)

max_c = Floor(21.283796653793)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 272)/2 = 226.5

When min_c = 16, then it is c2 = 256 ≥ 226.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 272 - 162

max_d = √2023 - 841 - 729 - 256

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 272 - 172

max_d = √2023 - 841 - 729 - 289

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 272 - 182

max_d = √2023 - 841 - 729 - 324

max_d = √129

max_d = 11.357816691601

Since max_d = 11.357816691601 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 272 - 192

max_d = √2023 - 841 - 729 - 361

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 272 - 202

max_d = √2023 - 841 - 729 - 400

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 272 - 212

max_d = √2023 - 841 - 729 - 441

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 282)

max_c = Floor(√2023 - 841 - 784)

max_c = Floor(√398)

max_c = Floor(19.94993734326)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 282)/2 = 199

When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 282 - 152

max_d = √2023 - 841 - 784 - 225

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 282 - 162

max_d = √2023 - 841 - 784 - 256

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 282 - 172

max_d = √2023 - 841 - 784 - 289

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 282 - 182

max_d = √2023 - 841 - 784 - 324

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 282 - 192

max_d = √2023 - 841 - 784 - 361

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 292)

max_c = Floor(√2023 - 841 - 841)

max_c = Floor(√341)

max_c = Floor(18.466185312619)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 292)/2 = 170.5

When min_c = 14, then it is c2 = 196 ≥ 170.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 292 - 142

max_d = √2023 - 841 - 841 - 196

max_d = √145

max_d = 12.041594578792

Since max_d = 12.041594578792 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 292 - 152

max_d = √2023 - 841 - 841 - 225

max_d = √116

max_d = 10.770329614269

Since max_d = 10.770329614269 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 292 - 162

max_d = √2023 - 841 - 841 - 256

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 292 - 172

max_d = √2023 - 841 - 841 - 289

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 292 - 182

max_d = √2023 - 841 - 841 - 324

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 302)

max_c = Floor(√2023 - 841 - 900)

max_c = Floor(√282)

max_c = Floor(16.792855623747)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 302)/2 = 141

When min_c = 12, then it is c2 = 144 ≥ 141, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 302 - 122

max_d = √2023 - 841 - 900 - 144

max_d = √138

max_d = 11.747340124471

Since max_d = 11.747340124471 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 302 - 132

max_d = √2023 - 841 - 900 - 169

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 302 - 142

max_d = √2023 - 841 - 900 - 196

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 302 - 152

max_d = √2023 - 841 - 900 - 225

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 302 - 162

max_d = √2023 - 841 - 900 - 256

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 312)

max_c = Floor(√2023 - 841 - 961)

max_c = Floor(√221)

max_c = Floor(14.866068747319)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 312)/2 = 110.5

When min_c = 11, then it is c2 = 121 ≥ 110.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 312 - 112

max_d = √2023 - 841 - 961 - 121

max_d = √100

max_d = 10

Since max_d = 10, then (a, b, c, d) = (29, 31, 11, 10) is an integer solution proven below

292 + 312 + 112 + 102 → 841 + 961 + 121 + 100 = 2023

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 312 - 122

max_d = √2023 - 841 - 961 - 144

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 312 - 132

max_d = √2023 - 841 - 961 - 169

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 312 - 142

max_d = √2023 - 841 - 961 - 196

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (29, 31, 14, 5) is an integer solution proven below

292 + 312 + 142 + 52 → 841 + 961 + 196 + 25 = 2023

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 322)

max_c = Floor(√2023 - 841 - 1024)

max_c = Floor(√158)

max_c = Floor(12.569805089977)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 322)/2 = 79

When min_c = 9, then it is c2 = 81 ≥ 79, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 322 - 92

max_d = √2023 - 841 - 1024 - 81

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 322 - 102

max_d = √2023 - 841 - 1024 - 100

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 322 - 112

max_d = √2023 - 841 - 1024 - 121

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 322 - 122

max_d = √2023 - 841 - 1024 - 144

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 332)

max_c = Floor(√2023 - 841 - 1089)

max_c = Floor(√93)

max_c = Floor(9.643650760993)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 332)/2 = 46.5

When min_c = 7, then it is c2 = 49 ≥ 46.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 332 - 72

max_d = √2023 - 841 - 1089 - 49

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 332 - 82

max_d = √2023 - 841 - 1089 - 64

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 332 - 92

max_d = √2023 - 841 - 1089 - 81

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 34

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 292 - 342)

max_c = Floor(√2023 - 841 - 1156)

max_c = Floor(√26)

max_c = Floor(5.0990195135928)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 292 - 342)/2 = 13

When min_c = 4, then it is c2 = 16 ≥ 13, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 342 - 42

max_d = √2023 - 841 - 1156 - 16

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 292 - 342 - 52

max_d = √2023 - 841 - 1156 - 25

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (29, 34, 5, 1) is an integer solution proven below

292 + 342 + 52 + 12 → 841 + 1156 + 25 + 1 = 2023

a = 30

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 302)

max_b = Floor(√2023 - 900)

max_b = Floor(√1123)

max_b = Floor(33.511192160232)

max_b = 33

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 302)/3 = 374.33333333333

When min_b = 20, then it is b2 = 400 ≥ 374.33333333333, so min_b = 20

Test values for b in the range of (min_b, max_b)

(20, 33)

b = 20

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 202)

max_c = Floor(√2023 - 900 - 400)

max_c = Floor(√723)

max_c = Floor(26.888659319498)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 202)/2 = 361.5

When min_c = 20, then it is c2 = 400 ≥ 361.5, so min_c = 20

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 202 - 202

max_d = √2023 - 900 - 400 - 400

max_d = √323

max_d = 17.972200755611

Since max_d = 17.972200755611 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 202 - 212

max_d = √2023 - 900 - 400 - 441

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 202 - 222

max_d = √2023 - 900 - 400 - 484

max_d = √239

max_d = 15.45962483374

Since max_d = 15.45962483374 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 202 - 232

max_d = √2023 - 900 - 400 - 529

max_d = √194

max_d = 13.928388277184

Since max_d = 13.928388277184 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 202 - 242

max_d = √2023 - 900 - 400 - 576

max_d = √147

max_d = 12.124355652982

Since max_d = 12.124355652982 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 202 - 252

max_d = √2023 - 900 - 400 - 625

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 202 - 262

max_d = √2023 - 900 - 400 - 676

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

b = 21

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 212)

max_c = Floor(√2023 - 900 - 441)

max_c = Floor(√682)

max_c = Floor(26.115129714401)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 212)/2 = 341

When min_c = 19, then it is c2 = 361 ≥ 341, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 212 - 192

max_d = √2023 - 900 - 441 - 361

max_d = √321

max_d = 17.916472867169

Since max_d = 17.916472867169 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 212 - 202

max_d = √2023 - 900 - 441 - 400

max_d = √282

max_d = 16.792855623747

Since max_d = 16.792855623747 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 212 - 212

max_d = √2023 - 900 - 441 - 441

max_d = √241

max_d = 15.52417469626

Since max_d = 15.52417469626 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 212 - 222

max_d = √2023 - 900 - 441 - 484

max_d = √198

max_d = 14.07124727947

Since max_d = 14.07124727947 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 212 - 232

max_d = √2023 - 900 - 441 - 529

max_d = √153

max_d = 12.369316876853

Since max_d = 12.369316876853 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 212 - 242

max_d = √2023 - 900 - 441 - 576

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 212 - 252

max_d = √2023 - 900 - 441 - 625

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 212 - 262

max_d = √2023 - 900 - 441 - 676

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 222)

max_c = Floor(√2023 - 900 - 484)

max_c = Floor(√639)

max_c = Floor(25.278449319529)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 222)/2 = 319.5

When min_c = 18, then it is c2 = 324 ≥ 319.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 222 - 182

max_d = √2023 - 900 - 484 - 324

max_d = √315

max_d = 17.748239349299

Since max_d = 17.748239349299 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 222 - 192

max_d = √2023 - 900 - 484 - 361

max_d = √278

max_d = 16.673332000533

Since max_d = 16.673332000533 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 222 - 202

max_d = √2023 - 900 - 484 - 400

max_d = √239

max_d = 15.45962483374

Since max_d = 15.45962483374 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 222 - 212

max_d = √2023 - 900 - 484 - 441

max_d = √198

max_d = 14.07124727947

Since max_d = 14.07124727947 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 222 - 222

max_d = √2023 - 900 - 484 - 484

max_d = √155

max_d = 12.449899597989

Since max_d = 12.449899597989 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 222 - 232

max_d = √2023 - 900 - 484 - 529

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 222 - 242

max_d = √2023 - 900 - 484 - 576

max_d = √63

max_d = 7.9372539331938

Since max_d = 7.9372539331938 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 222 - 252

max_d = √2023 - 900 - 484 - 625

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 232)

max_c = Floor(√2023 - 900 - 529)

max_c = Floor(√594)

max_c = Floor(24.372115213908)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 232)/2 = 297

When min_c = 18, then it is c2 = 324 ≥ 297, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 232 - 182

max_d = √2023 - 900 - 529 - 324

max_d = √270

max_d = 16.431676725155

Since max_d = 16.431676725155 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 232 - 192

max_d = √2023 - 900 - 529 - 361

max_d = √233

max_d = 15.264337522474

Since max_d = 15.264337522474 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 232 - 202

max_d = √2023 - 900 - 529 - 400

max_d = √194

max_d = 13.928388277184

Since max_d = 13.928388277184 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 232 - 212

max_d = √2023 - 900 - 529 - 441

max_d = √153

max_d = 12.369316876853

Since max_d = 12.369316876853 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 232 - 222

max_d = √2023 - 900 - 529 - 484

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 232 - 232

max_d = √2023 - 900 - 529 - 529

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 232 - 242

max_d = √2023 - 900 - 529 - 576

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 242)

max_c = Floor(√2023 - 900 - 576)

max_c = Floor(√547)

max_c = Floor(23.388031127053)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 242)/2 = 273.5

When min_c = 17, then it is c2 = 289 ≥ 273.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 242 - 172

max_d = √2023 - 900 - 576 - 289

max_d = √258

max_d = 16.062378404209

Since max_d = 16.062378404209 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 242 - 182

max_d = √2023 - 900 - 576 - 324

max_d = √223

max_d = 14.933184523068

Since max_d = 14.933184523068 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 242 - 192

max_d = √2023 - 900 - 576 - 361

max_d = √186

max_d = 13.638181696986

Since max_d = 13.638181696986 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 242 - 202

max_d = √2023 - 900 - 576 - 400

max_d = √147

max_d = 12.124355652982

Since max_d = 12.124355652982 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 242 - 212

max_d = √2023 - 900 - 576 - 441

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 242 - 222

max_d = √2023 - 900 - 576 - 484

max_d = √63

max_d = 7.9372539331938

Since max_d = 7.9372539331938 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 242 - 232

max_d = √2023 - 900 - 576 - 529

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 252)

max_c = Floor(√2023 - 900 - 625)

max_c = Floor(√498)

max_c = Floor(22.315913604421)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 252)/2 = 249

When min_c = 16, then it is c2 = 256 ≥ 249, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 252 - 162

max_d = √2023 - 900 - 625 - 256

max_d = √242

max_d = 15.556349186104

Since max_d = 15.556349186104 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 252 - 172

max_d = √2023 - 900 - 625 - 289

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 252 - 182

max_d = √2023 - 900 - 625 - 324

max_d = √174

max_d = 13.190905958273

Since max_d = 13.190905958273 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 252 - 192

max_d = √2023 - 900 - 625 - 361

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 252 - 202

max_d = √2023 - 900 - 625 - 400

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 252 - 212

max_d = √2023 - 900 - 625 - 441

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 252 - 222

max_d = √2023 - 900 - 625 - 484

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 262)

max_c = Floor(√2023 - 900 - 676)

max_c = Floor(√447)

max_c = Floor(21.142374511866)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 262)/2 = 223.5

When min_c = 15, then it is c2 = 225 ≥ 223.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 262 - 152

max_d = √2023 - 900 - 676 - 225

max_d = √222

max_d = 14.899664425751

Since max_d = 14.899664425751 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 262 - 162

max_d = √2023 - 900 - 676 - 256

max_d = √191

max_d = 13.820274961085

Since max_d = 13.820274961085 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 262 - 172

max_d = √2023 - 900 - 676 - 289

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 262 - 182

max_d = √2023 - 900 - 676 - 324

max_d = √123

max_d = 11.090536506409

Since max_d = 11.090536506409 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 262 - 192

max_d = √2023 - 900 - 676 - 361

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 262 - 202

max_d = √2023 - 900 - 676 - 400

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 262 - 212

max_d = √2023 - 900 - 676 - 441

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 272)

max_c = Floor(√2023 - 900 - 729)

max_c = Floor(√394)

max_c = Floor(19.849433241279)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 272)/2 = 197

When min_c = 15, then it is c2 = 225 ≥ 197, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 272 - 152

max_d = √2023 - 900 - 729 - 225

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (30, 27, 15, 13) is an integer solution proven below

302 + 272 + 152 + 132 → 900 + 729 + 225 + 169 = 2023

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 272 - 162

max_d = √2023 - 900 - 729 - 256

max_d = √138

max_d = 11.747340124471

Since max_d = 11.747340124471 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 272 - 172

max_d = √2023 - 900 - 729 - 289

max_d = √105

max_d = 10.24695076596

Since max_d = 10.24695076596 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 272 - 182

max_d = √2023 - 900 - 729 - 324

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 272 - 192

max_d = √2023 - 900 - 729 - 361

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 282)

max_c = Floor(√2023 - 900 - 784)

max_c = Floor(√339)

max_c = Floor(18.411952639522)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 282)/2 = 169.5

When min_c = 14, then it is c2 = 196 ≥ 169.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 282 - 142

max_d = √2023 - 900 - 784 - 196

max_d = √143

max_d = 11.958260743101

Since max_d = 11.958260743101 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 282 - 152

max_d = √2023 - 900 - 784 - 225

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 282 - 162

max_d = √2023 - 900 - 784 - 256

max_d = √83

max_d = 9.1104335791443

Since max_d = 9.1104335791443 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 282 - 172

max_d = √2023 - 900 - 784 - 289

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 282 - 182

max_d = √2023 - 900 - 784 - 324

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 292)

max_c = Floor(√2023 - 900 - 841)

max_c = Floor(√282)

max_c = Floor(16.792855623747)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 292)/2 = 141

When min_c = 12, then it is c2 = 144 ≥ 141, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 292 - 122

max_d = √2023 - 900 - 841 - 144

max_d = √138

max_d = 11.747340124471

Since max_d = 11.747340124471 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 292 - 132

max_d = √2023 - 900 - 841 - 169

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 292 - 142

max_d = √2023 - 900 - 841 - 196

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 292 - 152

max_d = √2023 - 900 - 841 - 225

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 292 - 162

max_d = √2023 - 900 - 841 - 256

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 302)

max_c = Floor(√2023 - 900 - 900)

max_c = Floor(√223)

max_c = Floor(14.933184523068)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 302)/2 = 111.5

When min_c = 11, then it is c2 = 121 ≥ 111.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 302 - 112

max_d = √2023 - 900 - 900 - 121

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 302 - 122

max_d = √2023 - 900 - 900 - 144

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 302 - 132

max_d = √2023 - 900 - 900 - 169

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 302 - 142

max_d = √2023 - 900 - 900 - 196

max_d = √27

max_d = 5.1961524227066

Since max_d = 5.1961524227066 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 312)

max_c = Floor(√2023 - 900 - 961)

max_c = Floor(√162)

max_c = Floor(12.727922061358)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 312)/2 = 81

When min_c = 9, then it is c2 = 81 ≥ 81, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 312 - 92

max_d = √2023 - 900 - 961 - 81

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (30, 31, 9, 9) is an integer solution proven below

302 + 312 + 92 + 92 → 900 + 961 + 81 + 81 = 2023

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 312 - 102

max_d = √2023 - 900 - 961 - 100

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 312 - 112

max_d = √2023 - 900 - 961 - 121

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 312 - 122

max_d = √2023 - 900 - 961 - 144

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 322)

max_c = Floor(√2023 - 900 - 1024)

max_c = Floor(√99)

max_c = Floor(9.9498743710662)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 322)/2 = 49.5

When min_c = 8, then it is c2 = 64 ≥ 49.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 322 - 82

max_d = √2023 - 900 - 1024 - 64

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 322 - 92

max_d = √2023 - 900 - 1024 - 81

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 33

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 302 - 332)

max_c = Floor(√2023 - 900 - 1089)

max_c = Floor(√34)

max_c = Floor(5.8309518948453)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 302 - 332)/2 = 17

When min_c = 5, then it is c2 = 25 ≥ 17, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 302 - 332 - 52

max_d = √2023 - 900 - 1089 - 25

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (30, 33, 5, 3) is an integer solution proven below

302 + 332 + 52 + 32 → 900 + 1089 + 25 + 9 = 2023

a = 31

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 312)

max_b = Floor(√2023 - 961)

max_b = Floor(√1062)

max_b = Floor(32.588341473601)

max_b = 32

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 312)/3 = 354

When min_b = 19, then it is b2 = 361 ≥ 354, so min_b = 19

Test values for b in the range of (min_b, max_b)

