%<-- Enter Confidence Percentage or 1 - α
<-- Enter column Titles
  <--- Enter contingency values
  

Calculate the expected frequency from the contingency table that you entered using a 95% confidence percentage

Observed values from what you entered are below:

  WinsDrawsLosses

Step 1: Get the totals for each of the 1 rows and 3 columns

  WinsDrawsLossesTotals
0
Totals0

Step 2: Calculate the expected frequencies for each table cell (Row Total x Column Total) ÷ All Total

  WinsDrawsLossesTotals
0
Totals0

Step 3: Build our observed versus expected values:

ObservedExpected|Observed - Expected||O - E|2 ÷ Expected
Total    0

Step 4: Calculate Degrees of Freedom (DoF):

For a table with (m) rows and (n) columns, we have DoF = (m - 1)(n - 1) = (1 - 1)(3 - 1) = (0)(2) = 0

Step 5: Evaluate Test Statistic:

Our Test Statistic from the table above = 0
At a 95% confidence percentage, we have a tail value of 100% - 95% = 5 denoted as α0.05
In the table below: Our Χ2 Critical Value at 0 Degrees of Freedom and tail value of 5% =

Step 6: Draw our conclusion:


Since the test statistic of 0 exceeds our critical value of , we assume that our hypothesis does not hold.

Chi-Square Table Values are below:

DOF αα 0.1α 0.09α 0.08α 0.07α 0.06α 0.05α 0.04α 0.03α 0.02α 0.01
12.70552.87443.06493.2833.53743.84154.21794.70935.41196.6349
24.60524.81595.05155.31855.62685.99156.43787.01317.8249.2103
36.25146.49156.75877.06037.40697.81478.31128.94739.837411.3449
47.77948.04348.33658.66649.04449.487710.025510.711911.667813.2767
59.23649.52119.836610.19110.596211.070511.644312.374613.388215.0863
610.644610.947911.283511.659912.089612.591613.197813.967615.033216.8119
712.01712.337212.691213.087713.539714.067114.70315.509116.622418.4753
813.361613.697514.068414.483614.956315.507316.170817.010518.168220.0902
914.683715.034215.421115.853716.345916.91917.608318.479619.67921.666
1015.987216.351616.753517.202617.713118.30719.020719.921921.160823.2093
1117.27517.652618.068718.533419.061419.675120.41221.341622.617924.725
1218.549318.939519.369219.848820.393421.026121.785122.741824.05426.217
1319.811920.21420.656821.150721.711322.36223.142324.124925.471527.6882
1421.064121.477821.933122.440823.016623.684824.485525.493126.872829.1412
1522.307122.731923.199323.720224.310824.995825.816226.847928.259530.5779
1623.541823.977424.456424.990125.59526.296227.135628.190729.633231.9999
1724.76925.21525.705326.251426.870127.587128.44529.522730.99533.4087
1825.989426.445526.946727.504928.13728.869329.745130.844732.346234.8053
1927.203627.669428.181428.751229.396430.143531.036732.157733.687436.1909
2028.41228.887429.409729.99130.648931.410432.320633.462435.019637.5662
2129.615130.099830.632231.224631.894932.670633.597234.759336.343438.9322
2230.813331.307131.849432.452633.13533.924434.867336.049237.659540.2894
2332.006932.509633.061633.675434.369635.172536.131137.332338.968341.6384
2433.196233.707734.26934.893235.59936.41537.389138.609340.270442.9798
2534.381634.901535.472136.106536.823537.652538.641639.880441.566144.3141
2635.563236.091536.671137.315438.043538.885139.889141.14642.855845.6417
2736.741237.277737.866238.520239.259340.113341.131842.406644.1446.9629
2837.915938.460439.057739.721340.47141.337142.369943.662245.418848.2782
2939.087539.639840.245640.918741.678942.55743.603844.913246.692749.5879