Calculate the expected frequency from the contingency table that you entered using a 95% confidence percentage
Observed values from what you entered are below:
Step 1: Get the totals for each of the 1 rows and 3 columns
| Wins | Draws | Losses | Totals | | 0 |
Totals | 0 |
Step 2: Calculate the expected frequencies for each table cell (Row Total x Column Total) ÷ All Total
| Wins | Draws | Losses | Totals | | 0 |
Totals | 0 |
Step 3: Build our observed versus expected values:
Observed | Expected | |Observed - Expected| | |O - E|2 ÷ Expected | Total | | | 0 |
Step 4: Calculate Degrees of Freedom (DoF):
For a table with (m) rows and (n) columns, we have DoF = (m - 1)(n - 1) = (1 - 1)(3 - 1) = (0)(2) = 0
Step 5: Evaluate Test Statistic:
Our Test Statistic from the table above =
0At a 95% confidence percentage, we have a tail value of 100% - 95% = 5 denoted as α
0.05In the table below: Our Χ
2 Critical Value at 0 Degrees of Freedom and tail value of 5% =
Step 6: Draw our conclusion:
Since the test statistic of 0 exceeds our critical value of , we assume that our hypothesis does not hold.
Chi-Square Table Values are below:
DOF α | α 0.1 | α 0.09 | α 0.08 | α 0.07 | α 0.06 | α 0.05 | α 0.04 | α 0.03 | α 0.02 | α 0.01 |
1 | 2.7055 | 2.8744 | 3.0649 | 3.283 | 3.5374 | 3.8415 | 4.2179 | 4.7093 | 5.4119 | 6.6349 |
2 | 4.6052 | 4.8159 | 5.0515 | 5.3185 | 5.6268 | 5.9915 | 6.4378 | 7.0131 | 7.824 | 9.2103 |
3 | 6.2514 | 6.4915 | 6.7587 | 7.0603 | 7.4069 | 7.8147 | 8.3112 | 8.9473 | 9.8374 | 11.3449 |
4 | 7.7794 | 8.0434 | 8.3365 | 8.6664 | 9.0444 | 9.4877 | 10.0255 | 10.7119 | 11.6678 | 13.2767 |
5 | 9.2364 | 9.5211 | 9.8366 | 10.191 | 10.5962 | 11.0705 | 11.6443 | 12.3746 | 13.3882 | 15.0863 |
6 | 10.6446 | 10.9479 | 11.2835 | 11.6599 | 12.0896 | 12.5916 | 13.1978 | 13.9676 | 15.0332 | 16.8119 |
7 | 12.017 | 12.3372 | 12.6912 | 13.0877 | 13.5397 | 14.0671 | 14.703 | 15.5091 | 16.6224 | 18.4753 |
8 | 13.3616 | 13.6975 | 14.0684 | 14.4836 | 14.9563 | 15.5073 | 16.1708 | 17.0105 | 18.1682 | 20.0902 |
9 | 14.6837 | 15.0342 | 15.4211 | 15.8537 | 16.3459 | 16.919 | 17.6083 | 18.4796 | 19.679 | 21.666 |
10 | 15.9872 | 16.3516 | 16.7535 | 17.2026 | 17.7131 | 18.307 | 19.0207 | 19.9219 | 21.1608 | 23.2093 |
11 | 17.275 | 17.6526 | 18.0687 | 18.5334 | 19.0614 | 19.6751 | 20.412 | 21.3416 | 22.6179 | 24.725 |
12 | 18.5493 | 18.9395 | 19.3692 | 19.8488 | 20.3934 | 21.0261 | 21.7851 | 22.7418 | 24.054 | 26.217 |
13 | 19.8119 | 20.214 | 20.6568 | 21.1507 | 21.7113 | 22.362 | 23.1423 | 24.1249 | 25.4715 | 27.6882 |
14 | 21.0641 | 21.4778 | 21.9331 | 22.4408 | 23.0166 | 23.6848 | 24.4855 | 25.4931 | 26.8728 | 29.1412 |
15 | 22.3071 | 22.7319 | 23.1993 | 23.7202 | 24.3108 | 24.9958 | 25.8162 | 26.8479 | 28.2595 | 30.5779 |
16 | 23.5418 | 23.9774 | 24.4564 | 24.9901 | 25.595 | 26.2962 | 27.1356 | 28.1907 | 29.6332 | 31.9999 |
17 | 24.769 | 25.215 | 25.7053 | 26.2514 | 26.8701 | 27.5871 | 28.445 | 29.5227 | 30.995 | 33.4087 |
18 | 25.9894 | 26.4455 | 26.9467 | 27.5049 | 28.137 | 28.8693 | 29.7451 | 30.8447 | 32.3462 | 34.8053 |
19 | 27.2036 | 27.6694 | 28.1814 | 28.7512 | 29.3964 | 30.1435 | 31.0367 | 32.1577 | 33.6874 | 36.1909 |
20 | 28.412 | 28.8874 | 29.4097 | 29.991 | 30.6489 | 31.4104 | 32.3206 | 33.4624 | 35.0196 | 37.5662 |
21 | 29.6151 | 30.0998 | 30.6322 | 31.2246 | 31.8949 | 32.6706 | 33.5972 | 34.7593 | 36.3434 | 38.9322 |
22 | 30.8133 | 31.3071 | 31.8494 | 32.4526 | 33.135 | 33.9244 | 34.8673 | 36.0492 | 37.6595 | 40.2894 |
23 | 32.0069 | 32.5096 | 33.0616 | 33.6754 | 34.3696 | 35.1725 | 36.1311 | 37.3323 | 38.9683 | 41.6384 |
24 | 33.1962 | 33.7077 | 34.269 | 34.8932 | 35.599 | 36.415 | 37.3891 | 38.6093 | 40.2704 | 42.9798 |
25 | 34.3816 | 34.9015 | 35.4721 | 36.1065 | 36.8235 | 37.6525 | 38.6416 | 39.8804 | 41.5661 | 44.3141 |
26 | 35.5632 | 36.0915 | 36.6711 | 37.3154 | 38.0435 | 38.8851 | 39.8891 | 41.146 | 42.8558 | 45.6417 |
27 | 36.7412 | 37.2777 | 37.8662 | 38.5202 | 39.2593 | 40.1133 | 41.1318 | 42.4066 | 44.14 | 46.9629 |
28 | 37.9159 | 38.4604 | 39.0577 | 39.7213 | 40.471 | 41.3371 | 42.3699 | 43.6622 | 45.4188 | 48.2782 |
29 | 39.0875 | 39.6398 | 40.2456 | 40.9187 | 41.6789 | 42.557 | 43.6038 | 44.9132 | 46.6927 | 49.5879 |