(19, 32)

b = 19

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 192)

max_c = Floor(√2023 - 961 - 361)

max_c = Floor(√701)

max_c = Floor(26.476404589747)

max_c = 26

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 192)/2 = 350.5

When min_c = 19, then it is c2 = 361 ≥ 350.5, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 192 - 192

max_d = √2023 - 961 - 361 - 361

max_d = √340

max_d = 18.439088914586

Since max_d = 18.439088914586 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 192 - 202

max_d = √2023 - 961 - 361 - 400

max_d = √301

max_d = 17.349351572897

Since max_d = 17.349351572897 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 192 - 212

max_d = √2023 - 961 - 361 - 441

max_d = √260

max_d = 16.124515496597

Since max_d = 16.124515496597 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 192 - 222

max_d = √2023 - 961 - 361 - 484

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 192 - 232

max_d = √2023 - 961 - 361 - 529

max_d = √172

max_d = 13.114877048604

Since max_d = 13.114877048604 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 192 - 242

max_d = √2023 - 961 - 361 - 576

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 192 - 252

max_d = √2023 - 961 - 361 - 625

max_d = √76

max_d = 8.7177978870813

Since max_d = 8.7177978870813 is not an integer, this is not a solution

c = 26

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 192 - 262

max_d = √2023 - 961 - 361 - 676

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (31, 19, 26, 5) is an integer solution proven below

312 + 192 + 262 + 52 → 961 + 361 + 676 + 25 = 2023

b = 20

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 202)

max_c = Floor(√2023 - 961 - 400)

max_c = Floor(√662)

max_c = Floor(25.729360660537)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 202)/2 = 331

When min_c = 19, then it is c2 = 361 ≥ 331, so min_c = 19

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 202 - 192

max_d = √2023 - 961 - 400 - 361

max_d = √301

max_d = 17.349351572897

Since max_d = 17.349351572897 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 202 - 202

max_d = √2023 - 961 - 400 - 400

max_d = √262

max_d = 16.186414056239

Since max_d = 16.186414056239 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 202 - 212

max_d = √2023 - 961 - 400 - 441

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 202 - 222

max_d = √2023 - 961 - 400 - 484

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 202 - 232

max_d = √2023 - 961 - 400 - 529

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 202 - 242

max_d = √2023 - 961 - 400 - 576

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 202 - 252

max_d = √2023 - 961 - 400 - 625

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 21

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 212)

max_c = Floor(√2023 - 961 - 441)

max_c = Floor(√621)

max_c = Floor(24.919871588754)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 212)/2 = 310.5

When min_c = 18, then it is c2 = 324 ≥ 310.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 212 - 182

max_d = √2023 - 961 - 441 - 324

max_d = √297

max_d = 17.233687939614

Since max_d = 17.233687939614 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 212 - 192

max_d = √2023 - 961 - 441 - 361

max_d = √260

max_d = 16.124515496597

Since max_d = 16.124515496597 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 212 - 202

max_d = √2023 - 961 - 441 - 400

max_d = √221

max_d = 14.866068747319

Since max_d = 14.866068747319 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 212 - 212

max_d = √2023 - 961 - 441 - 441

max_d = √180

max_d = 13.416407864999

Since max_d = 13.416407864999 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 212 - 222

max_d = √2023 - 961 - 441 - 484

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 212 - 232

max_d = √2023 - 961 - 441 - 529

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 212 - 242

max_d = √2023 - 961 - 441 - 576

max_d = √45

max_d = 6.7082039324994

Since max_d = 6.7082039324994 is not an integer, this is not a solution

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 222)

max_c = Floor(√2023 - 961 - 484)

max_c = Floor(√578)

max_c = Floor(24.041630560343)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 222)/2 = 289

When min_c = 17, then it is c2 = 289 ≥ 289, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 222 - 172

max_d = √2023 - 961 - 484 - 289

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (31, 22, 17, 17) is an integer solution proven below

312 + 222 + 172 + 172 → 961 + 484 + 289 + 289 = 2023

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 222 - 182

max_d = √2023 - 961 - 484 - 324

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 222 - 192

max_d = √2023 - 961 - 484 - 361

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 222 - 202

max_d = √2023 - 961 - 484 - 400

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 222 - 212

max_d = √2023 - 961 - 484 - 441

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 222 - 222

max_d = √2023 - 961 - 484 - 484

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 222 - 232

max_d = √2023 - 961 - 484 - 529

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (31, 22, 23, 7) is an integer solution proven below

312 + 222 + 232 + 72 → 961 + 484 + 529 + 49 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 222 - 242

max_d = √2023 - 961 - 484 - 576

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 232)

max_c = Floor(√2023 - 961 - 529)

max_c = Floor(√533)

max_c = Floor(23.08679276123)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 232)/2 = 266.5

When min_c = 17, then it is c2 = 289 ≥ 266.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 232 - 172

max_d = √2023 - 961 - 529 - 289

max_d = √244

max_d = 15.620499351813

Since max_d = 15.620499351813 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 232 - 182

max_d = √2023 - 961 - 529 - 324

max_d = √209

max_d = 14.456832294801

Since max_d = 14.456832294801 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 232 - 192

max_d = √2023 - 961 - 529 - 361

max_d = √172

max_d = 13.114877048604

Since max_d = 13.114877048604 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 232 - 202

max_d = √2023 - 961 - 529 - 400

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 232 - 212

max_d = √2023 - 961 - 529 - 441

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 232 - 222

max_d = √2023 - 961 - 529 - 484

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (31, 23, 22, 7) is an integer solution proven below

312 + 232 + 222 + 72 → 961 + 529 + 484 + 49 = 2023

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 232 - 232

max_d = √2023 - 961 - 529 - 529

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (31, 23, 23, 2) is an integer solution proven below

312 + 232 + 232 + 22 → 961 + 529 + 529 + 4 = 2023

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 242)

max_c = Floor(√2023 - 961 - 576)

max_c = Floor(√486)

max_c = Floor(22.045407685049)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 242)/2 = 243

When min_c = 16, then it is c2 = 256 ≥ 243, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 242 - 162

max_d = √2023 - 961 - 576 - 256

max_d = √230

max_d = 15.165750888103

Since max_d = 15.165750888103 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 242 - 172

max_d = √2023 - 961 - 576 - 289

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 242 - 182

max_d = √2023 - 961 - 576 - 324

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 242 - 192

max_d = √2023 - 961 - 576 - 361

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 242 - 202

max_d = √2023 - 961 - 576 - 400

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 242 - 212

max_d = √2023 - 961 - 576 - 441

max_d = √45

max_d = 6.7082039324994

Since max_d = 6.7082039324994 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 242 - 222

max_d = √2023 - 961 - 576 - 484

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 252)

max_c = Floor(√2023 - 961 - 625)

max_c = Floor(√437)

max_c = Floor(20.904544960367)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 252)/2 = 218.5

When min_c = 15, then it is c2 = 225 ≥ 218.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 252 - 152

max_d = √2023 - 961 - 625 - 225

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 252 - 162

max_d = √2023 - 961 - 625 - 256

max_d = √181

max_d = 13.453624047074

Since max_d = 13.453624047074 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 252 - 172

max_d = √2023 - 961 - 625 - 289

max_d = √148

max_d = 12.165525060596

Since max_d = 12.165525060596 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 252 - 182

max_d = √2023 - 961 - 625 - 324

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 252 - 192

max_d = √2023 - 961 - 625 - 361

max_d = √76

max_d = 8.7177978870813

Since max_d = 8.7177978870813 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 252 - 202

max_d = √2023 - 961 - 625 - 400

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 262)

max_c = Floor(√2023 - 961 - 676)

max_c = Floor(√386)

max_c = Floor(19.646882704388)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 262)/2 = 193

When min_c = 14, then it is c2 = 196 ≥ 193, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 262 - 142

max_d = √2023 - 961 - 676 - 196

max_d = √190

max_d = 13.78404875209

Since max_d = 13.78404875209 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 262 - 152

max_d = √2023 - 961 - 676 - 225

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 262 - 162

max_d = √2023 - 961 - 676 - 256

max_d = √130

max_d = 11.401754250991

Since max_d = 11.401754250991 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 262 - 172

max_d = √2023 - 961 - 676 - 289

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 262 - 182

max_d = √2023 - 961 - 676 - 324

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 262 - 192

max_d = √2023 - 961 - 676 - 361

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (31, 26, 19, 5) is an integer solution proven below

312 + 262 + 192 + 52 → 961 + 676 + 361 + 25 = 2023

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 272)

max_c = Floor(√2023 - 961 - 729)

max_c = Floor(√333)

max_c = Floor(18.248287590895)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 272)/2 = 166.5

When min_c = 13, then it is c2 = 169 ≥ 166.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 272 - 132

max_d = √2023 - 961 - 729 - 169

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 272 - 142

max_d = √2023 - 961 - 729 - 196

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 272 - 152

max_d = √2023 - 961 - 729 - 225

max_d = √108

max_d = 10.392304845413

Since max_d = 10.392304845413 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 272 - 162

max_d = √2023 - 961 - 729 - 256

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 272 - 172

max_d = √2023 - 961 - 729 - 289

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 272 - 182

max_d = √2023 - 961 - 729 - 324

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (31, 27, 18, 3) is an integer solution proven below

312 + 272 + 182 + 32 → 961 + 729 + 324 + 9 = 2023

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 282)

max_c = Floor(√2023 - 961 - 784)

max_c = Floor(√278)

max_c = Floor(16.673332000533)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 282)/2 = 139

When min_c = 12, then it is c2 = 144 ≥ 139, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 282 - 122

max_d = √2023 - 961 - 784 - 144

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 282 - 132

max_d = √2023 - 961 - 784 - 169

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 282 - 142

max_d = √2023 - 961 - 784 - 196

max_d = √82

max_d = 9.0553851381374

Since max_d = 9.0553851381374 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 282 - 152

max_d = √2023 - 961 - 784 - 225

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 282 - 162

max_d = √2023 - 961 - 784 - 256

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 292)

max_c = Floor(√2023 - 961 - 841)

max_c = Floor(√221)

max_c = Floor(14.866068747319)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 292)/2 = 110.5

When min_c = 11, then it is c2 = 121 ≥ 110.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 292 - 112

max_d = √2023 - 961 - 841 - 121

max_d = √100

max_d = 10

Since max_d = 10, then (a, b, c, d) = (31, 29, 11, 10) is an integer solution proven below

312 + 292 + 112 + 102 → 961 + 841 + 121 + 100 = 2023

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 292 - 122

max_d = √2023 - 961 - 841 - 144

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 292 - 132

max_d = √2023 - 961 - 841 - 169

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 292 - 142

max_d = √2023 - 961 - 841 - 196

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (31, 29, 14, 5) is an integer solution proven below

312 + 292 + 142 + 52 → 961 + 841 + 196 + 25 = 2023

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 302)

max_c = Floor(√2023 - 961 - 900)

max_c = Floor(√162)

max_c = Floor(12.727922061358)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 302)/2 = 81

When min_c = 9, then it is c2 = 81 ≥ 81, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 302 - 92

max_d = √2023 - 961 - 900 - 81

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (31, 30, 9, 9) is an integer solution proven below

312 + 302 + 92 + 92 → 961 + 900 + 81 + 81 = 2023

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 302 - 102

max_d = √2023 - 961 - 900 - 100

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 302 - 112

max_d = √2023 - 961 - 900 - 121

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 302 - 122

max_d = √2023 - 961 - 900 - 144

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 312)

max_c = Floor(√2023 - 961 - 961)

max_c = Floor(√101)

max_c = Floor(10.049875621121)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 312)/2 = 50.5

When min_c = 8, then it is c2 = 64 ≥ 50.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 312 - 82

max_d = √2023 - 961 - 961 - 64

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 312 - 92

max_d = √2023 - 961 - 961 - 81

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 312 - 102

max_d = √2023 - 961 - 961 - 100

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (31, 31, 10, 1) is an integer solution proven below

312 + 312 + 102 + 12 → 961 + 961 + 100 + 1 = 2023

b = 32

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 312 - 322)

max_c = Floor(√2023 - 961 - 1024)

max_c = Floor(√38)

max_c = Floor(6.164414002969)

max_c = 6

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 312 - 322)/2 = 19

When min_c = 5, then it is c2 = 25 ≥ 19, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 322 - 52

max_d = √2023 - 961 - 1024 - 25

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 312 - 322 - 62

max_d = √2023 - 961 - 1024 - 36

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 32

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 322)

max_b = Floor(√2023 - 1024)

max_b = Floor(√999)

max_b = Floor(31.606961258558)

max_b = 31

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 322)/3 = 333

When min_b = 19, then it is b2 = 361 ≥ 333, so min_b = 19

Test values for b in the range of (min_b, max_b)

(19, 31)

b = 19

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 322 - 192)

max_c = Floor(√2023 - 1024 - 361)

max_c = Floor(√638)

max_c = Floor(25.25866188063)

max_c = 25

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 322 - 192)/2 = 319

When min_c = 18, then it is c2 = 324 ≥ 319, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 192 - 182

max_d = √2023 - 1024 - 361 - 324

max_d = √314

max_d = 17.720045146669

Since max_d = 17.720045146669 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 192 - 192

max_d = √2023 - 1024 - 361 - 361

max_d = √277

max_d = 16.643316977093

Since max_d = 16.643316977093 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 192 - 202

max_d = √2023 - 1024 - 361 - 400

max_d = √238

max_d = 15.427248620542

Since max_d = 15.427248620542 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 192 - 212

max_d = √2023 - 1024 - 361 - 441

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 192 - 222

max_d = √2023 - 1024 - 361 - 484

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 192 - 232

max_d = √2023 - 1024 - 361 - 529

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 192 - 242

max_d = √2023 - 1024 - 361 - 576

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 25

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 192 - 252

max_d = √2023 - 1024 - 361 - 625

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 20

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 322 - 202)

max_c = Floor(√2023 - 1024 - 400)

max_c = Floor(√599)

max_c = Floor(24.474476501041)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 322 - 202)/2 = 299.5

When min_c = 18, then it is c2 = 324 ≥ 299.5, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 202 - 182

max_d = √2023 - 1024 - 400 - 324

max_d = √275

max_d = 16.583123951777

Since max_d = 16.583123951777 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 202 - 192

max_d = √2023 - 1024 - 400 - 361

max_d = √238

max_d = 15.427248620542

Since max_d = 15.427248620542 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 202 - 202

max_d = √2023 - 1024 - 400 - 400

max_d = √199

max_d = 14.106735979666

Since max_d = 14.106735979666 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 202 - 212

max_d = √2023 - 1024 - 400 - 441

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 202 - 222

max_d = √2023 - 1024 - 400 - 484

max_d = √115

max_d = 10.723805294764

Since max_d = 10.723805294764 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 202 - 232

max_d = √2023 - 1024 - 400 - 529

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 202 - 242

max_d = √2023 - 1024 - 400 - 576

max_d = √23

max_d = 4.7958315233127

Since max_d = 4.7958315233127 is not an integer, this is not a solution

b = 21

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 322 - 212)

max_c = Floor(√2023 - 1024 - 441)

max_c = Floor(√558)

max_c = Floor(23.622023622035)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 322 - 212)/2 = 279

When min_c = 17, then it is c2 = 289 ≥ 279, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 212 - 172

max_d = √2023 - 1024 - 441 - 289

max_d = √269

max_d = 16.401219466857

Since max_d = 16.401219466857 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 212 - 182

max_d = √2023 - 1024 - 441 - 324

max_d = √234

max_d = 15.297058540778

Since max_d = 15.297058540778 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 212 - 192

max_d = √2023 - 1024 - 441 - 361

max_d = √197

max_d = 14.035668847618

Since max_d = 14.035668847618 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 212 - 202

max_d = √2023 - 1024 - 441 - 400

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 212 - 212

max_d = √2023 - 1024 - 441 - 441

max_d = √117

max_d = 10.816653826392

Since max_d = 10.816653826392 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 212 - 222

max_d = √2023 - 1024 - 441 - 484

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 212 - 232

max_d = √2023 - 1024 - 441 - 529

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 322 - 222)

max_c = Floor(√2023 - 1024 - 484)

max_c = Floor(√515)

max_c = Floor(22.69361143582)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 322 - 222)/2 = 257.5

When min_c = 17, then it is c2 = 289 ≥ 257.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 222 - 172

max_d = √2023 - 1024 - 484 - 289

max_d = √226

max_d = 15.033296378373

Since max_d = 15.033296378373 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 222 - 182

max_d = √2023 - 1024 - 484 - 324

max_d = √191

max_d = 13.820274961085

Since max_d = 13.820274961085 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 222 - 192

max_d = √2023 - 1024 - 484 - 361

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 222 - 202

max_d = √2023 - 1024 - 484 - 400

max_d = √115

max_d = 10.723805294764

Since max_d = 10.723805294764 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 222 - 212

max_d = √2023 - 1024 - 484 - 441

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 222 - 222

max_d = √2023 - 1024 - 484 - 484

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 322 - 232)

max_c = Floor(√2023 - 1024 - 529)

max_c = Floor(√470)

max_c = Floor(21.679483388679)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 322 - 232)/2 = 235

