Enter Fibonacci Count

Generate 50 Fibonacci numbers

We can do this two ways:

1) Recursive Algorithm

2) Binet's Formula

Recursive Algorithm:

Fn = Fn - 1 + Fn - 2

where F0 = 0 and F1 = 1

Show Fibonacci Formula:

N/A + 0

N/A + 1

1 + 0 + 1

1 + 1 + 2

2 + 1 + 3

3 + 2 + 5

5 + 3 + 8

8 + 5 + 13

13 + 8 + 21

21 + 13 + 34

34 + 21 + 55

55 + 34 + 89

89 + 55 + 144

144 + 89 + 233

233 + 144 + 377

377 + 233 + 610

610 + 377 + 987

987 + 610 + 1,597

1,597 + 987 + 2,584

2,584 + 1,597 + 4,181

4,181 + 2,584 + 6,765

6,765 + 4,181 + 10,946

10,946 + 6,765 + 17,711

17,711 + 10,946 + 28,657

28,657 + 17,711 + 46,368

46,368 + 28,657 + 75,025

75,025 + 46,368 + 121,393

121,393 + 75,025 + 196,418

196,418 + 121,393 + 317,811

317,811 + 196,418 + 514,229

514,229 + 317,811 + 832,040

832,040 + 514,229 + 1,346,269

1,346,269 + 832,040 + 2,178,309

2,178,309 + 1,346,269 + 3,524,578

3,524,578 + 2,178,309 + 5,702,887

5,702,887 + 3,524,578 + 9,227,465

9,227,465 + 5,702,887 + 14,930,352

14,930,352 + 9,227,465 + 24,157,817

24,157,817 + 14,930,352 + 39,088,169

39,088,169 + 24,157,817 + 63,245,986

63,245,986 + 39,088,169 + 102,334,155

102,334,155 + 63,245,986 + 165,580,141

165,580,141 + 102,334,155 + 267,914,296

267,914,296 + 165,580,141 + 433,494,437

433,494,437 + 267,914,296 + 701,408,733

701,408,733 + 433,494,437 + 1,134,903,170

1,134,903,170 + 701,408,733 + 1,836,311,903

1,836,311,903 + 1,134,903,170 + 2,971,215,073

2,971,215,073 + 1,836,311,903 + 4,807,526,976

4,807,526,976 + 2,971,215,073 + 7,778,742,049

Use Binet's Formula

Fn = 1/√5(((1 + √5)/2)n - ((1 - √5)/2)n)

Given n = 49, we have:

F49 = 0.44721359549996 * ((3.2360679774998/2)49 - (-1.2360679774998/2)49)

F49 = 0.44721359549996 * ((1.6180339887499)49 - (-0.61803398874989)49)

F49 = 0.44721359549996 * (17393796001 - -5.7491763151788E-11)

F49 = 0.44721359549996 * 17393796001

Final Answer


F49 = 7778742049