Oliver invests $1,000 at a fixed rate of 7% compounded monthly, when will his account reach $10,000?
7% monthly is:
0.07/12 = .00583
So we have:
1000(1 + .00583)^m = 10000
divide each side by 1000;
(1.00583)^m = 10
Take the natural log of both sides;
LN (1.00583)^m = LN(10)
Use the identity for natural logs and exponents:
m * LN (1.00583) = 2.30258509299
0.00252458479m = 2.30258509299
m = 912.064867899
Round up to 913 months
7% monthly is:
0.07/12 = .00583
So we have:
1000(1 + .00583)^m = 10000
divide each side by 1000;
(1.00583)^m = 10
Take the natural log of both sides;
LN (1.00583)^m = LN(10)
Use the identity for natural logs and exponents:
m * LN (1.00583) = 2.30258509299
0.00252458479m = 2.30258509299
m = 912.064867899
Round up to 913 months