When min_c = 16, then it is c2 = 256 ≥ 235, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 232 - 162

max_d = √2023 - 1024 - 529 - 256

max_d = √214

max_d = 14.628738838328

Since max_d = 14.628738838328 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 232 - 172

max_d = √2023 - 1024 - 529 - 289

max_d = √181

max_d = 13.453624047074

Since max_d = 13.453624047074 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 232 - 182

max_d = √2023 - 1024 - 529 - 324

max_d = √146

max_d = 12.083045973595

Since max_d = 12.083045973595 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 232 - 192

max_d = √2023 - 1024 - 529 - 361

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 232 - 202

max_d = √2023 - 1024 - 529 - 400

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 232 - 212

max_d = √2023 - 1024 - 529 - 441

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 322 - 242)

max_c = Floor(√2023 - 1024 - 576)

max_c = Floor(√423)

max_c = Floor(20.566963801203)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 322 - 242)/2 = 211.5

When min_c = 15, then it is c2 = 225 ≥ 211.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 242 - 152

max_d = √2023 - 1024 - 576 - 225

max_d = √198

max_d = 14.07124727947

Since max_d = 14.07124727947 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 242 - 162

max_d = √2023 - 1024 - 576 - 256

max_d = √167

max_d = 12.92284798332

Since max_d = 12.92284798332 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 242 - 172

max_d = √2023 - 1024 - 576 - 289

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 242 - 182

max_d = √2023 - 1024 - 576 - 324

max_d = √99

max_d = 9.9498743710662

Since max_d = 9.9498743710662 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 242 - 192

max_d = √2023 - 1024 - 576 - 361

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 242 - 202

max_d = √2023 - 1024 - 576 - 400

max_d = √23

max_d = 4.7958315233127

Since max_d = 4.7958315233127 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 322 - 252)

max_c = Floor(√2023 - 1024 - 625)

max_c = Floor(√374)

max_c = Floor(19.339079605814)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 322 - 252)/2 = 187

When min_c = 14, then it is c2 = 196 ≥ 187, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 252 - 142

max_d = √2023 - 1024 - 625 - 196

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 252 - 152

max_d = √2023 - 1024 - 625 - 225

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 252 - 162

max_d = √2023 - 1024 - 625 - 256

max_d = √118

max_d = 10.8627804912

Since max_d = 10.8627804912 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 252 - 172

max_d = √2023 - 1024 - 625 - 289

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 252 - 182

max_d = √2023 - 1024 - 625 - 324

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 252 - 192

max_d = √2023 - 1024 - 625 - 361

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 322 - 262)

max_c = Floor(√2023 - 1024 - 676)

max_c = Floor(√323)

max_c = Floor(17.972200755611)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 322 - 262)/2 = 161.5

When min_c = 13, then it is c2 = 169 ≥ 161.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 262 - 132

max_d = √2023 - 1024 - 676 - 169

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 262 - 142

max_d = √2023 - 1024 - 676 - 196

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 262 - 152

max_d = √2023 - 1024 - 676 - 225

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 262 - 162

max_d = √2023 - 1024 - 676 - 256

max_d = √67

max_d = 8.1853527718725

Since max_d = 8.1853527718725 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 262 - 172

max_d = √2023 - 1024 - 676 - 289

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 322 - 272)

max_c = Floor(√2023 - 1024 - 729)

max_c = Floor(√270)

max_c = Floor(16.431676725155)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 322 - 272)/2 = 135

When min_c = 12, then it is c2 = 144 ≥ 135, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 272 - 122

max_d = √2023 - 1024 - 729 - 144

max_d = √126

max_d = 11.224972160322

Since max_d = 11.224972160322 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 272 - 132

max_d = √2023 - 1024 - 729 - 169

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 272 - 142

max_d = √2023 - 1024 - 729 - 196

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 272 - 152

max_d = √2023 - 1024 - 729 - 225

max_d = √45

max_d = 6.7082039324994

Since max_d = 6.7082039324994 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 272 - 162

max_d = √2023 - 1024 - 729 - 256

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 322 - 282)

max_c = Floor(√2023 - 1024 - 784)

max_c = Floor(√215)

max_c = Floor(14.662878298615)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 322 - 282)/2 = 107.5

When min_c = 11, then it is c2 = 121 ≥ 107.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 282 - 112

max_d = √2023 - 1024 - 784 - 121

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 282 - 122

max_d = √2023 - 1024 - 784 - 144

max_d = √71

max_d = 8.4261497731764

Since max_d = 8.4261497731764 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 282 - 132

max_d = √2023 - 1024 - 784 - 169

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 282 - 142

max_d = √2023 - 1024 - 784 - 196

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 322 - 292)

max_c = Floor(√2023 - 1024 - 841)

max_c = Floor(√158)

max_c = Floor(12.569805089977)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 322 - 292)/2 = 79

When min_c = 9, then it is c2 = 81 ≥ 79, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 292 - 92

max_d = √2023 - 1024 - 841 - 81

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 292 - 102

max_d = √2023 - 1024 - 841 - 100

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 292 - 112

max_d = √2023 - 1024 - 841 - 121

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 292 - 122

max_d = √2023 - 1024 - 841 - 144

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 322 - 302)

max_c = Floor(√2023 - 1024 - 900)

max_c = Floor(√99)

max_c = Floor(9.9498743710662)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 322 - 302)/2 = 49.5

When min_c = 8, then it is c2 = 64 ≥ 49.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 302 - 82

max_d = √2023 - 1024 - 900 - 64

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 302 - 92

max_d = √2023 - 1024 - 900 - 81

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 31

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 322 - 312)

max_c = Floor(√2023 - 1024 - 961)

max_c = Floor(√38)

max_c = Floor(6.164414002969)

max_c = 6

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 322 - 312)/2 = 19

When min_c = 5, then it is c2 = 25 ≥ 19, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 312 - 52

max_d = √2023 - 1024 - 961 - 25

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 322 - 312 - 62

max_d = √2023 - 1024 - 961 - 36

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 33

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 332)

max_b = Floor(√2023 - 1089)

max_b = Floor(√934)

max_b = Floor(30.561413579872)

max_b = 30

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 332)/3 = 311.33333333333

When min_b = 18, then it is b2 = 324 ≥ 311.33333333333, so min_b = 18

Test values for b in the range of (min_b, max_b)

(18, 30)

b = 18

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 332 - 182)

max_c = Floor(√2023 - 1089 - 324)

max_c = Floor(√610)

max_c = Floor(24.698178070457)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 332 - 182)/2 = 305

When min_c = 18, then it is c2 = 324 ≥ 305, so min_c = 18

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 182 - 182

max_d = √2023 - 1089 - 324 - 324

max_d = √286

max_d = 16.911534525288

Since max_d = 16.911534525288 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 182 - 192

max_d = √2023 - 1089 - 324 - 361

max_d = √249

max_d = 15.779733838059

Since max_d = 15.779733838059 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 182 - 202

max_d = √2023 - 1089 - 324 - 400

max_d = √210

max_d = 14.491376746189

Since max_d = 14.491376746189 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 182 - 212

max_d = √2023 - 1089 - 324 - 441

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (33, 18, 21, 13) is an integer solution proven below

332 + 182 + 212 + 132 → 1089 + 324 + 441 + 169 = 2023

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 182 - 222

max_d = √2023 - 1089 - 324 - 484

max_d = √126

max_d = 11.224972160322

Since max_d = 11.224972160322 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 182 - 232

max_d = √2023 - 1089 - 324 - 529

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (33, 18, 23, 9) is an integer solution proven below

332 + 182 + 232 + 92 → 1089 + 324 + 529 + 81 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 182 - 242

max_d = √2023 - 1089 - 324 - 576

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 19

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 332 - 192)

max_c = Floor(√2023 - 1089 - 361)

max_c = Floor(√573)

max_c = Floor(23.937418407172)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 332 - 192)/2 = 286.5

When min_c = 17, then it is c2 = 289 ≥ 286.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 192 - 172

max_d = √2023 - 1089 - 361 - 289

max_d = √284

max_d = 16.852299546353

Since max_d = 16.852299546353 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 192 - 182

max_d = √2023 - 1089 - 361 - 324

max_d = √249

max_d = 15.779733838059

Since max_d = 15.779733838059 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 192 - 192

max_d = √2023 - 1089 - 361 - 361

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 192 - 202

max_d = √2023 - 1089 - 361 - 400

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 192 - 212

max_d = √2023 - 1089 - 361 - 441

max_d = √132

max_d = 11.489125293076

Since max_d = 11.489125293076 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 192 - 222

max_d = √2023 - 1089 - 361 - 484

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 192 - 232

max_d = √2023 - 1089 - 361 - 529

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

b = 20

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 332 - 202)

max_c = Floor(√2023 - 1089 - 400)

max_c = Floor(√534)

max_c = Floor(23.108440016583)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 332 - 202)/2 = 267

When min_c = 17, then it is c2 = 289 ≥ 267, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 202 - 172

max_d = √2023 - 1089 - 400 - 289

max_d = √245

max_d = 15.652475842499

Since max_d = 15.652475842499 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 202 - 182

max_d = √2023 - 1089 - 400 - 324

max_d = √210

max_d = 14.491376746189

Since max_d = 14.491376746189 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 202 - 192

max_d = √2023 - 1089 - 400 - 361

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 202 - 202

max_d = √2023 - 1089 - 400 - 400

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 202 - 212

max_d = √2023 - 1089 - 400 - 441

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 202 - 222

max_d = √2023 - 1089 - 400 - 484

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 202 - 232

max_d = √2023 - 1089 - 400 - 529

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 21

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 332 - 212)

max_c = Floor(√2023 - 1089 - 441)

max_c = Floor(√493)

max_c = Floor(22.203603311175)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 332 - 212)/2 = 246.5

When min_c = 16, then it is c2 = 256 ≥ 246.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 212 - 162

max_d = √2023 - 1089 - 441 - 256

max_d = √237

max_d = 15.394804318341

Since max_d = 15.394804318341 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 212 - 172

max_d = √2023 - 1089 - 441 - 289

max_d = √204

max_d = 14.282856857086

Since max_d = 14.282856857086 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 212 - 182

max_d = √2023 - 1089 - 441 - 324

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (33, 21, 18, 13) is an integer solution proven below

332 + 212 + 182 + 132 → 1089 + 441 + 324 + 169 = 2023

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 212 - 192

max_d = √2023 - 1089 - 441 - 361

max_d = √132

max_d = 11.489125293076

Since max_d = 11.489125293076 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 212 - 202

max_d = √2023 - 1089 - 441 - 400

max_d = √93

max_d = 9.643650760993

Since max_d = 9.643650760993 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 212 - 212

max_d = √2023 - 1089 - 441 - 441

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 212 - 222

max_d = √2023 - 1089 - 441 - 484

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (33, 21, 22, 3) is an integer solution proven below

332 + 212 + 222 + 32 → 1089 + 441 + 484 + 9 = 2023

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 332 - 222)

max_c = Floor(√2023 - 1089 - 484)

max_c = Floor(√450)

max_c = Floor(21.213203435596)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 332 - 222)/2 = 225

When min_c = 15, then it is c2 = 225 ≥ 225, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 222 - 152

max_d = √2023 - 1089 - 484 - 225

max_d = √225

max_d = 15

Since max_d = 15, then (a, b, c, d) = (33, 22, 15, 15) is an integer solution proven below

332 + 222 + 152 + 152 → 1089 + 484 + 225 + 225 = 2023

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 222 - 162

max_d = √2023 - 1089 - 484 - 256

max_d = √194

max_d = 13.928388277184

Since max_d = 13.928388277184 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 222 - 172

max_d = √2023 - 1089 - 484 - 289

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 222 - 182

max_d = √2023 - 1089 - 484 - 324

max_d = √126

max_d = 11.224972160322

Since max_d = 11.224972160322 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 222 - 192

max_d = √2023 - 1089 - 484 - 361

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 222 - 202

max_d = √2023 - 1089 - 484 - 400

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 222 - 212

max_d = √2023 - 1089 - 484 - 441

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (33, 22, 21, 3) is an integer solution proven below

332 + 222 + 212 + 32 → 1089 + 484 + 441 + 9 = 2023

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 332 - 232)

max_c = Floor(√2023 - 1089 - 529)

max_c = Floor(√405)

max_c = Floor(20.124611797498)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 332 - 232)/2 = 202.5

When min_c = 15, then it is c2 = 225 ≥ 202.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 232 - 152

max_d = √2023 - 1089 - 529 - 225

max_d = √180

max_d = 13.416407864999

Since max_d = 13.416407864999 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 232 - 162

max_d = √2023 - 1089 - 529 - 256

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 232 - 172

max_d = √2023 - 1089 - 529 - 289

max_d = √116

max_d = 10.770329614269

Since max_d = 10.770329614269 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 232 - 182

max_d = √2023 - 1089 - 529 - 324

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (33, 23, 18, 9) is an integer solution proven below

332 + 232 + 182 + 92 → 1089 + 529 + 324 + 81 = 2023

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 232 - 192

max_d = √2023 - 1089 - 529 - 361

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 232 - 202

max_d = √2023 - 1089 - 529 - 400

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 332 - 242)

max_c = Floor(√2023 - 1089 - 576)

max_c = Floor(√358)

max_c = Floor(18.920887928425)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 332 - 242)/2 = 179

When min_c = 14, then it is c2 = 196 ≥ 179, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 242 - 142

max_d = √2023 - 1089 - 576 - 196

max_d = √162

max_d = 12.727922061358

Since max_d = 12.727922061358 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 242 - 152

max_d = √2023 - 1089 - 576 - 225

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 242 - 162

max_d = √2023 - 1089 - 576 - 256

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 242 - 172

max_d = √2023 - 1089 - 576 - 289

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 242 - 182

max_d = √2023 - 1089 - 576 - 324

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 332 - 252)

max_c = Floor(√2023 - 1089 - 625)

max_c = Floor(√309)

max_c = Floor(17.578395831247)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 332 - 252)/2 = 154.5

When min_c = 13, then it is c2 = 169 ≥ 154.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 252 - 132

max_d = √2023 - 1089 - 625 - 169

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 252 - 142

max_d = √2023 - 1089 - 625 - 196

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 252 - 152

max_d = √2023 - 1089 - 625 - 225

max_d = √84

max_d = 9.1651513899117

Since max_d = 9.1651513899117 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 252 - 162

max_d = √2023 - 1089 - 625 - 256

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 252 - 172

max_d = √2023 - 1089 - 625 - 289

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 332 - 262)

max_c = Floor(√2023 - 1089 - 676)

max_c = Floor(√258)

max_c = Floor(16.062378404209)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 332 - 262)/2 = 129

When min_c = 12, then it is c2 = 144 ≥ 129, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 262 - 122

max_d = √2023 - 1089 - 676 - 144

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 262 - 132

max_d = √2023 - 1089 - 676 - 169

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 262 - 142

max_d = √2023 - 1089 - 676 - 196

max_d = √62

max_d = 7.8740078740118

Since max_d = 7.8740078740118 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 262 - 152

max_d = √2023 - 1089 - 676 - 225

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 262 - 162

max_d = √2023 - 1089 - 676 - 256

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 332 - 272)

max_c = Floor(√2023 - 1089 - 729)

max_c = Floor(√205)

max_c = Floor(14.317821063276)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 332 - 272)/2 = 102.5

When min_c = 11, then it is c2 = 121 ≥ 102.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 272 - 112

max_d = √2023 - 1089 - 729 - 121

max_d = √84

max_d = 9.1651513899117

Since max_d = 9.1651513899117 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 272 - 122

max_d = √2023 - 1089 - 729 - 144

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 272 - 132

max_d = √2023 - 1089 - 729 - 169

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (33, 27, 13, 6) is an integer solution proven below

332 + 272 + 132 + 62 → 1089 + 729 + 169 + 36 = 2023

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 272 - 142

max_d = √2023 - 1089 - 729 - 196

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (33, 27, 14, 3) is an integer solution proven below

332 + 272 + 142 + 32 → 1089 + 729 + 196 + 9 = 2023

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 332 - 282)

max_c = Floor(√2023 - 1089 - 784)

max_c = Floor(√150)

max_c = Floor(12.247448713916)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 332 - 282)/2 = 75

When min_c = 9, then it is c2 = 81 ≥ 75, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 282 - 92

max_d = √2023 - 1089 - 784 - 81

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 282 - 102

max_d = √2023 - 1089 - 784 - 100

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 282 - 112

max_d = √2023 - 1089 - 784 - 121

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 282 - 122

max_d = √2023 - 1089 - 784 - 144

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 332 - 292)

max_c = Floor(√2023 - 1089 - 841)

max_c = Floor(√93)

max_c = Floor(9.643650760993)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 332 - 292)/2 = 46.5

When min_c = 7, then it is c2 = 49 ≥ 46.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 292 - 72

max_d = √2023 - 1089 - 841 - 49

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 292 - 82

max_d = √2023 - 1089 - 841 - 64

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 292 - 92

max_d = √2023 - 1089 - 841 - 81

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 30

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 332 - 302)

max_c = Floor(√2023 - 1089 - 900)

max_c = Floor(√34)

max_c = Floor(5.8309518948453)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 332 - 302)/2 = 17

When min_c = 5, then it is c2 = 25 ≥ 17, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 332 - 302 - 52

max_d = √2023 - 1089 - 900 - 25

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (33, 30, 5, 3) is an integer solution proven below

332 + 302 + 52 + 32 → 1089 + 900 + 25 + 9 = 2023

a = 34

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 342)

max_b = Floor(√2023 - 1156)

max_b = Floor(√867)

max_b = Floor(29.444863728671)

max_b = 29

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 342)/3 = 289

When min_b = 17, then it is b2 = 289 ≥ 289, so min_b = 17

Test values for b in the range of (min_b, max_b)

