if a and b are odd then a + b is even
Let a and b be positive odd integers of the form:
a + b = 2n + 2m + 1 + 1
Combing like terms, we get:
a + b = 2n + 2m + 2
a + b = 2(n + m) + 2
Let k = n + m
a + b = 2k + 2
Therefore a + b is even
Let a and b be positive odd integers of the form:
- a = 2n + 1
- b = 2m + 1
a + b = 2n + 2m + 1 + 1
Combing like terms, we get:
a + b = 2n + 2m + 2
a + b = 2(n + m) + 2
Let k = n + m
a + b = 2k + 2
Therefore a + b is even