(17, 29)

b = 17

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 342 - 172)

max_c = Floor(√2023 - 1156 - 289)

max_c = Floor(√578)

max_c = Floor(24.041630560343)

max_c = 24

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 342 - 172)/2 = 289

When min_c = 17, then it is c2 = 289 ≥ 289, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 172 - 172

max_d = √2023 - 1156 - 289 - 289

max_d = √289

max_d = 17

Since max_d = 17, then (a, b, c, d) = (34, 17, 17, 17) is an integer solution proven below

342 + 172 + 172 + 172 → 1156 + 289 + 289 + 289 = 2023

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 172 - 182

max_d = √2023 - 1156 - 289 - 324

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 172 - 192

max_d = √2023 - 1156 - 289 - 361

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 172 - 202

max_d = √2023 - 1156 - 289 - 400

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 172 - 212

max_d = √2023 - 1156 - 289 - 441

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 172 - 222

max_d = √2023 - 1156 - 289 - 484

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 172 - 232

max_d = √2023 - 1156 - 289 - 529

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (34, 17, 23, 7) is an integer solution proven below

342 + 172 + 232 + 72 → 1156 + 289 + 529 + 49 = 2023

c = 24

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 172 - 242

max_d = √2023 - 1156 - 289 - 576

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 18

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 342 - 182)

max_c = Floor(√2023 - 1156 - 324)

max_c = Floor(√543)

max_c = Floor(23.302360395462)

max_c = 23

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 342 - 182)/2 = 271.5

When min_c = 17, then it is c2 = 289 ≥ 271.5, so min_c = 17

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 182 - 172

max_d = √2023 - 1156 - 324 - 289

max_d = √254

max_d = 15.937377450509

Since max_d = 15.937377450509 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 182 - 182

max_d = √2023 - 1156 - 324 - 324

max_d = √219

max_d = 14.798648586949

Since max_d = 14.798648586949 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 182 - 192

max_d = √2023 - 1156 - 324 - 361

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 182 - 202

max_d = √2023 - 1156 - 324 - 400

max_d = √143

max_d = 11.958260743101

Since max_d = 11.958260743101 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 182 - 212

max_d = √2023 - 1156 - 324 - 441

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 182 - 222

max_d = √2023 - 1156 - 324 - 484

max_d = √59

max_d = 7.6811457478686

Since max_d = 7.6811457478686 is not an integer, this is not a solution

c = 23

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 182 - 232

max_d = √2023 - 1156 - 324 - 529

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 19

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 342 - 192)

max_c = Floor(√2023 - 1156 - 361)

max_c = Floor(√506)

max_c = Floor(22.494443758404)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 342 - 192)/2 = 253

When min_c = 16, then it is c2 = 256 ≥ 253, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 192 - 162

max_d = √2023 - 1156 - 361 - 256

max_d = √250

max_d = 15.811388300842

Since max_d = 15.811388300842 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 192 - 172

max_d = √2023 - 1156 - 361 - 289

max_d = √217

max_d = 14.730919862656

Since max_d = 14.730919862656 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 192 - 182

max_d = √2023 - 1156 - 361 - 324

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 192 - 192

max_d = √2023 - 1156 - 361 - 361

max_d = √145

max_d = 12.041594578792

Since max_d = 12.041594578792 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 192 - 202

max_d = √2023 - 1156 - 361 - 400

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 192 - 212

max_d = √2023 - 1156 - 361 - 441

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 192 - 222

max_d = √2023 - 1156 - 361 - 484

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 20

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 342 - 202)

max_c = Floor(√2023 - 1156 - 400)

max_c = Floor(√467)

max_c = Floor(21.610182784974)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 342 - 202)/2 = 233.5

When min_c = 16, then it is c2 = 256 ≥ 233.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 202 - 162

max_d = √2023 - 1156 - 400 - 256

max_d = √211

max_d = 14.525839046334

Since max_d = 14.525839046334 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 202 - 172

max_d = √2023 - 1156 - 400 - 289

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 202 - 182

max_d = √2023 - 1156 - 400 - 324

max_d = √143

max_d = 11.958260743101

Since max_d = 11.958260743101 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 202 - 192

max_d = √2023 - 1156 - 400 - 361

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 202 - 202

max_d = √2023 - 1156 - 400 - 400

max_d = √67

max_d = 8.1853527718725

Since max_d = 8.1853527718725 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 202 - 212

max_d = √2023 - 1156 - 400 - 441

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 21

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 342 - 212)

max_c = Floor(√2023 - 1156 - 441)

max_c = Floor(√426)

max_c = Floor(20.63976744055)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 342 - 212)/2 = 213

When min_c = 15, then it is c2 = 225 ≥ 213, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 212 - 152

max_d = √2023 - 1156 - 441 - 225

max_d = √201

max_d = 14.177446878758

Since max_d = 14.177446878758 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 212 - 162

max_d = √2023 - 1156 - 441 - 256

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 212 - 172

max_d = √2023 - 1156 - 441 - 289

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 212 - 182

max_d = √2023 - 1156 - 441 - 324

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 212 - 192

max_d = √2023 - 1156 - 441 - 361

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 212 - 202

max_d = √2023 - 1156 - 441 - 400

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 342 - 222)

max_c = Floor(√2023 - 1156 - 484)

max_c = Floor(√383)

max_c = Floor(19.570385790781)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 342 - 222)/2 = 191.5

When min_c = 14, then it is c2 = 196 ≥ 191.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 222 - 142

max_d = √2023 - 1156 - 484 - 196

max_d = √187

max_d = 13.674794331177

Since max_d = 13.674794331177 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 222 - 152

max_d = √2023 - 1156 - 484 - 225

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 222 - 162

max_d = √2023 - 1156 - 484 - 256

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 222 - 172

max_d = √2023 - 1156 - 484 - 289

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 222 - 182

max_d = √2023 - 1156 - 484 - 324

max_d = √59

max_d = 7.6811457478686

Since max_d = 7.6811457478686 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 222 - 192

max_d = √2023 - 1156 - 484 - 361

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 342 - 232)

max_c = Floor(√2023 - 1156 - 529)

max_c = Floor(√338)

max_c = Floor(18.38477631085)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 342 - 232)/2 = 169

When min_c = 13, then it is c2 = 169 ≥ 169, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 232 - 132

max_d = √2023 - 1156 - 529 - 169

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (34, 23, 13, 13) is an integer solution proven below

342 + 232 + 132 + 132 → 1156 + 529 + 169 + 169 = 2023

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 232 - 142

max_d = √2023 - 1156 - 529 - 196

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 232 - 152

max_d = √2023 - 1156 - 529 - 225

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 232 - 162

max_d = √2023 - 1156 - 529 - 256

max_d = √82

max_d = 9.0553851381374

Since max_d = 9.0553851381374 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 232 - 172

max_d = √2023 - 1156 - 529 - 289

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (34, 23, 17, 7) is an integer solution proven below

342 + 232 + 172 + 72 → 1156 + 529 + 289 + 49 = 2023

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 232 - 182

max_d = √2023 - 1156 - 529 - 324

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 342 - 242)

max_c = Floor(√2023 - 1156 - 576)

max_c = Floor(√291)

max_c = Floor(17.058722109232)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 342 - 242)/2 = 145.5

When min_c = 13, then it is c2 = 169 ≥ 145.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 242 - 132

max_d = √2023 - 1156 - 576 - 169

max_d = √122

max_d = 11.045361017187

Since max_d = 11.045361017187 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 242 - 142

max_d = √2023 - 1156 - 576 - 196

max_d = √95

max_d = 9.746794344809

Since max_d = 9.746794344809 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 242 - 152

max_d = √2023 - 1156 - 576 - 225

max_d = √66

max_d = 8.124038404636

Since max_d = 8.124038404636 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 242 - 162

max_d = √2023 - 1156 - 576 - 256

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 242 - 172

max_d = √2023 - 1156 - 576 - 289

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 342 - 252)

max_c = Floor(√2023 - 1156 - 625)

max_c = Floor(√242)

max_c = Floor(15.556349186104)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 342 - 252)/2 = 121

When min_c = 11, then it is c2 = 121 ≥ 121, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 252 - 112

max_d = √2023 - 1156 - 625 - 121

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (34, 25, 11, 11) is an integer solution proven below

342 + 252 + 112 + 112 → 1156 + 625 + 121 + 121 = 2023

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 252 - 122

max_d = √2023 - 1156 - 625 - 144

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 252 - 132

max_d = √2023 - 1156 - 625 - 169

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 252 - 142

max_d = √2023 - 1156 - 625 - 196

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 252 - 152

max_d = √2023 - 1156 - 625 - 225

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 342 - 262)

max_c = Floor(√2023 - 1156 - 676)

max_c = Floor(√191)

max_c = Floor(13.820274961085)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 342 - 262)/2 = 95.5

When min_c = 10, then it is c2 = 100 ≥ 95.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 262 - 102

max_d = √2023 - 1156 - 676 - 100

max_d = √91

max_d = 9.5393920141695

Since max_d = 9.5393920141695 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 262 - 112

max_d = √2023 - 1156 - 676 - 121

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 262 - 122

max_d = √2023 - 1156 - 676 - 144

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 262 - 132

max_d = √2023 - 1156 - 676 - 169

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 342 - 272)

max_c = Floor(√2023 - 1156 - 729)

max_c = Floor(√138)

max_c = Floor(11.747340124471)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 342 - 272)/2 = 69

When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 272 - 92

max_d = √2023 - 1156 - 729 - 81

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 272 - 102

max_d = √2023 - 1156 - 729 - 100

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 272 - 112

max_d = √2023 - 1156 - 729 - 121

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 342 - 282)

max_c = Floor(√2023 - 1156 - 784)

max_c = Floor(√83)

max_c = Floor(9.1104335791443)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 342 - 282)/2 = 41.5

When min_c = 7, then it is c2 = 49 ≥ 41.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 282 - 72

max_d = √2023 - 1156 - 784 - 49

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 282 - 82

max_d = √2023 - 1156 - 784 - 64

max_d = √19

max_d = 4.3588989435407

Since max_d = 4.3588989435407 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 282 - 92

max_d = √2023 - 1156 - 784 - 81

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 29

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 342 - 292)

max_c = Floor(√2023 - 1156 - 841)

max_c = Floor(√26)

max_c = Floor(5.0990195135928)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 342 - 292)/2 = 13

When min_c = 4, then it is c2 = 16 ≥ 13, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 292 - 42

max_d = √2023 - 1156 - 841 - 16

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 342 - 292 - 52

max_d = √2023 - 1156 - 841 - 25

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (34, 29, 5, 1) is an integer solution proven below

342 + 292 + 52 + 12 → 1156 + 841 + 25 + 1 = 2023

a = 35

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 352)

max_b = Floor(√2023 - 1225)

max_b = Floor(√798)

max_b = Floor(28.248893783651)

max_b = 28

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 352)/3 = 266

When min_b = 17, then it is b2 = 289 ≥ 266, so min_b = 17

Test values for b in the range of (min_b, max_b)

(17, 28)

b = 17

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 352 - 172)

max_c = Floor(√2023 - 1225 - 289)

max_c = Floor(√509)

max_c = Floor(22.561028345357)

max_c = 22

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 352 - 172)/2 = 254.5

When min_c = 16, then it is c2 = 256 ≥ 254.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 172 - 162

max_d = √2023 - 1225 - 289 - 256

max_d = √253

max_d = 15.905973720587

Since max_d = 15.905973720587 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 172 - 172

max_d = √2023 - 1225 - 289 - 289

max_d = √220

max_d = 14.832396974191

Since max_d = 14.832396974191 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 172 - 182

max_d = √2023 - 1225 - 289 - 324

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 172 - 192

max_d = √2023 - 1225 - 289 - 361

max_d = √148

max_d = 12.165525060596

Since max_d = 12.165525060596 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 172 - 202

max_d = √2023 - 1225 - 289 - 400

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 172 - 212

max_d = √2023 - 1225 - 289 - 441

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

c = 22

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 172 - 222

max_d = √2023 - 1225 - 289 - 484

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (35, 17, 22, 5) is an integer solution proven below

352 + 172 + 222 + 52 → 1225 + 289 + 484 + 25 = 2023

b = 18

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 352 - 182)

max_c = Floor(√2023 - 1225 - 324)

max_c = Floor(√474)

max_c = Floor(21.771541057077)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 352 - 182)/2 = 237

When min_c = 16, then it is c2 = 256 ≥ 237, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 182 - 162

max_d = √2023 - 1225 - 324 - 256

max_d = √218

max_d = 14.764823060233

Since max_d = 14.764823060233 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 182 - 172

max_d = √2023 - 1225 - 324 - 289

max_d = √185

max_d = 13.601470508735

Since max_d = 13.601470508735 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 182 - 182

max_d = √2023 - 1225 - 324 - 324

max_d = √150

max_d = 12.247448713916

Since max_d = 12.247448713916 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 182 - 192

max_d = √2023 - 1225 - 324 - 361

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 182 - 202

max_d = √2023 - 1225 - 324 - 400

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 182 - 212

max_d = √2023 - 1225 - 324 - 441

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 19

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 352 - 192)

max_c = Floor(√2023 - 1225 - 361)

max_c = Floor(√437)

max_c = Floor(20.904544960367)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 352 - 192)/2 = 218.5

When min_c = 15, then it is c2 = 225 ≥ 218.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 192 - 152

max_d = √2023 - 1225 - 361 - 225

max_d = √212

max_d = 14.560219778561

Since max_d = 14.560219778561 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 192 - 162

max_d = √2023 - 1225 - 361 - 256

max_d = √181

max_d = 13.453624047074

Since max_d = 13.453624047074 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 192 - 172

max_d = √2023 - 1225 - 361 - 289

max_d = √148

max_d = 12.165525060596

Since max_d = 12.165525060596 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 192 - 182

max_d = √2023 - 1225 - 361 - 324

max_d = √113

max_d = 10.630145812735

Since max_d = 10.630145812735 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 192 - 192

max_d = √2023 - 1225 - 361 - 361

max_d = √76

max_d = 8.7177978870813

Since max_d = 8.7177978870813 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 192 - 202

max_d = √2023 - 1225 - 361 - 400

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 20

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 352 - 202)

max_c = Floor(√2023 - 1225 - 400)

max_c = Floor(√398)

max_c = Floor(19.94993734326)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 352 - 202)/2 = 199

When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 202 - 152

max_d = √2023 - 1225 - 400 - 225

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 202 - 162

max_d = √2023 - 1225 - 400 - 256

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 202 - 172

max_d = √2023 - 1225 - 400 - 289

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 202 - 182

max_d = √2023 - 1225 - 400 - 324

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 202 - 192

max_d = √2023 - 1225 - 400 - 361

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 21

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 352 - 212)

max_c = Floor(√2023 - 1225 - 441)

max_c = Floor(√357)

max_c = Floor(18.894443627691)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 352 - 212)/2 = 178.5

When min_c = 14, then it is c2 = 196 ≥ 178.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 212 - 142

max_d = √2023 - 1225 - 441 - 196

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 212 - 152

max_d = √2023 - 1225 - 441 - 225

max_d = √132

max_d = 11.489125293076

Since max_d = 11.489125293076 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 212 - 162

max_d = √2023 - 1225 - 441 - 256

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 212 - 172

max_d = √2023 - 1225 - 441 - 289

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 212 - 182

max_d = √2023 - 1225 - 441 - 324

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 352 - 222)

max_c = Floor(√2023 - 1225 - 484)

max_c = Floor(√314)

max_c = Floor(17.720045146669)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 352 - 222)/2 = 157

When min_c = 13, then it is c2 = 169 ≥ 157, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 222 - 132

max_d = √2023 - 1225 - 484 - 169

max_d = √145

max_d = 12.041594578792

Since max_d = 12.041594578792 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 222 - 142

max_d = √2023 - 1225 - 484 - 196

max_d = √118

max_d = 10.8627804912

Since max_d = 10.8627804912 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 222 - 152

max_d = √2023 - 1225 - 484 - 225

max_d = √89

max_d = 9.4339811320566

Since max_d = 9.4339811320566 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 222 - 162

max_d = √2023 - 1225 - 484 - 256

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 222 - 172

max_d = √2023 - 1225 - 484 - 289

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (35, 22, 17, 5) is an integer solution proven below

352 + 222 + 172 + 52 → 1225 + 484 + 289 + 25 = 2023

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 352 - 232)

max_c = Floor(√2023 - 1225 - 529)

max_c = Floor(√269)

max_c = Floor(16.401219466857)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 352 - 232)/2 = 134.5

When min_c = 12, then it is c2 = 144 ≥ 134.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 232 - 122

max_d = √2023 - 1225 - 529 - 144

max_d = √125

max_d = 11.180339887499

Since max_d = 11.180339887499 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 232 - 132

max_d = √2023 - 1225 - 529 - 169

max_d = √100

max_d = 10

Since max_d = 10, then (a, b, c, d) = (35, 23, 13, 10) is an integer solution proven below

352 + 232 + 132 + 102 → 1225 + 529 + 169 + 100 = 2023

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 232 - 142

max_d = √2023 - 1225 - 529 - 196

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 232 - 152

max_d = √2023 - 1225 - 529 - 225

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 232 - 162

max_d = √2023 - 1225 - 529 - 256

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 352 - 242)

max_c = Floor(√2023 - 1225 - 576)

max_c = Floor(√222)

max_c = Floor(14.899664425751)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 352 - 242)/2 = 111

When min_c = 11, then it is c2 = 121 ≥ 111, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 242 - 112

max_d = √2023 - 1225 - 576 - 121

max_d = √101

max_d = 10.049875621121

Since max_d = 10.049875621121 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 242 - 122

max_d = √2023 - 1225 - 576 - 144

max_d = √78

max_d = 8.8317608663278

Since max_d = 8.8317608663278 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 242 - 132

max_d = √2023 - 1225 - 576 - 169

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 242 - 142

max_d = √2023 - 1225 - 576 - 196

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 352 - 252)

max_c = Floor(√2023 - 1225 - 625)

max_c = Floor(√173)

max_c = Floor(13.152946437966)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 352 - 252)/2 = 86.5

When min_c = 10, then it is c2 = 100 ≥ 86.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 252 - 102

max_d = √2023 - 1225 - 625 - 100

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 252 - 112

max_d = √2023 - 1225 - 625 - 121

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 252 - 122

max_d = √2023 - 1225 - 625 - 144

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 252 - 132

max_d = √2023 - 1225 - 625 - 169

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (35, 25, 13, 2) is an integer solution proven below

352 + 252 + 132 + 22 → 1225 + 625 + 169 + 4 = 2023

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 352 - 262)

max_c = Floor(√2023 - 1225 - 676)

max_c = Floor(√122)

max_c = Floor(11.045361017187)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 352 - 262)/2 = 61

When min_c = 8, then it is c2 = 64 ≥ 61, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 262 - 82

max_d = √2023 - 1225 - 676 - 64

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 262 - 92

max_d = √2023 - 1225 - 676 - 81

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 262 - 102

max_d = √2023 - 1225 - 676 - 100

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 262 - 112

max_d = √2023 - 1225 - 676 - 121

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (35, 26, 11, 1) is an integer solution proven below

352 + 262 + 112 + 12 → 1225 + 676 + 121 + 1 = 2023

b = 27

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 352 - 272)

max_c = Floor(√2023 - 1225 - 729)

max_c = Floor(√69)

max_c = Floor(8.3066238629181)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 352 - 272)/2 = 34.5

When min_c = 6, then it is c2 = 36 ≥ 34.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 272 - 62

max_d = √2023 - 1225 - 729 - 36

max_d = √33

max_d = 5.744562646538

Since max_d = 5.744562646538 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 272 - 72

max_d = √2023 - 1225 - 729 - 49

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 272 - 82

max_d = √2023 - 1225 - 729 - 64

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 28

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 352 - 282)

max_c = Floor(√2023 - 1225 - 784)

max_c = Floor(√14)

max_c = Floor(3.7416573867739)

max_c = 3

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 352 - 282)/2 = 7

When min_c = 3, then it is c2 = 9 ≥ 7, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 352 - 282 - 32

max_d = √2023 - 1225 - 784 - 9

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

a = 36

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 362)

max_b = Floor(√2023 - 1296)

max_b = Floor(√727)

max_b = Floor(26.962937525426)

max_b = 26

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 362)/3 = 242.33333333333

When min_b = 16, then it is b2 = 256 ≥ 242.33333333333, so min_b = 16

Test values for b in the range of (min_b, max_b)

(16, 26)

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 362 - 162)

max_c = Floor(√2023 - 1296 - 256)

max_c = Floor(√471)

max_c = Floor(21.702534414211)

max_c = 21

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 362 - 162)/2 = 235.5

When min_c = 16, then it is c2 = 256 ≥ 235.5, so min_c = 16

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 162 - 162

max_d = √2023 - 1296 - 256 - 256

max_d = √215

max_d = 14.662878298615

Since max_d = 14.662878298615 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 162 - 172

max_d = √2023 - 1296 - 256 - 289

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 162 - 182

max_d = √2023 - 1296 - 256 - 324

max_d = √147

max_d = 12.124355652982

Since max_d = 12.124355652982 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 162 - 192

max_d = √2023 - 1296 - 256 - 361

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 162 - 202

max_d = √2023 - 1296 - 256 - 400

max_d = √71

max_d = 8.4261497731764

Since max_d = 8.4261497731764 is not an integer, this is not a solution

c = 21

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 162 - 212

max_d = √2023 - 1296 - 256 - 441

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 17

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 362 - 172)

max_c = Floor(√2023 - 1296 - 289)

max_c = Floor(√438)

max_c = Floor(20.928449536456)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 362 - 172)/2 = 219

When min_c = 15, then it is c2 = 225 ≥ 219, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 172 - 152

max_d = √2023 - 1296 - 289 - 225

max_d = √213

max_d = 14.594519519326

Since max_d = 14.594519519326 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 172 - 162

max_d = √2023 - 1296 - 289 - 256

max_d = √182

max_d = 13.490737563232

Since max_d = 13.490737563232 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 172 - 172

max_d = √2023 - 1296 - 289 - 289

max_d = √149

max_d = 12.206555615734

Since max_d = 12.206555615734 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 172 - 182

max_d = √2023 - 1296 - 289 - 324

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 172 - 192

max_d = √2023 - 1296 - 289 - 361

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 172 - 202

max_d = √2023 - 1296 - 289 - 400

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

b = 18

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 362 - 182)

max_c = Floor(√2023 - 1296 - 324)

max_c = Floor(√403)

max_c = Floor(20.074859899885)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 362 - 182)/2 = 201.5

When min_c = 15, then it is c2 = 225 ≥ 201.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 182 - 152

max_d = √2023 - 1296 - 324 - 225

max_d = √178

max_d = 13.341664064126

Since max_d = 13.341664064126 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 182 - 162

max_d = √2023 - 1296 - 324 - 256

max_d = √147

max_d = 12.124355652982

Since max_d = 12.124355652982 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 182 - 172

max_d = √2023 - 1296 - 324 - 289

max_d = √114

max_d = 10.677078252031

Since max_d = 10.677078252031 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 182 - 182

max_d = √2023 - 1296 - 324 - 324

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 182 - 192

max_d = √2023 - 1296 - 324 - 361

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 182 - 202

max_d = √2023 - 1296 - 324 - 400

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 19

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 362 - 192)

max_c = Floor(√2023 - 1296 - 361)

max_c = Floor(√366)

max_c = Floor(19.131126469709)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 362 - 192)/2 = 183

When min_c = 14, then it is c2 = 196 ≥ 183, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 192 - 142

max_d = √2023 - 1296 - 361 - 196

max_d = √170

max_d = 13.038404810405

Since max_d = 13.038404810405 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 192 - 152

max_d = √2023 - 1296 - 361 - 225

max_d = √141

max_d = 11.874342087038

Since max_d = 11.874342087038 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 192 - 162

max_d = √2023 - 1296 - 361 - 256

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 192 - 172

max_d = √2023 - 1296 - 361 - 289

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 192 - 182

max_d = √2023 - 1296 - 361 - 324

max_d = √42

max_d = 6.4807406984079

Since max_d = 6.4807406984079 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 192 - 192

max_d = √2023 - 1296 - 361 - 361

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 20

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 362 - 202)

max_c = Floor(√2023 - 1296 - 400)

max_c = Floor(√327)

max_c = Floor(18.083141320025)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 362 - 202)/2 = 163.5

When min_c = 13, then it is c2 = 169 ≥ 163.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 202 - 132

max_d = √2023 - 1296 - 400 - 169

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 202 - 142

max_d = √2023 - 1296 - 400 - 196

max_d = √131

max_d = 11.44552314226

Since max_d = 11.44552314226 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 202 - 152

max_d = √2023 - 1296 - 400 - 225

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 202 - 162

max_d = √2023 - 1296 - 400 - 256

max_d = √71

max_d = 8.4261497731764

Since max_d = 8.4261497731764 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 202 - 172

max_d = √2023 - 1296 - 400 - 289

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 202 - 182

max_d = √2023 - 1296 - 400 - 324

max_d = √3

max_d = 1.7320508075689

Since max_d = 1.7320508075689 is not an integer, this is not a solution

b = 21

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 362 - 212)

max_c = Floor(√2023 - 1296 - 441)

max_c = Floor(√286)

max_c = Floor(16.911534525288)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 362 - 212)/2 = 143

When min_c = 12, then it is c2 = 144 ≥ 143, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 212 - 122

max_d = √2023 - 1296 - 441 - 144

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 212 - 132

max_d = √2023 - 1296 - 441 - 169

max_d = √117

max_d = 10.816653826392

Since max_d = 10.816653826392 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 212 - 142

max_d = √2023 - 1296 - 441 - 196

max_d = √90

max_d = 9.4868329805051

Since max_d = 9.4868329805051 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 212 - 152

max_d = √2023 - 1296 - 441 - 225

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 212 - 162

max_d = √2023 - 1296 - 441 - 256

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 362 - 222)

max_c = Floor(√2023 - 1296 - 484)

max_c = Floor(√243)

max_c = Floor(15.58845726812)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 362 - 222)/2 = 121.5

When min_c = 12, then it is c2 = 144 ≥ 121.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 222 - 122

max_d = √2023 - 1296 - 484 - 144

max_d = √99

max_d = 9.9498743710662

Since max_d = 9.9498743710662 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 222 - 132

max_d = √2023 - 1296 - 484 - 169

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 222 - 142

max_d = √2023 - 1296 - 484 - 196

max_d = √47

max_d = 6.855654600401

Since max_d = 6.855654600401 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 222 - 152

max_d = √2023 - 1296 - 484 - 225

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 362 - 232)

max_c = Floor(√2023 - 1296 - 529)

max_c = Floor(√198)

max_c = Floor(14.07124727947)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 362 - 232)/2 = 99

When min_c = 10, then it is c2 = 100 ≥ 99, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 232 - 102

max_d = √2023 - 1296 - 529 - 100

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 232 - 112

max_d = √2023 - 1296 - 529 - 121

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 232 - 122

max_d = √2023 - 1296 - 529 - 144

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 232 - 132

max_d = √2023 - 1296 - 529 - 169

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 232 - 142

max_d = √2023 - 1296 - 529 - 196

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 362 - 242)

max_c = Floor(√2023 - 1296 - 576)

max_c = Floor(√151)

max_c = Floor(12.288205727445)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 362 - 242)/2 = 75.5

When min_c = 9, then it is c2 = 81 ≥ 75.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 242 - 92

max_d = √2023 - 1296 - 576 - 81

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 242 - 102

max_d = √2023 - 1296 - 576 - 100

max_d = √51

max_d = 7.1414284285429

Since max_d = 7.1414284285429 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 242 - 112

max_d = √2023 - 1296 - 576 - 121

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 242 - 122

max_d = √2023 - 1296 - 576 - 144

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 362 - 252)

max_c = Floor(√2023 - 1296 - 625)

max_c = Floor(√102)

max_c = Floor(10.099504938362)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 362 - 252)/2 = 51

When min_c = 8, then it is c2 = 64 ≥ 51, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 252 - 82

max_d = √2023 - 1296 - 625 - 64

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 252 - 92

max_d = √2023 - 1296 - 625 - 81

max_d = √21

max_d = 4.5825756949558

Since max_d = 4.5825756949558 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 252 - 102

max_d = √2023 - 1296 - 625 - 100

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 26

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 362 - 262)

max_c = Floor(√2023 - 1296 - 676)

max_c = Floor(√51)

max_c = Floor(7.1414284285429)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 362 - 262)/2 = 25.5

When min_c = 6, then it is c2 = 36 ≥ 25.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 262 - 62

max_d = √2023 - 1296 - 676 - 36

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 362 - 262 - 72

max_d = √2023 - 1296 - 676 - 49

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 37

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 372)

max_b = Floor(√2023 - 1369)

max_b = Floor(√654)

max_b = Floor(25.573423705089)

max_b = 25

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 372)/3 = 218

When min_b = 15, then it is b2 = 225 ≥ 218, so min_b = 15

Test values for b in the range of (min_b, max_b)

(15, 25)

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 372 - 152)

max_c = Floor(√2023 - 1369 - 225)

max_c = Floor(√429)

max_c = Floor(20.712315177208)

max_c = 20

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 372 - 152)/2 = 214.5

When min_c = 15, then it is c2 = 225 ≥ 214.5, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 152 - 152

max_d = √2023 - 1369 - 225 - 225

max_d = √204

max_d = 14.282856857086

Since max_d = 14.282856857086 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 152 - 162

max_d = √2023 - 1369 - 225 - 256

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 152 - 172

max_d = √2023 - 1369 - 225 - 289

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 152 - 182

max_d = √2023 - 1369 - 225 - 324

max_d = √105

max_d = 10.24695076596

Since max_d = 10.24695076596 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 152 - 192

max_d = √2023 - 1369 - 225 - 361

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

c = 20

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 152 - 202

max_d = √2023 - 1369 - 225 - 400

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 372 - 162)

max_c = Floor(√2023 - 1369 - 256)

max_c = Floor(√398)

max_c = Floor(19.94993734326)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 372 - 162)/2 = 199

When min_c = 15, then it is c2 = 225 ≥ 199, so min_c = 15

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 162 - 152

max_d = √2023 - 1369 - 256 - 225

max_d = √173

max_d = 13.152946437966

Since max_d = 13.152946437966 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 162 - 162

max_d = √2023 - 1369 - 256 - 256

max_d = √142

max_d = 11.916375287813

Since max_d = 11.916375287813 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 162 - 172

max_d = √2023 - 1369 - 256 - 289

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 162 - 182

max_d = √2023 - 1369 - 256 - 324

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 162 - 192

max_d = √2023 - 1369 - 256 - 361

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

b = 17

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 372 - 172)

max_c = Floor(√2023 - 1369 - 289)

max_c = Floor(√365)

max_c = Floor(19.104973174543)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 372 - 172)/2 = 182.5

When min_c = 14, then it is c2 = 196 ≥ 182.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 172 - 142

max_d = √2023 - 1369 - 289 - 196

max_d = √169

max_d = 13

Since max_d = 13, then (a, b, c, d) = (37, 17, 14, 13) is an integer solution proven below

372 + 172 + 142 + 132 → 1369 + 289 + 196 + 169 = 2023

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 172 - 152

max_d = √2023 - 1369 - 289 - 225

max_d = √140

max_d = 11.832159566199

Since max_d = 11.832159566199 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 172 - 162

max_d = √2023 - 1369 - 289 - 256

max_d = √109

max_d = 10.440306508911

Since max_d = 10.440306508911 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 172 - 172

max_d = √2023 - 1369 - 289 - 289

max_d = √76

max_d = 8.7177978870813

Since max_d = 8.7177978870813 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 172 - 182

max_d = √2023 - 1369 - 289 - 324

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 172 - 192

max_d = √2023 - 1369 - 289 - 361

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (37, 17, 19, 2) is an integer solution proven below

372 + 172 + 192 + 22 → 1369 + 289 + 361 + 4 = 2023

b = 18

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 372 - 182)

max_c = Floor(√2023 - 1369 - 324)

max_c = Floor(√330)

max_c = Floor(18.165902124585)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 372 - 182)/2 = 165

When min_c = 13, then it is c2 = 169 ≥ 165, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 182 - 132

max_d = √2023 - 1369 - 324 - 169

max_d = √161

max_d = 12.68857754045

Since max_d = 12.68857754045 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 182 - 142

max_d = √2023 - 1369 - 324 - 196

max_d = √134

max_d = 11.57583690279

Since max_d = 11.57583690279 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 182 - 152

max_d = √2023 - 1369 - 324 - 225

max_d = √105

max_d = 10.24695076596

Since max_d = 10.24695076596 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 182 - 162

max_d = √2023 - 1369 - 324 - 256

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 182 - 172

max_d = √2023 - 1369 - 324 - 289

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 182 - 182

max_d = √2023 - 1369 - 324 - 324

max_d = √6

max_d = 2.4494897427832

Since max_d = 2.4494897427832 is not an integer, this is not a solution

b = 19

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 372 - 192)

max_c = Floor(√2023 - 1369 - 361)

max_c = Floor(√293)

max_c = Floor(17.117242768624)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 372 - 192)/2 = 146.5

When min_c = 13, then it is c2 = 169 ≥ 146.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 192 - 132

max_d = √2023 - 1369 - 361 - 169

max_d = √124

max_d = 11.13552872566

Since max_d = 11.13552872566 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 192 - 142

max_d = √2023 - 1369 - 361 - 196

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 192 - 152

max_d = √2023 - 1369 - 361 - 225

max_d = √68

max_d = 8.2462112512353

Since max_d = 8.2462112512353 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 192 - 162

max_d = √2023 - 1369 - 361 - 256

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 192 - 172

max_d = √2023 - 1369 - 361 - 289

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (37, 19, 17, 2) is an integer solution proven below

372 + 192 + 172 + 22 → 1369 + 361 + 289 + 4 = 2023

b = 20

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 372 - 202)

max_c = Floor(√2023 - 1369 - 400)

max_c = Floor(√254)

max_c = Floor(15.937377450509)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 372 - 202)/2 = 127

When min_c = 12, then it is c2 = 144 ≥ 127, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 202 - 122

max_d = √2023 - 1369 - 400 - 144

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 202 - 132

max_d = √2023 - 1369 - 400 - 169

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 202 - 142

max_d = √2023 - 1369 - 400 - 196

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 202 - 152

max_d = √2023 - 1369 - 400 - 225

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 21

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 372 - 212)

max_c = Floor(√2023 - 1369 - 441)

max_c = Floor(√213)

max_c = Floor(14.594519519326)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 372 - 212)/2 = 106.5

When min_c = 11, then it is c2 = 121 ≥ 106.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 212 - 112

max_d = √2023 - 1369 - 441 - 121

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 212 - 122

max_d = √2023 - 1369 - 441 - 144

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 212 - 132

max_d = √2023 - 1369 - 441 - 169

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 212 - 142

max_d = √2023 - 1369 - 441 - 196

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 372 - 222)

max_c = Floor(√2023 - 1369 - 484)

max_c = Floor(√170)

max_c = Floor(13.038404810405)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 372 - 222)/2 = 85

When min_c = 10, then it is c2 = 100 ≥ 85, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 222 - 102

max_d = √2023 - 1369 - 484 - 100

max_d = √70

max_d = 8.3666002653408

Since max_d = 8.3666002653408 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 222 - 112

max_d = √2023 - 1369 - 484 - 121

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (37, 22, 11, 7) is an integer solution proven below

372 + 222 + 112 + 72 → 1369 + 484 + 121 + 49 = 2023

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 222 - 122

max_d = √2023 - 1369 - 484 - 144

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 222 - 132

max_d = √2023 - 1369 - 484 - 169

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (37, 22, 13, 1) is an integer solution proven below

372 + 222 + 132 + 12 → 1369 + 484 + 169 + 1 = 2023

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 372 - 232)

max_c = Floor(√2023 - 1369 - 529)

max_c = Floor(√125)

max_c = Floor(11.180339887499)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 372 - 232)/2 = 62.5

When min_c = 8, then it is c2 = 64 ≥ 62.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 232 - 82

max_d = √2023 - 1369 - 529 - 64

max_d = √61

max_d = 7.8102496759067

Since max_d = 7.8102496759067 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 232 - 92

max_d = √2023 - 1369 - 529 - 81

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 232 - 102

max_d = √2023 - 1369 - 529 - 100

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (37, 23, 10, 5) is an integer solution proven below

372 + 232 + 102 + 52 → 1369 + 529 + 100 + 25 = 2023

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 232 - 112

max_d = √2023 - 1369 - 529 - 121

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (37, 23, 11, 2) is an integer solution proven below

372 + 232 + 112 + 22 → 1369 + 529 + 121 + 4 = 2023

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 372 - 242)

max_c = Floor(√2023 - 1369 - 576)

max_c = Floor(√78)

max_c = Floor(8.8317608663278)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 372 - 242)/2 = 39

When min_c = 7, then it is c2 = 49 ≥ 39, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 242 - 72

max_d = √2023 - 1369 - 576 - 49

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 242 - 82

max_d = √2023 - 1369 - 576 - 64

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 25

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 372 - 252)

max_c = Floor(√2023 - 1369 - 625)

max_c = Floor(√29)

max_c = Floor(5.3851648071345)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 372 - 252)/2 = 14.5

When min_c = 4, then it is c2 = 16 ≥ 14.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 252 - 42

max_d = √2023 - 1369 - 625 - 16

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 372 - 252 - 52

max_d = √2023 - 1369 - 625 - 25

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (37, 25, 5, 2) is an integer solution proven below

372 + 252 + 52 + 22 → 1369 + 625 + 25 + 4 = 2023

a = 38

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 382)

max_b = Floor(√2023 - 1444)

max_b = Floor(√579)

max_b = Floor(24.062418831032)

max_b = 24

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 382)/3 = 193

When min_b = 14, then it is b2 = 196 ≥ 193, so min_b = 14

Test values for b in the range of (min_b, max_b)

(14, 24)

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 382 - 142)

max_c = Floor(√2023 - 1444 - 196)

max_c = Floor(√383)

max_c = Floor(19.570385790781)

max_c = 19

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 382 - 142)/2 = 191.5

When min_c = 14, then it is c2 = 196 ≥ 191.5, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 142 - 142

max_d = √2023 - 1444 - 196 - 196

max_d = √187

max_d = 13.674794331177

Since max_d = 13.674794331177 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 142 - 152

max_d = √2023 - 1444 - 196 - 225

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 142 - 162

max_d = √2023 - 1444 - 196 - 256

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 142 - 172

max_d = √2023 - 1444 - 196 - 289

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 142 - 182

max_d = √2023 - 1444 - 196 - 324

max_d = √59

max_d = 7.6811457478686

Since max_d = 7.6811457478686 is not an integer, this is not a solution

c = 19

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 142 - 192

max_d = √2023 - 1444 - 196 - 361

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 382 - 152)

max_c = Floor(√2023 - 1444 - 225)

max_c = Floor(√354)

max_c = Floor(18.814887722227)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 382 - 152)/2 = 177

When min_c = 14, then it is c2 = 196 ≥ 177, so min_c = 14

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 152 - 142

max_d = √2023 - 1444 - 225 - 196

max_d = √158

max_d = 12.569805089977

Since max_d = 12.569805089977 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 152 - 152

max_d = √2023 - 1444 - 225 - 225

max_d = √129

max_d = 11.357816691601

Since max_d = 11.357816691601 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 152 - 162

max_d = √2023 - 1444 - 225 - 256

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 152 - 172

max_d = √2023 - 1444 - 225 - 289

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 152 - 182

max_d = √2023 - 1444 - 225 - 324

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 382 - 162)

max_c = Floor(√2023 - 1444 - 256)

max_c = Floor(√323)

max_c = Floor(17.972200755611)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 382 - 162)/2 = 161.5

When min_c = 13, then it is c2 = 169 ≥ 161.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 162 - 132

max_d = √2023 - 1444 - 256 - 169

max_d = √154

max_d = 12.409673645991

Since max_d = 12.409673645991 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 162 - 142

max_d = √2023 - 1444 - 256 - 196

max_d = √127

max_d = 11.269427669585

Since max_d = 11.269427669585 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 162 - 152

max_d = √2023 - 1444 - 256 - 225

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 162 - 162

max_d = √2023 - 1444 - 256 - 256

max_d = √67

max_d = 8.1853527718725

Since max_d = 8.1853527718725 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 162 - 172

max_d = √2023 - 1444 - 256 - 289

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

b = 17

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 382 - 172)

max_c = Floor(√2023 - 1444 - 289)

max_c = Floor(√290)

max_c = Floor(17.029386365926)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 382 - 172)/2 = 145

When min_c = 13, then it is c2 = 169 ≥ 145, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 172 - 132

max_d = √2023 - 1444 - 289 - 169

max_d = √121

max_d = 11

Since max_d = 11, then (a, b, c, d) = (38, 17, 13, 11) is an integer solution proven below

382 + 172 + 132 + 112 → 1444 + 289 + 169 + 121 = 2023

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 172 - 142

max_d = √2023 - 1444 - 289 - 196

max_d = √94

max_d = 9.6953597148327

Since max_d = 9.6953597148327 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 172 - 152

max_d = √2023 - 1444 - 289 - 225

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 172 - 162

max_d = √2023 - 1444 - 289 - 256

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 172 - 172

max_d = √2023 - 1444 - 289 - 289

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (38, 17, 17, 1) is an integer solution proven below

382 + 172 + 172 + 12 → 1444 + 289 + 289 + 1 = 2023

b = 18

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 382 - 182)

max_c = Floor(√2023 - 1444 - 324)

max_c = Floor(√255)

max_c = Floor(15.968719422671)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 382 - 182)/2 = 127.5

When min_c = 12, then it is c2 = 144 ≥ 127.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 182 - 122

max_d = √2023 - 1444 - 324 - 144

max_d = √111

max_d = 10.535653752853

Since max_d = 10.535653752853 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 182 - 132

max_d = √2023 - 1444 - 324 - 169

max_d = √86

max_d = 9.2736184954957

Since max_d = 9.2736184954957 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 182 - 142

max_d = √2023 - 1444 - 324 - 196

max_d = √59

max_d = 7.6811457478686

Since max_d = 7.6811457478686 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 182 - 152

max_d = √2023 - 1444 - 324 - 225

max_d = √30

max_d = 5.4772255750517

Since max_d = 5.4772255750517 is not an integer, this is not a solution

b = 19

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 382 - 192)

max_c = Floor(√2023 - 1444 - 361)

max_c = Floor(√218)

max_c = Floor(14.764823060233)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 382 - 192)/2 = 109

When min_c = 11, then it is c2 = 121 ≥ 109, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 192 - 112

max_d = √2023 - 1444 - 361 - 121

max_d = √97

max_d = 9.8488578017961

Since max_d = 9.8488578017961 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 192 - 122

max_d = √2023 - 1444 - 361 - 144

max_d = √74

max_d = 8.6023252670426

Since max_d = 8.6023252670426 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 192 - 132

max_d = √2023 - 1444 - 361 - 169

max_d = √49

max_d = 7

Since max_d = 7, then (a, b, c, d) = (38, 19, 13, 7) is an integer solution proven below

382 + 192 + 132 + 72 → 1444 + 361 + 169 + 49 = 2023

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 192 - 142

max_d = √2023 - 1444 - 361 - 196

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

b = 20

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 382 - 202)

max_c = Floor(√2023 - 1444 - 400)

max_c = Floor(√179)

max_c = Floor(13.37908816026)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 382 - 202)/2 = 89.5

When min_c = 10, then it is c2 = 100 ≥ 89.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 202 - 102

max_d = √2023 - 1444 - 400 - 100

max_d = √79

max_d = 8.8881944173156

Since max_d = 8.8881944173156 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 202 - 112

max_d = √2023 - 1444 - 400 - 121

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 202 - 122

max_d = √2023 - 1444 - 400 - 144

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 202 - 132

max_d = √2023 - 1444 - 400 - 169

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 21

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 382 - 212)

max_c = Floor(√2023 - 1444 - 441)

max_c = Floor(√138)

max_c = Floor(11.747340124471)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 382 - 212)/2 = 69

When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 212 - 92

max_d = √2023 - 1444 - 441 - 81

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 212 - 102

max_d = √2023 - 1444 - 441 - 100

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 212 - 112

max_d = √2023 - 1444 - 441 - 121

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 382 - 222)

max_c = Floor(√2023 - 1444 - 484)

max_c = Floor(√95)

max_c = Floor(9.746794344809)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 382 - 222)/2 = 47.5

When min_c = 7, then it is c2 = 49 ≥ 47.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 222 - 72

max_d = √2023 - 1444 - 484 - 49

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 222 - 82

max_d = √2023 - 1444 - 484 - 64

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 222 - 92

max_d = √2023 - 1444 - 484 - 81

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 23

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 382 - 232)

max_c = Floor(√2023 - 1444 - 529)

max_c = Floor(√50)

max_c = Floor(7.0710678118655)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 382 - 232)/2 = 25

When min_c = 5, then it is c2 = 25 ≥ 25, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 232 - 52

max_d = √2023 - 1444 - 529 - 25

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (38, 23, 5, 5) is an integer solution proven below

382 + 232 + 52 + 52 → 1444 + 529 + 25 + 25 = 2023

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 232 - 62

max_d = √2023 - 1444 - 529 - 36

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 382 - 232 - 72

max_d = √2023 - 1444 - 529 - 49

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (38, 23, 7, 1) is an integer solution proven below

382 + 232 + 72 + 12 → 1444 + 529 + 49 + 1 = 2023

b = 24

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 382 - 242)

max_c = Floor(√2023 - 1444 - 576)

max_c = Floor(√3)

max_c = Floor(1.7320508075689)

max_c = 1

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 382 - 242)/2 = 1.5

When min_c = 2, then it is c2 = 4 ≥ 1.5, so min_c = 2

a = 39

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 392)

max_b = Floor(√2023 - 1521)

max_b = Floor(√502)

max_b = Floor(22.405356502408)

max_b = 22

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 392)/3 = 167.33333333333

When min_b = 13, then it is b2 = 169 ≥ 167.33333333333, so min_b = 13

Test values for b in the range of (min_b, max_b)

(13, 22)

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 392 - 132)

max_c = Floor(√2023 - 1521 - 169)

max_c = Floor(√333)

max_c = Floor(18.248287590895)

max_c = 18

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 392 - 132)/2 = 166.5

When min_c = 13, then it is c2 = 169 ≥ 166.5, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 132 - 132

max_d = √2023 - 1521 - 169 - 169

max_d = √164

max_d = 12.806248474866

Since max_d = 12.806248474866 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 132 - 142

max_d = √2023 - 1521 - 169 - 196

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 132 - 152

max_d = √2023 - 1521 - 169 - 225

max_d = √108

max_d = 10.392304845413

Since max_d = 10.392304845413 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 132 - 162

max_d = √2023 - 1521 - 169 - 256

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 132 - 172

max_d = √2023 - 1521 - 169 - 289

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 18

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 132 - 182

max_d = √2023 - 1521 - 169 - 324

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (39, 13, 18, 3) is an integer solution proven below

392 + 132 + 182 + 32 → 1521 + 169 + 324 + 9 = 2023

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 392 - 142)

max_c = Floor(√2023 - 1521 - 196)

max_c = Floor(√306)

max_c = Floor(17.492855684536)

max_c = 17

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 392 - 142)/2 = 153

When min_c = 13, then it is c2 = 169 ≥ 153, so min_c = 13

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 142 - 132

max_d = √2023 - 1521 - 196 - 169

max_d = √137

max_d = 11.70469991072

Since max_d = 11.70469991072 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 142 - 142

max_d = √2023 - 1521 - 196 - 196

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 142 - 152

max_d = √2023 - 1521 - 196 - 225

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (39, 14, 15, 9) is an integer solution proven below

392 + 142 + 152 + 92 → 1521 + 196 + 225 + 81 = 2023

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 142 - 162

max_d = √2023 - 1521 - 196 - 256

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 17

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 142 - 172

max_d = √2023 - 1521 - 196 - 289

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 392 - 152)

max_c = Floor(√2023 - 1521 - 225)

max_c = Floor(√277)

max_c = Floor(16.643316977093)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 392 - 152)/2 = 138.5

When min_c = 12, then it is c2 = 144 ≥ 138.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 152 - 122

max_d = √2023 - 1521 - 225 - 144

max_d = √133

max_d = 11.532562594671

Since max_d = 11.532562594671 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 152 - 132

max_d = √2023 - 1521 - 225 - 169

max_d = √108

max_d = 10.392304845413

Since max_d = 10.392304845413 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 152 - 142

max_d = √2023 - 1521 - 225 - 196

max_d = √81

max_d = 9

Since max_d = 9, then (a, b, c, d) = (39, 15, 14, 9) is an integer solution proven below

392 + 152 + 142 + 92 → 1521 + 225 + 196 + 81 = 2023

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 152 - 152

max_d = √2023 - 1521 - 225 - 225

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 152 - 162

max_d = √2023 - 1521 - 225 - 256

max_d = √21

max_d = 4.5825756949558

Since max_d = 4.5825756949558 is not an integer, this is not a solution

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 392 - 162)

max_c = Floor(√2023 - 1521 - 256)

max_c = Floor(√246)

max_c = Floor(15.684387141358)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 392 - 162)/2 = 123

When min_c = 12, then it is c2 = 144 ≥ 123, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 162 - 122

max_d = √2023 - 1521 - 256 - 144

max_d = √102

max_d = 10.099504938362

Since max_d = 10.099504938362 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 162 - 132

max_d = √2023 - 1521 - 256 - 169

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 162 - 142

max_d = √2023 - 1521 - 256 - 196

max_d = √50

max_d = 7.0710678118655

Since max_d = 7.0710678118655 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 162 - 152

max_d = √2023 - 1521 - 256 - 225

max_d = √21

max_d = 4.5825756949558

Since max_d = 4.5825756949558 is not an integer, this is not a solution

b = 17

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 392 - 172)

max_c = Floor(√2023 - 1521 - 289)

max_c = Floor(√213)

max_c = Floor(14.594519519326)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 392 - 172)/2 = 106.5

When min_c = 11, then it is c2 = 121 ≥ 106.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 172 - 112

max_d = √2023 - 1521 - 289 - 121

max_d = √92

max_d = 9.5916630466254

Since max_d = 9.5916630466254 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 172 - 122

max_d = √2023 - 1521 - 289 - 144

max_d = √69

max_d = 8.3066238629181

Since max_d = 8.3066238629181 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 172 - 132

max_d = √2023 - 1521 - 289 - 169

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 172 - 142

max_d = √2023 - 1521 - 289 - 196

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 18

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 392 - 182)

max_c = Floor(√2023 - 1521 - 324)

max_c = Floor(√178)

max_c = Floor(13.341664064126)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 392 - 182)/2 = 89

When min_c = 10, then it is c2 = 100 ≥ 89, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 182 - 102

max_d = √2023 - 1521 - 324 - 100

max_d = √78

max_d = 8.8317608663278

Since max_d = 8.8317608663278 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 182 - 112

max_d = √2023 - 1521 - 324 - 121

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 182 - 122

max_d = √2023 - 1521 - 324 - 144

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 182 - 132

max_d = √2023 - 1521 - 324 - 169

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (39, 18, 13, 3) is an integer solution proven below

392 + 182 + 132 + 32 → 1521 + 324 + 169 + 9 = 2023

b = 19

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 392 - 192)

max_c = Floor(√2023 - 1521 - 361)

max_c = Floor(√141)

max_c = Floor(11.874342087038)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 392 - 192)/2 = 70.5

When min_c = 9, then it is c2 = 81 ≥ 70.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 192 - 92

max_d = √2023 - 1521 - 361 - 81

max_d = √60

max_d = 7.7459666924148

Since max_d = 7.7459666924148 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 192 - 102

max_d = √2023 - 1521 - 361 - 100

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 192 - 112

max_d = √2023 - 1521 - 361 - 121

max_d = √20

max_d = 4.4721359549996

Since max_d = 4.4721359549996 is not an integer, this is not a solution

b = 20

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 392 - 202)

max_c = Floor(√2023 - 1521 - 400)

max_c = Floor(√102)

max_c = Floor(10.099504938362)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 392 - 202)/2 = 51

When min_c = 8, then it is c2 = 64 ≥ 51, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 202 - 82

max_d = √2023 - 1521 - 400 - 64

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 202 - 92

max_d = √2023 - 1521 - 400 - 81

max_d = √21

max_d = 4.5825756949558

Since max_d = 4.5825756949558 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 202 - 102

max_d = √2023 - 1521 - 400 - 100

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 21

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 392 - 212)

max_c = Floor(√2023 - 1521 - 441)

max_c = Floor(√61)

max_c = Floor(7.8102496759067)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 392 - 212)/2 = 30.5

When min_c = 6, then it is c2 = 36 ≥ 30.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 212 - 62

max_d = √2023 - 1521 - 441 - 36

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (39, 21, 6, 5) is an integer solution proven below

392 + 212 + 62 + 52 → 1521 + 441 + 36 + 25 = 2023

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 212 - 72

max_d = √2023 - 1521 - 441 - 49

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 22

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 392 - 222)

max_c = Floor(√2023 - 1521 - 484)

max_c = Floor(√18)

max_c = Floor(4.2426406871193)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 392 - 222)/2 = 9

When min_c = 3, then it is c2 = 9 ≥ 9, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 222 - 32

max_d = √2023 - 1521 - 484 - 9

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (39, 22, 3, 3) is an integer solution proven below

392 + 222 + 32 + 32 → 1521 + 484 + 9 + 9 = 2023

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 392 - 222 - 42

max_d = √2023 - 1521 - 484 - 16

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 40

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 402)

max_b = Floor(√2023 - 1600)

max_b = Floor(√423)

max_b = Floor(20.566963801203)

max_b = 20

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 402)/3 = 141

When min_b = 12, then it is b2 = 144 ≥ 141, so min_b = 12

Test values for b in the range of (min_b, max_b)

(12, 20)

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 402 - 122)

max_c = Floor(√2023 - 1600 - 144)

max_c = Floor(√279)

max_c = Floor(16.70329308849)

max_c = 16

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 402 - 122)/2 = 139.5

When min_c = 12, then it is c2 = 144 ≥ 139.5, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 122 - 122

max_d = √2023 - 1600 - 144 - 144

max_d = √135

max_d = 11.618950038622

Since max_d = 11.618950038622 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 122 - 132

max_d = √2023 - 1600 - 144 - 169

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 122 - 142

max_d = √2023 - 1600 - 144 - 196

max_d = √83

max_d = 9.1104335791443

Since max_d = 9.1104335791443 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 122 - 152

max_d = √2023 - 1600 - 144 - 225

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 16

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 122 - 162

max_d = √2023 - 1600 - 144 - 256

max_d = √23

max_d = 4.7958315233127

Since max_d = 4.7958315233127 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 402 - 132)

max_c = Floor(√2023 - 1600 - 169)

max_c = Floor(√254)

max_c = Floor(15.937377450509)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 402 - 132)/2 = 127

When min_c = 12, then it is c2 = 144 ≥ 127, so min_c = 12

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 132 - 122

max_d = √2023 - 1600 - 169 - 144

max_d = √110

max_d = 10.488088481702

Since max_d = 10.488088481702 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 132 - 132

max_d = √2023 - 1600 - 169 - 169

max_d = √85

max_d = 9.2195444572929

Since max_d = 9.2195444572929 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 132 - 142

max_d = √2023 - 1600 - 169 - 196

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 132 - 152

max_d = √2023 - 1600 - 169 - 225

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 402 - 142)

max_c = Floor(√2023 - 1600 - 196)

max_c = Floor(√227)

max_c = Floor(15.066519173319)

max_c = 15

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 402 - 142)/2 = 113.5

When min_c = 11, then it is c2 = 121 ≥ 113.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 142 - 112

max_d = √2023 - 1600 - 196 - 121

max_d = √106

max_d = 10.295630140987

Since max_d = 10.295630140987 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 142 - 122

max_d = √2023 - 1600 - 196 - 144

max_d = √83

max_d = 9.1104335791443

Since max_d = 9.1104335791443 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 142 - 132

max_d = √2023 - 1600 - 196 - 169

max_d = √58

max_d = 7.6157731058639

Since max_d = 7.6157731058639 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 142 - 142

max_d = √2023 - 1600 - 196 - 196

max_d = √31

max_d = 5.56776436283

Since max_d = 5.56776436283 is not an integer, this is not a solution

c = 15

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 142 - 152

max_d = √2023 - 1600 - 196 - 225

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 402 - 152)

max_c = Floor(√2023 - 1600 - 225)

max_c = Floor(√198)

max_c = Floor(14.07124727947)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 402 - 152)/2 = 99

When min_c = 10, then it is c2 = 100 ≥ 99, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 152 - 102

max_d = √2023 - 1600 - 225 - 100

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 152 - 112

max_d = √2023 - 1600 - 225 - 121

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 152 - 122

max_d = √2023 - 1600 - 225 - 144

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 152 - 132

max_d = √2023 - 1600 - 225 - 169

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 152 - 142

max_d = √2023 - 1600 - 225 - 196

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 402 - 162)

max_c = Floor(√2023 - 1600 - 256)

max_c = Floor(√167)

max_c = Floor(12.92284798332)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 402 - 162)/2 = 83.5

When min_c = 10, then it is c2 = 100 ≥ 83.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 162 - 102

max_d = √2023 - 1600 - 256 - 100

max_d = √67

max_d = 8.1853527718725

Since max_d = 8.1853527718725 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 162 - 112

max_d = √2023 - 1600 - 256 - 121

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 162 - 122

max_d = √2023 - 1600 - 256 - 144

max_d = √23

max_d = 4.7958315233127

Since max_d = 4.7958315233127 is not an integer, this is not a solution

b = 17

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 402 - 172)

max_c = Floor(√2023 - 1600 - 289)

max_c = Floor(√134)

max_c = Floor(11.57583690279)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 402 - 172)/2 = 67

When min_c = 9, then it is c2 = 81 ≥ 67, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 172 - 92

max_d = √2023 - 1600 - 289 - 81

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 172 - 102

max_d = √2023 - 1600 - 289 - 100

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 172 - 112

max_d = √2023 - 1600 - 289 - 121

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 18

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 402 - 182)

max_c = Floor(√2023 - 1600 - 324)

max_c = Floor(√99)

max_c = Floor(9.9498743710662)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 402 - 182)/2 = 49.5

When min_c = 8, then it is c2 = 64 ≥ 49.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 182 - 82

max_d = √2023 - 1600 - 324 - 64

max_d = √35

max_d = 5.9160797830996

Since max_d = 5.9160797830996 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 182 - 92

max_d = √2023 - 1600 - 324 - 81

max_d = √18

max_d = 4.2426406871193

Since max_d = 4.2426406871193 is not an integer, this is not a solution

b = 19

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 402 - 192)

max_c = Floor(√2023 - 1600 - 361)

max_c = Floor(√62)

max_c = Floor(7.8740078740118)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 402 - 192)/2 = 31

When min_c = 6, then it is c2 = 36 ≥ 31, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 192 - 62

max_d = √2023 - 1600 - 361 - 36

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 192 - 72

max_d = √2023 - 1600 - 361 - 49

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

b = 20

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 402 - 202)

max_c = Floor(√2023 - 1600 - 400)

max_c = Floor(√23)

max_c = Floor(4.7958315233127)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 402 - 202)/2 = 11.5

When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 402 - 202 - 42

max_d = √2023 - 1600 - 400 - 16

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

a = 41

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 412)

max_b = Floor(√2023 - 1681)

max_b = Floor(√342)

max_b = Floor(18.493242008907)

max_b = 18

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 412)/3 = 114

When min_b = 11, then it is b2 = 121 ≥ 114, so min_b = 11

Test values for b in the range of (min_b, max_b)

(11, 18)

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 412 - 112)

max_c = Floor(√2023 - 1681 - 121)

max_c = Floor(√221)

max_c = Floor(14.866068747319)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 412 - 112)/2 = 110.5

When min_c = 11, then it is c2 = 121 ≥ 110.5, so min_c = 11

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 112 - 112

max_d = √2023 - 1681 - 121 - 121

max_d = √100

max_d = 10

Since max_d = 10, then (a, b, c, d) = (41, 11, 11, 10) is an integer solution proven below

412 + 112 + 112 + 102 → 1681 + 121 + 121 + 100 = 2023

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 112 - 122

max_d = √2023 - 1681 - 121 - 144

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 112 - 132

max_d = √2023 - 1681 - 121 - 169

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 112 - 142

max_d = √2023 - 1681 - 121 - 196

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (41, 11, 14, 5) is an integer solution proven below

412 + 112 + 142 + 52 → 1681 + 121 + 196 + 25 = 2023

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 412 - 122)

max_c = Floor(√2023 - 1681 - 144)

max_c = Floor(√198)

max_c = Floor(14.07124727947)

max_c = 14

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 412 - 122)/2 = 99

When min_c = 10, then it is c2 = 100 ≥ 99, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 122 - 102

max_d = √2023 - 1681 - 144 - 100

max_d = √98

max_d = 9.8994949366117

Since max_d = 9.8994949366117 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 122 - 112

max_d = √2023 - 1681 - 144 - 121

max_d = √77

max_d = 8.7749643873921

Since max_d = 8.7749643873921 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 122 - 122

max_d = √2023 - 1681 - 144 - 144

max_d = √54

max_d = 7.3484692283495

Since max_d = 7.3484692283495 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 122 - 132

max_d = √2023 - 1681 - 144 - 169

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 14

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 122 - 142

max_d = √2023 - 1681 - 144 - 196

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 412 - 132)

max_c = Floor(√2023 - 1681 - 169)

max_c = Floor(√173)

max_c = Floor(13.152946437966)

max_c = 13

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 412 - 132)/2 = 86.5

When min_c = 10, then it is c2 = 100 ≥ 86.5, so min_c = 10

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 132 - 102

max_d = √2023 - 1681 - 169 - 100

max_d = √73

max_d = 8.5440037453175

Since max_d = 8.5440037453175 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 132 - 112

max_d = √2023 - 1681 - 169 - 121

max_d = √52

max_d = 7.211102550928

Since max_d = 7.211102550928 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 132 - 122

max_d = √2023 - 1681 - 169 - 144

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 13

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 132 - 132

max_d = √2023 - 1681 - 169 - 169

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (41, 13, 13, 2) is an integer solution proven below

412 + 132 + 132 + 22 → 1681 + 169 + 169 + 4 = 2023

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 412 - 142)

max_c = Floor(√2023 - 1681 - 196)

max_c = Floor(√146)

max_c = Floor(12.083045973595)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 412 - 142)/2 = 73

When min_c = 9, then it is c2 = 81 ≥ 73, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 142 - 92

max_d = √2023 - 1681 - 196 - 81

max_d = √65

max_d = 8.0622577482985

Since max_d = 8.0622577482985 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 142 - 102

max_d = √2023 - 1681 - 196 - 100

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 142 - 112

max_d = √2023 - 1681 - 196 - 121

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (41, 14, 11, 5) is an integer solution proven below

412 + 142 + 112 + 52 → 1681 + 196 + 121 + 25 = 2023

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 142 - 122

max_d = √2023 - 1681 - 196 - 144

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 412 - 152)

max_c = Floor(√2023 - 1681 - 225)

max_c = Floor(√117)

max_c = Floor(10.816653826392)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 412 - 152)/2 = 58.5

When min_c = 8, then it is c2 = 64 ≥ 58.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 152 - 82

max_d = √2023 - 1681 - 225 - 64

max_d = √53

max_d = 7.2801098892805

Since max_d = 7.2801098892805 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 152 - 92

max_d = √2023 - 1681 - 225 - 81

max_d = √36

max_d = 6

Since max_d = 6, then (a, b, c, d) = (41, 15, 9, 6) is an integer solution proven below

412 + 152 + 92 + 62 → 1681 + 225 + 81 + 36 = 2023

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 152 - 102

max_d = √2023 - 1681 - 225 - 100

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 412 - 162)

max_c = Floor(√2023 - 1681 - 256)

max_c = Floor(√86)

max_c = Floor(9.2736184954957)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 412 - 162)/2 = 43

When min_c = 7, then it is c2 = 49 ≥ 43, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 162 - 72

max_d = √2023 - 1681 - 256 - 49

max_d = √37

max_d = 6.0827625302982

Since max_d = 6.0827625302982 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 162 - 82

max_d = √2023 - 1681 - 256 - 64

max_d = √22

max_d = 4.6904157598234

Since max_d = 4.6904157598234 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 162 - 92

max_d = √2023 - 1681 - 256 - 81

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 17

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 412 - 172)

max_c = Floor(√2023 - 1681 - 289)

max_c = Floor(√53)

max_c = Floor(7.2801098892805)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 412 - 172)/2 = 26.5

When min_c = 6, then it is c2 = 36 ≥ 26.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 172 - 62

max_d = √2023 - 1681 - 289 - 36

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 172 - 72

max_d = √2023 - 1681 - 289 - 49

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (41, 17, 7, 2) is an integer solution proven below

412 + 172 + 72 + 22 → 1681 + 289 + 49 + 4 = 2023

b = 18

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 412 - 182)

max_c = Floor(√2023 - 1681 - 324)

max_c = Floor(√18)

max_c = Floor(4.2426406871193)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 412 - 182)/2 = 9

When min_c = 3, then it is c2 = 9 ≥ 9, so min_c = 3

c = 3

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 182 - 32

max_d = √2023 - 1681 - 324 - 9

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (41, 18, 3, 3) is an integer solution proven below

412 + 182 + 32 + 32 → 1681 + 324 + 9 + 9 = 2023

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 412 - 182 - 42

max_d = √2023 - 1681 - 324 - 16

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

a = 42

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 422)

max_b = Floor(√2023 - 1764)

max_b = Floor(√259)

max_b = Floor(16.093476939431)

max_b = 16

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 422)/3 = 86.333333333333

When min_b = 10, then it is b2 = 100 ≥ 86.333333333333, so min_b = 10

Test values for b in the range of (min_b, max_b)

(10, 16)

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 422 - 102)

max_c = Floor(√2023 - 1764 - 100)

max_c = Floor(√159)

max_c = Floor(12.609520212918)

max_c = 12

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 422 - 102)/2 = 79.5

When min_c = 9, then it is c2 = 81 ≥ 79.5, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 102 - 92

max_d = √2023 - 1764 - 100 - 81

max_d = √78

max_d = 8.8317608663278

Since max_d = 8.8317608663278 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 102 - 102

max_d = √2023 - 1764 - 100 - 100

max_d = √59

max_d = 7.6811457478686

Since max_d = 7.6811457478686 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 102 - 112

max_d = √2023 - 1764 - 100 - 121

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 12

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 102 - 122

max_d = √2023 - 1764 - 100 - 144

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 422 - 112)

max_c = Floor(√2023 - 1764 - 121)

max_c = Floor(√138)

max_c = Floor(11.747340124471)

max_c = 11

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 422 - 112)/2 = 69

When min_c = 9, then it is c2 = 81 ≥ 69, so min_c = 9

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 112 - 92

max_d = √2023 - 1764 - 121 - 81

max_d = √57

max_d = 7.5498344352707

Since max_d = 7.5498344352707 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 112 - 102

max_d = √2023 - 1764 - 121 - 100

max_d = √38

max_d = 6.164414002969

Since max_d = 6.164414002969 is not an integer, this is not a solution

c = 11

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 112 - 112

max_d = √2023 - 1764 - 121 - 121

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 422 - 122)

max_c = Floor(√2023 - 1764 - 144)

max_c = Floor(√115)

max_c = Floor(10.723805294764)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 422 - 122)/2 = 57.5

When min_c = 8, then it is c2 = 64 ≥ 57.5, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 122 - 82

max_d = √2023 - 1764 - 144 - 64

max_d = √51

max_d = 7.1414284285429

Since max_d = 7.1414284285429 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 122 - 92

max_d = √2023 - 1764 - 144 - 81

max_d = √34

max_d = 5.8309518948453

Since max_d = 5.8309518948453 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 122 - 102

max_d = √2023 - 1764 - 144 - 100

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 422 - 132)

max_c = Floor(√2023 - 1764 - 169)

max_c = Floor(√90)

max_c = Floor(9.4868329805051)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 422 - 132)/2 = 45

When min_c = 7, then it is c2 = 49 ≥ 45, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 132 - 72

max_d = √2023 - 1764 - 169 - 49

max_d = √41

max_d = 6.4031242374328

Since max_d = 6.4031242374328 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 132 - 82

max_d = √2023 - 1764 - 169 - 64

max_d = √26

max_d = 5.0990195135928

Since max_d = 5.0990195135928 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 132 - 92

max_d = √2023 - 1764 - 169 - 81

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (42, 13, 9, 3) is an integer solution proven below

422 + 132 + 92 + 32 → 1764 + 169 + 81 + 9 = 2023

b = 14

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 422 - 142)

max_c = Floor(√2023 - 1764 - 196)

max_c = Floor(√63)

max_c = Floor(7.9372539331938)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 422 - 142)/2 = 31.5

When min_c = 6, then it is c2 = 36 ≥ 31.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 142 - 62

max_d = √2023 - 1764 - 196 - 36

max_d = √27

max_d = 5.1961524227066

Since max_d = 5.1961524227066 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 142 - 72

max_d = √2023 - 1764 - 196 - 49

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

b = 15

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 422 - 152)

max_c = Floor(√2023 - 1764 - 225)

max_c = Floor(√34)

max_c = Floor(5.8309518948453)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 422 - 152)/2 = 17

When min_c = 5, then it is c2 = 25 ≥ 17, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 422 - 152 - 52

max_d = √2023 - 1764 - 225 - 25

max_d = √9

max_d = 3

Since max_d = 3, then (a, b, c, d) = (42, 15, 5, 3) is an integer solution proven below

422 + 152 + 52 + 32 → 1764 + 225 + 25 + 9 = 2023

b = 16

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 422 - 162)

max_c = Floor(√2023 - 1764 - 256)

max_c = Floor(√3)

max_c = Floor(1.7320508075689)

max_c = 1

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 422 - 162)/2 = 1.5

When min_c = 2, then it is c2 = 4 ≥ 1.5, so min_c = 2

a = 43

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 432)

max_b = Floor(√2023 - 1849)

max_b = Floor(√174)

max_b = Floor(13.190905958273)

max_b = 13

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 432)/3 = 58

When min_b = 8, then it is b2 = 64 ≥ 58, so min_b = 8

Test values for b in the range of (min_b, max_b)

(8, 13)

b = 8

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 432 - 82)

max_c = Floor(√2023 - 1849 - 64)

max_c = Floor(√110)

max_c = Floor(10.488088481702)

max_c = 10

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 432 - 82)/2 = 55

When min_c = 8, then it is c2 = 64 ≥ 55, so min_c = 8

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 432 - 82 - 82

max_d = √2023 - 1849 - 64 - 64

max_d = √46

max_d = 6.7823299831253

Since max_d = 6.7823299831253 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 432 - 82 - 92

max_d = √2023 - 1849 - 64 - 81

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 10

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 432 - 82 - 102

max_d = √2023 - 1849 - 64 - 100

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 432 - 92)

max_c = Floor(√2023 - 1849 - 81)

max_c = Floor(√93)

max_c = Floor(9.643650760993)

max_c = 9

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 432 - 92)/2 = 46.5

When min_c = 7, then it is c2 = 49 ≥ 46.5, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 432 - 92 - 72

max_d = √2023 - 1849 - 81 - 49

max_d = √44

max_d = 6.6332495807108

Since max_d = 6.6332495807108 is not an integer, this is not a solution

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 432 - 92 - 82

max_d = √2023 - 1849 - 81 - 64

max_d = √29

max_d = 5.3851648071345

Since max_d = 5.3851648071345 is not an integer, this is not a solution

c = 9

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 432 - 92 - 92

max_d = √2023 - 1849 - 81 - 81

max_d = √12

max_d = 3.4641016151378

Since max_d = 3.4641016151378 is not an integer, this is not a solution

b = 10

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 432 - 102)

max_c = Floor(√2023 - 1849 - 100)

max_c = Floor(√74)

max_c = Floor(8.6023252670426)

max_c = 8

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 432 - 102)/2 = 37

When min_c = 7, then it is c2 = 49 ≥ 37, so min_c = 7

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 432 - 102 - 72

max_d = √2023 - 1849 - 100 - 49

max_d = √25

max_d = 5

Since max_d = 5, then (a, b, c, d) = (43, 10, 7, 5) is an integer solution proven below

432 + 102 + 72 + 52 → 1849 + 100 + 49 + 25 = 2023

c = 8

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 432 - 102 - 82

max_d = √2023 - 1849 - 100 - 64

max_d = √10

max_d = 3.1622776601684

Since max_d = 3.1622776601684 is not an integer, this is not a solution

b = 11

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 432 - 112)

max_c = Floor(√2023 - 1849 - 121)

max_c = Floor(√53)

max_c = Floor(7.2801098892805)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 432 - 112)/2 = 26.5

When min_c = 6, then it is c2 = 36 ≥ 26.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 432 - 112 - 62

max_d = √2023 - 1849 - 121 - 36

max_d = √17

max_d = 4.1231056256177

Since max_d = 4.1231056256177 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 432 - 112 - 72

max_d = √2023 - 1849 - 121 - 49

max_d = √4

max_d = 2

Since max_d = 2, then (a, b, c, d) = (43, 11, 7, 2) is an integer solution proven below

432 + 112 + 72 + 22 → 1849 + 121 + 49 + 4 = 2023

b = 12

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 432 - 122)

max_c = Floor(√2023 - 1849 - 144)

max_c = Floor(√30)

max_c = Floor(5.4772255750517)

max_c = 5

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 432 - 122)/2 = 15

When min_c = 4, then it is c2 = 16 ≥ 15, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 432 - 122 - 42

max_d = √2023 - 1849 - 144 - 16

max_d = √14

max_d = 3.7416573867739

Since max_d = 3.7416573867739 is not an integer, this is not a solution

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 432 - 122 - 52

max_d = √2023 - 1849 - 144 - 25

max_d = √5

max_d = 2.2360679774998

Since max_d = 2.2360679774998 is not an integer, this is not a solution

b = 13

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 432 - 132)

max_c = Floor(√2023 - 1849 - 169)

max_c = Floor(√5)

max_c = Floor(2.2360679774998)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 432 - 132)/2 = 2.5

When min_c = 2, then it is c2 = 4 ≥ 2.5, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 432 - 132 - 22

max_d = √2023 - 1849 - 169 - 4

max_d = √1

max_d = 1

Since max_d = 1, then (a, b, c, d) = (43, 13, 2, 1) is an integer solution proven below

432 + 132 + 22 + 12 → 1849 + 169 + 4 + 1 = 2023

a = 44

Find max_b which is Floor(√n - a2)

max_b = Floor(√2023 - 442)

max_b = Floor(√2023 - 1936)

max_b = Floor(√87)

max_b = Floor(9.3273790530888)

max_b = 9

Find b such that b2 ≥ (n - a2)/3

Call it min_b

Find b

Start with min_b = 0 and increase by 1
Go until (n - a2)/3 → (2023 - 442)/3 = 29

When min_b = 6, then it is b2 = 36 ≥ 29, so min_b = 6

Test values for b in the range of (min_b, max_b)

(6, 9)

b = 6

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 442 - 62)

max_c = Floor(√2023 - 1936 - 36)

max_c = Floor(√51)

max_c = Floor(7.1414284285429)

max_c = 7

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 442 - 62)/2 = 25.5

When min_c = 6, then it is c2 = 36 ≥ 25.5, so min_c = 6

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 442 - 62 - 62

max_d = √2023 - 1936 - 36 - 36

max_d = √15

max_d = 3.8729833462074

Since max_d = 3.8729833462074 is not an integer, this is not a solution

c = 7

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 442 - 62 - 72

max_d = √2023 - 1936 - 36 - 49

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 7

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 442 - 72)

max_c = Floor(√2023 - 1936 - 49)

max_c = Floor(√38)

max_c = Floor(6.164414002969)

max_c = 6

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 442 - 72)/2 = 19

When min_c = 5, then it is c2 = 25 ≥ 19, so min_c = 5

c = 5

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 442 - 72 - 52

max_d = √2023 - 1936 - 49 - 25

max_d = √13

max_d = 3.605551275464

Since max_d = 3.605551275464 is not an integer, this is not a solution

c = 6

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 442 - 72 - 62

max_d = √2023 - 1936 - 49 - 36

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

b = 8

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 442 - 82)

max_c = Floor(√2023 - 1936 - 64)

max_c = Floor(√23)

max_c = Floor(4.7958315233127)

max_c = 4

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 442 - 82)/2 = 11.5

When min_c = 4, then it is c2 = 16 ≥ 11.5, so min_c = 4

c = 4

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 442 - 82 - 42

max_d = √2023 - 1936 - 64 - 16

max_d = √7

max_d = 2.6457513110646

Since max_d = 2.6457513110646 is not an integer, this is not a solution

b = 9

Determine max_c =Floor(√n - a2 - b2)

max_c = Floor(√2023 - 442 - 92)

max_c = Floor(√2023 - 1936 - 81)

max_c = Floor(√6)

max_c = Floor(2.4494897427832)

max_c = 2

Step 5b. Obtain the first value of b such that b2 ≥ (n - a2)/3

Call it min_b

Start with min_c = 0 and increase by 1

Go until (n - a2 - b2 )/2 → (2023 - 442 - 92)/2 = 3

When min_c = 2, then it is c2 = 4 ≥ 3, so min_c = 2

c = 2

See if d is an integer solution which is √n - a2 - b2

max_d = √2023 - 442 - 92 - 22

max_d = √2023 - 1936 - 81 - 4

max_d = √2

max_d = 1.4142135623731

Since max_d = 1.4142135623731 is not an integer, this is not a solution

List out 61 solutions:


(a, b, c, d) = (35, 26, 11, 1)
(a, b, c, d) = (34, 29, 5, 1)
(a, b, c, d) = (31, 31, 10, 1)
(a, b, c, d) = (37, 22, 13, 1)
(a, b, c, d) = (38, 17, 17, 1)
(a, b, c, d) = (38, 23, 7, 1)
(a, b, c, d) = (43, 13, 2, 1)
(a, b, c, d) = (31, 23, 23, 2)
(a, b, c, d) = (35, 25, 13, 2)
(a, b, c, d) = (37, 19, 17, 2)
(a, b, c, d) = (37, 23, 11, 2)
(a, b, c, d) = (37, 25, 5, 2)
(a, b, c, d) = (41, 13, 13, 2)
(a, b, c, d) = (41, 17, 7, 2)
(a, b, c, d) = (43, 11, 7, 2)
(a, b, c, d) = (31, 27, 18, 3)
(a, b, c, d) = (33, 27, 14, 3)
(a, b, c, d) = (33, 30, 5, 3)
(a, b, c, d) = (33, 22, 21, 3)
(a, b, c, d) = (39, 18, 13, 3)
(a, b, c, d) = (39, 22, 3, 3)
(a, b, c, d) = (41, 18, 3, 3)
(a, b, c, d) = (42, 13, 9, 3)
(a, b, c, d) = (42, 15, 5, 3)
(a, b, c, d) = (31, 26, 19, 5)
(a, b, c, d) = (31, 29, 14, 5)
(a, b, c, d) = (35, 22, 17, 5)
(a, b, c, d) = (37, 23, 10, 5)
(a, b, c, d) = (38, 23, 5, 5)
(a, b, c, d) = (39, 21, 6, 5)
(a, b, c, d) = (41, 14, 11, 5)
(a, b, c, d) = (43, 10, 7, 5)
(a, b, c, d) = (27, 27, 23, 6)
(a, b, c, d) = (33, 27, 13, 6)
(a, b, c, d) = (41, 15, 9, 6)
(a, b, c, d) = (31, 23, 22, 7)
(a, b, c, d) = (34, 23, 17, 7)
(a, b, c, d) = (37, 22, 11, 7)
(a, b, c, d) = (38, 19, 13, 7)
(a, b, c, d) = (27, 27, 22, 9)
(a, b, c, d) = (31, 30, 9, 9)
(a, b, c, d) = (33, 23, 18, 9)
(a, b, c, d) = (39, 15, 14, 9)
(a, b, c, d) = (31, 29, 11, 10)
(a, b, c, d) = (35, 23, 13, 10)
(a, b, c, d) = (41, 11, 11, 10)
(a, b, c, d) = (34, 25, 11, 11)
(a, b, c, d) = (38, 17, 13, 11)
(a, b, c, d) = (30, 27, 15, 13)
(a, b, c, d) = (29, 23, 22, 13)
(a, b, c, d) = (33, 21, 18, 13)
(a, b, c, d) = (34, 23, 13, 13)
(a, b, c, d) = (37, 17, 14, 13)
(a, b, c, d) = (29, 25, 19, 14)
(a, b, c, d) = (33, 22, 15, 15)
(a, b, c, d) = (25, 25, 22, 17)
(a, b, c, d) = (26, 23, 23, 17)
(a, b, c, d) = (31, 22, 17, 17)
(a, b, c, d) = (34, 17, 17, 17)
(a, b, c, d) = (27, 23, 21, 18)
(a, b, c, d) = (26, 25, 19, 19)


Download the mobile appGenerate a practice problemGenerate a quiz

What is the Answer?
(a, b, c, d) = (35, 26, 11, 1)
(a, b, c, d) = (34, 29, 5, 1)
(a, b, c, d) = (31, 31, 10, 1)
(a, b, c, d) = (37, 22, 13, 1)
(a, b, c, d) = (38, 17, 17, 1)
(a, b, c, d) = (38, 23, 7, 1)
(a, b, c, d) = (43, 13, 2, 1)
(a, b, c, d) = (31, 23, 23, 2)
(a, b, c, d) = (35, 25, 13, 2)
(a, b, c, d) = (37, 19, 17, 2)
(a, b, c, d) = (37, 23, 11, 2)
(a, b, c, d) = (37, 25, 5, 2)
(a, b, c, d) = (41, 13, 13, 2)
(a, b, c, d) = (41, 17, 7, 2)
(a, b, c, d) = (43, 11, 7, 2)
(a, b, c, d) = (31, 27, 18, 3)
(a, b, c, d) = (33, 27, 14, 3)
(a, b, c, d) = (33, 30, 5, 3)
(a, b, c, d) = (33, 22, 21, 3)
(a, b, c, d) = (39, 18, 13, 3)
(a, b, c, d) = (39, 22, 3, 3)
(a, b, c, d) = (41, 18, 3, 3)
(a, b, c, d) = (42, 13, 9, 3)
(a, b, c, d) = (42, 15, 5, 3)
(a, b, c, d) = (31, 26, 19, 5)
(a, b, c, d) = (31, 29, 14, 5)
(a, b, c, d) = (35, 22, 17, 5)
(a, b, c, d) = (37, 23, 10, 5)
(a, b, c, d) = (38, 23, 5, 5)
(a, b, c, d) = (39, 21, 6, 5)
(a, b, c, d) = (41, 14, 11, 5)
(a, b, c, d) = (43, 10, 7, 5)
(a, b, c, d) = (27, 27, 23, 6)
(a, b, c, d) = (33, 27, 13, 6)
(a, b, c, d) = (41, 15, 9, 6)
(a, b, c, d) = (31, 23, 22, 7)
(a, b, c, d) = (34, 23, 17, 7)
(a, b, c, d) = (37, 22, 11, 7)
(a, b, c, d) = (38, 19, 13, 7)
(a, b, c, d) = (27, 27, 22, 9)
(a, b, c, d) = (31, 30, 9, 9)
(a, b, c, d) = (33, 23, 18, 9)
(a, b, c, d) = (39, 15, 14, 9)
(a, b, c, d) = (31, 29, 11, 10)
(a, b, c, d) = (35, 23, 13, 10)
(a, b, c, d) = (41, 11, 11, 10)
(a, b, c, d) = (34, 25, 11, 11)
(a, b, c, d) = (38, 17, 13, 11)
(a, b, c, d) = (30, 27, 15, 13)
(a, b, c, d) = (29, 23, 22, 13)
(a, b, c, d) = (33, 21, 18, 13)
(a, b, c, d) = (34, 23, 13, 13)
(a, b, c, d) = (37, 17, 14, 13)
(a, b, c, d) = (29, 25, 19, 14)
(a, b, c, d) = (33, 22, 15, 15)
(a, b, c, d) = (25, 25, 22, 17)
(a, b, c, d) = (26, 23, 23, 17)
(a, b, c, d) = (31, 22, 17, 17)
(a, b, c, d) = (34, 17, 17, 17)
(a, b, c, d) = (27, 23, 21, 18)
(a, b, c, d) = (26, 25, 19, 19)
How does the Lagrange Four Square Theorem (Bachet Conjecture) Calculator work?
Free Lagrange Four Square Theorem (Bachet Conjecture) Calculator - Builds the Lagrange Theorem Notation (Bachet Conjecture) for any natural number using the Sum of four squares.
This calculator has 1 input.
What 1 formula is used for the Lagrange Four Square Theorem (Bachet Conjecture) Calculator?
p = a2 + b2 + c2 + d2
What 7 concepts are covered in the Lagrange Four Square Theorem (Bachet Conjecture) Calculator?
algorithm
A process to solve a problem in a set amount of time
floor
the greatest integer that is less than or equal to x
integer
a whole number; a number that is not a fraction
...,-5,-4,-3,-2,-1,0,1,2,3,4,5,...
lagrange theorem
in group theory, for any finite group say G, the order of subgroup H of group G divides the order of G
p = a2 + b2 + c2 + d2
maximum
the greatest or highest amount possible or attained
minimum
the least or lowest amount possible or attained
natural number
the positive integers (whole numbers)
1, 2, 3, ...
Example calculations for the Lagrange Four Square Theorem (Bachet Conjecture) Calculator
Lagrange Four Square Theorem (Bachet Conjecture) Calculator Video

Tags:



Add This Calculator To Your Website